
HAL Id: inria-00141133
https://hal.inria.fr/inria-00141133

Submitted on 11 Apr 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Technical Report: Stateful Fuzzer
Humberto Abdelnur, Radu State, Olivier Festor

To cite this version:
Humberto Abdelnur, Radu State, Olivier Festor. Technical Report: Stateful Fuzzer. [Research Report]
2007, pp.10. �inria-00141133�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50390607?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00141133
https://hal.archives-ouvertes.fr

Technical Report
Stateful Fuzzer

Humberto J. Abdelnur
LORIA - INRIA Lorraine

615, rue du jardin botanique
Villers-les-Nancy, France

Humberto.Abdelnur@loria.fr

Radu State
LORIA - INRIA Lorraine

615, rue du jardin botanique
Villers-les-Nancy, France
Radu.State@loria.fr

Olivier Festor
LORIA - INRIA Lorraine

615, rue du jardin botanique
Villers-les-Nancy, France
Olivier.Festor@loria.fr

ABSTRACT
With the recent evolution in the VoIP market, where more
and more devices and services are being pushed on a very
promising market, assuring their security becomes crucial.
Among the most dangerous threats to VoIP, failures and
bugs in the software implementation will still rank high on
the list of vulnerabilities. In this paper we address the is-
sue of detecting such vulnerabilities using a stateful fuzzer.
We describe an automated attack approach capable to self-
improve and to track the state context of a target device. We
implemented our approach and were able to discover vulner-
abilities in market leading and well known equipments and
software.

Keywords
Software Testing Techniques, Protocol Fuzzer, VoIP Secu-
rity, SIP Vulnerabilities

1. INTRODUCTION
Over the past few years, protocol fuzzing emerged as a key
approach for discovering vulnerabilities in software imple-
mentations. The conceptual idea behind fuzzing is very sim-
ple: generate random and malicious input data and inject it
in an application. This approach is different from the well
established discipline of software testing [5] where functional
verification is checked. In fuzzing, this functional testing is
marginal; much more relevant is the goal to rapidly find po-
tential vulnerabilities. Protocol fuzzing is important for two
main reasons. Firstly, having an automated approach eases
the overall analysis process. Such an process is usually te-
dious and time consuming, requiring advanced knowledge in
software debugging and reverse engineering. Second, there
are many cases where no access to the source code/binaries
is possible, and where a “black box” type of testing is the
only viable solution. The current generation of fuzzers is
the first one, where most of the existing approaches rely on
randomly injecting input data without taking into account
the syntax, semantics and state of the targeted applications.

Such approaches are very useful when testing local appli-
cations within a confined environment (debugging session),
but are hardly applicable when testing protocol/application
stacks, like for instance a SIP stack. Although some results
can be obtained (see Protos [14]), in many cases these are
limited to the processing of one single message (INVITE)
lacking the capability to track the state of the remote appli-
cation and to use behavioral level information in the fuzzing
process. Our work was motivated by these limits, and in
this paper we describe a statefull and context aware fuzzer,
its design, implementation and experimental results.

This paper is organized as follows. Section 2 describes the
challenges involved in achieving a model to fuzz messages
and to automatically evaluate their performance in the tar-
get entities. Section 3 describes the related work in the
area of fuzzing, software testing and protocol state testing.
Section 4 overviews the general protocol fuzzing framework.
Section 5 shows the some key constructs of our fuzzing pro-
cess: a fuzzer expression grammar and the associated evalu-
ation strategy. Section 6 defines the automated construction
of the representative state machine behavior of the SIP pro-
tocol, the techniques required for a passive testing of the
conformance of the target entity with the learned behavior
and the simulation process of one end-point entities in a ses-
sion. Section 7 details the implementation of the assessment
platform and the results obtained in testing different SIP de-
vices. Finally, section 8 concludes the paper and highlights
future works for our research.

2. CHALLENGES
Fuzzing is an important topic in the context of security as-
sessment, software testing and black box testing approaches.
The major idea behind fuzzing is that input data will be
tampered with random payload and will be injected in or-
der to test the data validation and processing of a target
application. Several ways exist in order to generate the in-
jected data. The data can be generated from the scratch,
by mutating existing valid data item or obtained by merg-
ing existing data. These possibilities do not represent the
challenge itself, because random functions can always gen-
erate such data. The main challenge however resides in how
to create input data that can reveal software errors and/or
noncompliance to standards.

From the point of view of a tested device, two main logical
structures can be considered (as illustrated in figure 1)

1. The unit which parses and translates a message to a
structured format

2. the unit that will process that structured data and
define the behavior to be executed

Figure 1: General Device Functionality

Assuming the generic structures of Figure 1 a crafted mes-
sage can be classified based on the effect on the target:

1. Messages that are not syntactically compliant and are
therefore rejected by the parser in the target entity.

2. Messages that are not syntactically compliant, where
the parser does not detect such irregularities, but how-
ever the processing unit reject them.

3. Messages syntactically not compliant, where neither
the parser nor the processing unit are able detect the
irregularities.

4. Syntactically compliant messages containing semantic
irregularities which are rejected by the parser.

5. Syntactically compliant messages containing semantic
irregularities that are rejected by the the processing
unit.

The first and fifth types are directly considered as garbage
because they do not have any effect on the tested entity. The
second type instead, allows the message to be processed but
its failure is detected in an upper layer. The message it-
self did not provoke a mis-functionality in the target device
but reveals a potential security hole. New messages may dig
further to find more serious problems in the corresponding
unit. In case of the third type, two consequences might arise:
either a vulnerability is found or the information crafted in
the message is not of concern for the entity. The latter may
be the case of a proxy, which usually ignores the fields that
are of no interest to speed up the process. The fourth type
is associated with messages that may restrict the interoper-
ability with other devices.

Our first objective was to define a flexible technique capa-
ble to generate messages of any of these types. We wanted
to do more that current fuzzers, which in most cases are
restricted to simple text based substitutions of large data
chunks and/or injected format string attacks required to test
for common buffer and format string vulnerabilities.

Some of the existing fuzzers use simplistic operational mod-
els, while others provide a rather complex interface, requir-
ing major work to adapt them for additional tests. This
last issue was one driving force in our work. We decided to

research how complex fuzzers can be build on top of a small
set of evolving and adaptive key building blocks.

Our aim was to provide a self-learning fuzzer that can evolve
and use structural domain specific knowledge. Evolution is a
key design feature required to build smart protocol fuzzers,
while a domain (SIP) specific approach is more probable to
provide better results.

The second challenge that we addressed was how to evaluate
the effectiveness of generated fuzzed input. For this issue,
some ideas can be found in the research papers on fuzzers
and software testing [5, 14, 12, 10, 13]. The major issue is
how to automatically detect that a fuzzed message was suc-
cessful. If a device crashes, then probably checking its status
before the reboot, might detect the crash. Checking the on-
line status for embedded devices is not that trivial. For more
complex network appliances, ICMP and/or application level
port scanning are useful, but in case of VoIP devices where
typically few ports are open and the implementation of the
TCP/IP stack is fragile, few reliable approaches exist.

Our final interest was set by the idea to be able to fuzz at a
protocol behavior level rather than only syntactically.

3. RELATED WORKS
Among the pioneering work in the field, the Mini-Simulation
Toolkit by R. Kaksonen in [9] proposed an excellent frame-
work for automatically generating crafted messages with a
certain knowledge of states. It assumes in certain knowl-
edge of the protocol to be tested, and an additional gram-
mar which merges the syntax message and the transition
behavior. The same work defines some semantic rules which
allow to produce calculated fields like for instance the check-
sum. However, the syntax grammar and the state protocol
are mixed in a same definition, which in fact provides a
reduced set of scenarios. Another issue is that the rules
to create exceptional messages are limited in functionality.
Another successful approach is the one followed by D. Aitel
in SPIKE [2, 3], where the concept of block-based fuzzing
is introduced. This is based on the fact that protocols are
always composed of the same primitives: invariants, blocks
and variants. In this case the invariants are kept intact and
the block are filled with fuzzed data. However, SPIKE is
low level oriented which in terms of complex protocol be-
comes highly effort-consuming. An academic research by
G. Banks et al. called SNOOZE [4] claims to be a stateful
protocol fuzzer. It is based in user defined scenarios and a
protocol specification. However, the protocol specification
as well as the use cases are highly complex to describe while
the operations to fuzz the data are limiting. Meanwhile, the
stateful concept of the approach is not clear. By contrast,
the approach presented by S. Emblenton in Sidewinder [7],
describes a potential approach for the new generation of
fuzzers, where a grammar specifying the syntax is provided
and rules to evolve it according to the obtained results are
presented. Meanwhile, a list of most popular fuzzers can be
found on the ThreatMind1 website.

Very few fuzzer approaches consider the evaluation of the
effect of the crafted message. For instance, the work led by

1http://www.scadasec.net/secwiki/FuzzingTools

the Mini-Simulation Toolkit as the Protos SIP test-suite [14]
stands out for its deployment and large test cases. Protos
uses a set of test cases for which the analysis of success was
done using in/out of band monitoring instrumentation. The
research by P.M. Maurer at [12] also proposed several ideas
of different approaches to evaluate the impact of the crafted
messages. The first consists in generating the crafted mes-
sage and anticipating what the regular reply should look
like. This approach requires knowledge of the protocol and
the effect that the crafted data may have. The second ap-
proach proposed is to test more than one entity at the same
time, where all of them should receive the same message and
each one will reply according to its stack. If the replies are
different, there is a chance that one of the entities is not re-
specting the protocol definition or abusing the freedom that
it leaves, and therefore, vulnerabilities may be found. David
Lee reveals in [10] a technique to test the data portions of
a protocol. That work uses a state machine describing the
state in which the protocol is at the current moment. Based
on the types and properties of the incoming/outgoing mes-
sages, transitions of states are done. Each transition that is
not compliant with the ones described by the state machine
are considered as a protocol error in the implementation.
An approach similar to the previous by H. Sengar [13] used
for VoIP Intrusion Detection describes also the use of state
machine to find inconsistencies in the message transition
to detect possible attackers. Our own article [1] proposes
a generic and open framework for VoIP assessment opera-
tions.

4. FUZZING FRAMEWORK
The test validation process described in this article is illus-
trated in Figure 2. It consists in two autonomous compo-
nents, the Syntax Fuzzer and the State Protocol Evaluator,
which jointly provide a stateful data validation entity. A
test is generated by a scenario, where a scenario represents
a high level goal. For instance, a scenario can be to test SIP
verbs (INVITE, REGISTER, etc. transactions). A scenario
represents a series of tests. A test suite represents a real
protocol level interaction with the tested device. Scenarios
are based on domain knowledge specific to the protocol and
random data injection.

The tests may be similar to the normal behavior or can
flood the device with malicious input data. Such malicious
data can be syntactically non compliant (with respect to the
protocol data units), or contain semantic and content wide
attack payload (buffer overflows, integer overflows, format-
ted strings, or heap overflows). Figure 2 depicts the overall
framework.

The domain knowledge consists in a Context-Free grammar
ABNF [6] used to describe the exact syntax of messages.
An additional state machine (Protocol State Machine) is
used to model the transitions in the system. These tran-
sitions are executed based on the incoming/outgoing mes-
sages. The syntax fuzzer takes a Fuzzer Evaluator (shown
in figure 2) and the provided syntax grammar to generate
new and crafted messages. The Fuzzer Evaluator may de-
pend on the State Protocol Evaluator in order to generate
the final message (appropriated or not) to be send to the
target entity.

The State Protocol Evaluator requires a second state ma-
chine, called Testing State Machine in the figure 2. The
latter provides the scenario, where some transitions should
be chosen with more priority than others. The behavior or
time-out events are also described. In cases where the actual
transition is not represented in this second state machine, if
it is allowed, the underlying protocol state machine can take
control to properly finish the tests. Each transition modifies
in fact the overall environment state of the system. Figure 2
also shows the functional framework of the approach, where
in the first example a SIP phone initiates a session by send-
ing an INVITE. Our User Agent Server (UAS) processes
the message and informs the State Protocol Evaluator. The
latter induces the message that should follow. This mes-
sage is constructed by the Fuzzer Evaluator according to
the defined rules. Note that if the State Protocol Evaluator
decides that another message should be received in order to
proceed, the Fuzzer Evaluator will remain idle.

The traditional approach in the fuzzing community is by
data input validation. This is done by generating crafted
messages and observing the resulting behavior in the tar-
get entity. Generally, the resulting behavior is observed in
terms of “aliveness factors”, ie. state of the device: crashed
or functional. With the help of the Protocol State Evaluator
we can extend the analysis by observing incorrect transition
over the states and observe responses which are not syntac-
tically compliant.

4.1 Statefull Fuzzing Evaluation
Three techniques to evaluate the effectiveness of crafted mes-
sages in a target entity have been investigated in our work:

1. The normal behavior of the target entity should be
learned for testing its aliveness in case it crashes dur-
ing the tests. This alive behavior may be obtained
by sending an OPTIONS message and observing its
replies, if any. Some entities may not support or be
configured to ignore such messages. For these cases
another sequence of messages may be send as REGIS-
TER or INVITE and CANCEL to allow to learn the
normal behavior. This sequence is sent several times
before starting the testing in order to assure that the
entity replies always in the same way. It is important
to note that such messages are not crafted because
their only purpose is to evaluate the aliveness and cor-
rect functionality of the target entity.

2. The testing of the target functionality consists in a de-
fined state machine with sequences of messages - see
the Testing State Machine in figure 2. This state ma-
chine represents the scenario describing how the eval-
uator should react to specific events. It may describe
the behavior after unexpected messages, timeouts or
normal events. In the case where some transitions are
not defined in scenario state machine, the underlying
protocol state machine can take control in order to
properly finish the transaction.

3. Finally, when the test is finished, it is also necessary to
check if the device is alive as well as if it behaving in an
usual manner. Note that a test may finish by timeout
which does not really mean that the device crashed,

Figure 2: Fuzzing Framework

but that the crafted message was too incorrect to be
replied to. For this latter case, every time a test is
launched, the alive tester may try to detect that the
target entity is either alive or that it is still coherent
with its initial learned behavior. Once this step is con-
cluded, errors are either reported or it continues with
step 2.

4.2 Reporting Events
Events are reported in one of the following cases:

• If a message generated by the target entity is capable
to generate a transition that is not recognized by the
system state machine, i.e. the last or previous mes-
sages provokes in the target entity a state where the
protocol specification is violated.

• If a message generated by the target entity is not com-
pliant with the protocol syntax, i.e. the information
was not well interpreted or just it was not considered
at all, as it is the cases of some proxies. This is con-
sidered a good starting point to dig for vulnerabilities.

• Finally, when the aliveness tests are not responding as
they should, either because no answer at all is obtained
from the target entity or if a different one with respect
to the already learned one is got.

5. FUZZER EXPRESSION GRAMMAR
Fuzzer are often classified based on multiple criteria: their
speed to generate messages, the capability to discover known
and/or new vulnerabilities, the quantity of tests that can be
generated or even by the complexity of substitutions that
they can perform taking into account a description of the
protocol. We consider in this paper a more formal approach
where a Fuzzer Expression Grammar is defined in order to
describe the coverage of randomness in the generated mes-
sage. This definition is closely related to the Parsing Expres-
sion Grammars [8], which formalizes the parsing grammar
concepts.

Another important fact of fuzzers is related to the inputs
that have to be provided in order to launch the test. Such
inputs will define the generality, the specificity and the over-
all behavior. A certain type of grammar is required as well
as knowledge about the syntax of the messages and the pos-
sible variable fields that may be changed by the fuzzer. Most
of the time they require a lot of information and cover only
a small scenario of generated data. It is also hard to know if
the compliance with the protocol is kept or not. Very often,
the rules to randomize such fuzziness may be either to sim-
plistic and limited or to complex to be used in the creation
of new tests.

Our fuzzing approach takes two inputs. The first is a ABNF
(Augmented BackusNaur Form) grammar [6], which is the
standard syntax definition of a protocol specification. Thus,

the fuzzer provides the flexibility to be adapted to different
protocols. It’s capable to generate messages compliant or
not with the underlying grammar based on the second input:
the Fuzzer Evaluator Interface.

The main work described in this paper consists in an in-
depth application of our approach for the SIP protocol in
order to check the implementation of SIP stacks within hard-
phones and SIP proxies.

5.1 ABNF Grammars
An ABNF is a grammar mostly used to formally describe
the syntax of a protocol.

Formally a grammar of the type consists of 4-tuple G =
(Σ, N, P, n0) where:

Σ = finite set of terminals (string literals).
N = finite set of non-Terminals.
P = finite set of mapping rules of the form P : N → e,
where e is an expression as described bellow.
n0 is a non-Terminal called the starting symbol.

An inductively definition of the expressions, where it is as-
sumed that e, e1, .., en are expressions as well, is as follows:

• Terminals.

• non-Terminals.

• Sequences e1 .. en

• Choices e1 / .. / en

• k-Repetitions e(i,j) where 0 ≤ i ≤ k ≤ j

Note that some assumptions were made for the sake of sim-
plicity. All the other expressions not mentioned (Character
Classes Terminals, Incremental Choices, Sequence Groups,
Specific Repetitions and Optional Sequences) can be simu-
lated by the previous expressions.

5.2 Fuzzer Expression Grammars
A Fuzzer Expression Grammar inherits from an ABNF gram-
mar, being inherently linked to the underlying grammar. An
additional evaluator exists in a Fuzzer Expression Grammar.
This evaluator is guiding the reduction of the rules in order
to generate a new message. As it will be explained later, this
process may decide whether to be compliant or not with the
syntax of the grammar.

A Fuzzer Expression Grammar consists of a 5-tuple G =
(Σ, N, P, E, n0) where all the components Σ, N and P are
the same of the ABNF grammar and the evaluator E is:

E = Fuzzer evaluator of the form E : e× θ → Σ∗ where e is
a fuzzing and θ is the environment state.

A message m generated by this fuzzing grammar is

m = E(n0)

thus, the typical objective of such a message is to represent
a data input validation test for a protocol implementation
instance.

5.3 Expressive Power
In order to formalize the expressiveness of the approach, an
evaluation interface is defined in six main functions:

• T : Σ × θ → e × θ, which may replace a Terminal by
another items.

• N : N ×θ → e×θ, which may replace a Non-Terminal
by another items.

• C : e1 / .. / en×θ → N{1,n}, which decides which item
index should be chosen.

• R : e(i,j) × θ → N{i,j}, which decides how many repe-
titions should be reduced.

• S : e ×N × θ → e × θ, which may replace the i-item
of the Sequence by another items.

• I : e×N×θ → e×θ, which may replace the i-repetition
of the Repetition by another items.

Note that if there is a sense of location of the current reduc-
tion represented in the state, the latest two functions are
just simple syntax extension of the combination of the four
firsts. All these components interact with the evaluator in
order to generate a new fuzzed message:

E, E1 : e × θ → Σ∗

E1(e, σ) =

e
E(e, σ)

if e ∈ Σ∗

otherwise

E(e, σ) = E1 ◦ T (e, σ) if e ∈ Σ ∪ {ε}
E(e, σ) = E1 ◦ N (e, σ) if e ∈ N
E(e1 .. en, σ) = E1 ◦ S(e1, 1, σ)

.. E1 ◦ S(en, n, σ)
E(e1/../en, σ) = E(ei, σ) where 1 ≤ i ≤ n and

i = C(e1 / .. / en, σ)

E(e(i,j), σ) = E1 ◦ I(e, 1, σ)

.. E1 ◦ I(e, k, σ) where k = R(e(i,j), σ)

For the functions T ,N ,S, I of the evaluator, five operations
were defined that can help to progressively construct the Σ∗

based in the Fuzzer Evaluation itself. These operations are
described below:

• Produce either a fixed string or a random one gener-
ated from a regular expression.

• Append expression productions generated by another
evaluator.

• Generate any rule defined by the grammar, which may
be not the ones allowed in the current reduction.

• Generate a new rule defined on the fly, allowing the
evolution of rules or addition of new ones.

• Generate a function rule. A function is an special case,
because it escapes from the syntax concepts to define
semantics actions. It is evaluated after the whole mes-
sage has been reduced to Σ∗ union other functions.
Based on other items generated for the message, it gen-
erates the Σ∗ appropriated for its current field. This
function can be useful to add fields like checksum, con-
tent lengths, etc. However, infinite recursion has to be
prevented.

The reduction of the expressions proceeds in a Depth First
Search (DFS), where the generated message may be viewed
as a tree (Figure 3), such that all the internal nodes are
non-Terminal (e5), Choices (e2), Sequences (e1 and e4) or
Repetitions (e7) items and the leafs are Terminals (e3, e6

and e8) or functions before being evaluated (e9, where the
functions set is denoted as F in the figure). In this way, each
reduction branch can be uniquely identified in the tree by
the path from the root to the current position. Definition 1
formalizes the reduction path concept.

e1 = e2 . . . e3❤❤❤❤❤❤❤
✭✭✭✭✭✭✭

e2 = e31
/ . . . /e3n

e3i
∈ Σ∗

e4 = e5 . . . e7 . . . e9❤❤❤❤❤❤❤❊❊
✭✭✭✭✭✭✭

e5 ∈ N

e6 ∈ Σ∗

e7 = e8
〈i,j〉

❍❍❍
✟✟✟

e81
∈ Σ∗

e82
∈ Σ∗

e9∈ F

Figure 3: Tree reduction

Definition 1. A reduction path, x⊲xs, will define the steps
for which an expression reduces to another (i.e. from an
expression ei to arrive to the expression ej). Each step is
defined by the relation ⇒F as:

(e, x ⊲ xs) ⇒F (T (e), xs) if e ∈ Σ ∪ {ε} and
T (e) = x

(e, x ⊲ xs) ⇒F (N (e), xs) if e ∈ N and
N (e) = x

(e1 .. en, x ⊲ xs) ⇒F (S(ex), xs) if 1 ≤ x ≤ n
(e1/../en, x ⊲ xs) ⇒F (ex, xs) if 1 ≤ x ≤ n

(e(i,j), x ⊲ xs) ⇒F (I(e, x), xs) if i ≤ x ≤ j

and it is said that the reduction path x ⊲ xs success from ei

to ej if the ⇒F closure is equal to

(ei, x ⊲ xs) ⇒∗
F (ej , [])

5.4 Example Evaluators
In this section, we will look at two example evaluators for
generating messages compliant with the underlying gram-
mar (see section 5.4.1), and to generate messages based on
the merging of different other messages (see section 5.4.2).

5.4.1 Compliant Grammar Evaluator
A definition of the inner functions of E, which randomly
creates well formatted messages according to the specified
grammar may be like follows (to simplify the example no
environment state is used).

E : e → Σ∗

T (e) = e
N (e) = P (e)
C(e1/../en) = i where 1 ≤ i ≤ n chosen randomly

R(e(i,j)) = k where 1 ≤ i ≤ k ≤ j chosen randomly
S(e, i) = e
I(e, i) = e

It is clear that in order to keep the generated message com-
pliant with the grammar, the only possible randomness in
the evaluator E are the functions C and R.

5.4.2 Merging Messages Evaluator
A more complex Evaluator where a message is generated
out of the composition of several messages (also maintain-
ing its compliancy with the underlying grammar) is showed
here. This evaluator is illustrative and will be mentioned in
future applications described along the paper. We begin by
defining the following function.

Definition 2. Assuming that M represent the set of mes-
sages compliant with the grammar (e.g. those that may
had been generated by the Fuzzer Evaluator), and P is the
set of all possible reduction paths from all the expressions
presented in such messages, the function ρ of the form

ρ : M × P → e ∪ {∅}

obtains, if success, the corresponding expression for the re-
duction path, xs ∈ P , starting from the root expression of
the message m ∈ M that

(root(m), xs) ⇒n
F (e, [])

otherwise, if none expression exists, it returns ∅.

As a consequence, to allow the generation of messages out
of the composition of others, the environment state of E is
defined to be θ = M × P × P . The variables τ, δ ∈ P
will represent the reduction paths from the initial and last
triggered rule respectively. Assuming the variables ψ and ξ
to be like:

ψ = δ ∨ ψ = τ ++δ

ξ ∈ {e | ∃ m ∈ ω : e = ρ(m, ψ) ∧ e 6= ∅}

the definitions of the inner functions are detailed below.

T (e, ω, δ, τ) = (ξ, ω, δ ⊳ ξ, τ)
N (e, ω, δ, τ) = (e, ω, e, τ ⊳ δ)
C(e1/../en, ω, δ, τ) = i where 1 ≤ i ≤ n

and ei = ξ

R(e(i,j), ω, δ, τ) = k where 0 ≤ i ≤ k ≤ j
and k = length(ξ)

S(e, i, ω, δ, τ) = (ξ, ω, δ ⊳ i, τ)
I(e, i, ω, δ, τ) = (ξ, ω, δ ⊳ i, τ)

Is it worth noting that when replacing the expression e by
ξ, the underlying grammar is still matched, because ξ is
reduced by the same rule. However, the value of ψ chosen
will define a degree of fuzziness in the resulting message due
to the complete or relative path location of the expressions.

5.5 Learning Techniques
A much more challenging issue is however to learn from
observed messages and use this knowledge as a base of smart
fuzzing.

To illustrate the importance of such technique, we consider
the following toy grammar and use the evaluator previously
described in section 5.4.1 to generate fuzzed fields.

username = alphanum ∗(alphanum/”−”/” ”/”%”/”&”)
alphanum = ALPHA / DIGIT
ALPHA = %x41−5A / %x61−7A ; A−Z / a−z
DIGIT = %x30−39 ; 0−9

It can be assumed that the priority by which items appear
in an username consists in letters, number and then special
symbols. However, a possible reduction of such grammar
may look like:

username → d-&%%3&%-&q

For this example, the evaluator is up to generate an user-
name, and when reaching the second item of the sequence,
it has to decide among five choices, giving a low priority to
numbers and letters.

For this cause, the two interfaces below had been defined to
provide some methods to generate “smart” evaluators:

• Record Choice Indexes

• Record Repetition Lengths

Both interfaces receive as input the sequence reductions from
the first rule, allowing to record statistics of repetition length
and chosen items according to the function. Note that only
this two methods are sufficient, because they are the only
ones that can modify the evaluation flow of compliant mes-
sages.

6. STATE TRACKING
The protocol state evaluator is used to provide the evalua-
tion of the fuzzing process. It uses a state machine of the
protocol for two main tasks:

• identification of possible invalid transitions that were
committed

• drive the fuzzer scenario on the next transitions to
follow.

The protocol state evaluator described in this section is tar-
geted at the SIP protocol. A domain specific knowledge is
needed for this issue due to the fact that the evaluator has to
be able to distinguish between correct or incorrect behavior.

6.1 Learning the Protocol State Machine
The state machine on which the evaluator relies can be pro-
vided in two ways:

• a fully detailed state machine as specified by the stan-
dards

• a state machine induced from a sample of messages.

The latter approach was chosen in this research due to the
complexity of detailing a full state machine for the SIP pro-
tocol.

SIP messages follow a hierarchy where Dialogs and Trans-
actions are identified during a session. A dialog is uniquely
identified by the Call-ID and a local and remote tag; such
tags are presented in the From and To headers. Meanwhile,
a transaction is identified by the CSeq header and the Via
Branches of the top most Via header located in the mes-
sage. Thus, a transaction belongs to only one dialog, but
the latest may have many transactions. Also, a dialog is kept
between two entities, even in the case where more entities
are involved in the session.

The major idea behind the automated learning of a protocol
state machine is as follows: network level information and
captured traffic combined with a domain specific knowledge
(i.e. SIP Dialogs, SIP Transactions are used) to discover
and learn the walking of a given protocol state machine.

To assume a simplistic model, the state machine is only for
transactions rather than dialogs. Intermediate transactions
may arise at specific states leading to a final state.

Figure 4 illustrates a state machine that could have been
obtained from samples of INVITE transactions.

6.2 Testing and Simulating an Entity
The state machine of the protocol is used to guide the testing
by emulating malicious or normal behaviors. Such a state
machine follows the principles of the Event-driven Extended
Finite State Machine (EEFSM) described by David Lee et
al. in [10]. However, in this approach, the above algorithm
may not only be used to follow the system state but also to
simulate one entity to perform different assessment models.

The evaluation process is as follows: once a message is re-
ceived and analyzed, the state machine with an initial state
as the current message should be generated. The state ma-
chine is obtained by using of a sample data. It searches all

Figure 4: Learned State Machine from an INVITE message.
The transition with quotation marks (?) means that these messages correspond to the re-
sponding entity. The exclamation mark (!) means that the messages belong to the requesting
entity.

the messages in the sample that match the following condi-
tions

• the message type received is equal to the found mes-
sages in the sample (i.e. the message type may be
the request methods or the reply values as INVITE,
CANCEL, 180 RINGING, 200 OK, etc)

• the method CSeq method in the message is equal to
the one in the samples. Note that the second item is
mostly relevant to the messages that are replies, for
example, the 200 OK works for several type of mes-
sages, but the CSeq method defines to which type of
method is replying.

Based on the messages matching such request, the state ma-
chine is generated.

The variables presented in each transition of the state ma-
chine correspond to the local and remote Tag and Call-ID
which define a Dialog and the CSeq and Via Branches which
uniquely define a Transaction. The ones defining the Dialog
will be invariant during the following. The one referring to
the Transaction may change in the case of an interrupting
or following transaction.

Note that the emulated behavior of the Protocol State Eval-
uator may change from one transaction to another. This is
happening, because in a same Dialog different transaction
may be initiated by any of the entities. The only thing left
is the randomness to initiate a new transaction as well as
the randomness to select among the possible set of message
types to be send.

7. EXPERIMENTAL RESULTS
We followed the Iana2 standard parameters supporting all
the 43 SIP related RFCs mentioned in the document. This

2http://www.iana.org/assignments/sip-parameters

lead us to a fuzzer grammar composed of:

Class Occurrences

Terminals
524

(fixed strings and Character classes)
non-Terminals 591
Choices 231
Sequences 498
Repetitions 307

The fuzzer can be configured to respond in different ways
according to its defined interfaces. Different types of be-
haviors have been tested using the infrastructure defined in
section 5 which gave different scenarios behaviors.

The first, simplest and less effective, is the random genera-
tion of the whole message. In a probabilistic manner, such
messages are compliant with the syntax provided by the
protocol, but in fact, as was mentioned in section 5.5, they
mostly are garbage that will be in most cases ignored by the
target entity.

The second approach which results in more interesting mes-
sages consists in the mutation of existing messages. This
mutation will tamper a set of fields in the original message
based on a probabilistic mechanism. These latter values
may be obtained by other rules, by other choices or with
the result from a specific function defined by the interface.

The third scenario consists in learning from already existing
messages the probability that one type of production is a
result of the reduction of a rule. Thus, the probability is
estimated according to the global path starting from the
root rule or from the path rooted in the current rule. Once
the messages are learned, any of the two previous techniques
may be used. Note that as the entity has some knowledge
now, the first technique will also result in messages similar
to normal ones.

Finally, the last technique comes from the idea proposed by
Lin Li et al. [11]. They described a self-assembly process for
software components. A component is composed by a series
of inputs and outputs, such that in order to assembly com-
ponents their input/output have to be considered as if they
were molecules. The assembly process is an analogy with
real molecules, where the pressure, temperature and area to
promote the assemblies are modeled. Thus, in this article
the idea of assembly fields of messages depending on their
inputs and output is considered. The input of each field may
be the global path from the root rule or the path from the
current rule. While the output are all the items that may be
reduced in the current field (i.e. Terminals, Non-Terminals,
Choice Index, Number of Repetitions, etc). In this way, one
field is attached to another, generating a message that is a
composition of other messages. The function that defines
which of the inputs may match with which output is left to
the interface defined by the fuzzer. In this way approaches
for Genetic Algorithms (GA) may be defined.

7.1 State Fuzzer Effectiveness
The evaluator may evolve as well. Different environments
may be defined based on the sequence of messages to test.
Such sequences may be acquired from the sample sessions or
manually constructed. It is important to specify which mes-
sages in such sequences are the ones that should be fuzzed,
which is the time range in which each type should be re-
sponded, the behavior after unknown transitions and the
type of messages that may be the appear as a response.

7.2 Tested Scenarios
We tested our approach on different SIP enabled equipments
used in real networks: our testbed consists in a Cisco 7940G,
Thomson ST2020, Thomson ST2030, Linksys SPA941, Grand-
stream BudgeTone 200 and Asterisk/OpenSer proxies. We
tested and compared our results with the well known Protos
[14] suite. Using our fuzzer we found 0day vulnerabilities in
all of the devices. Some of the stateless vulnerabilities found
(i.e. those that require only one message to lead the device
to an inconsistent state) were found in the first message
generated for the scenario while others were obtained after
a longer interaction. We observed that even in the latter
case, if that messages are send at anytime, the device is not
able to handle them. Among the most frequent vulnerabil-
ities we found string overflows, buffer overflows and remote
code execution vulnerabilities. We discovered multiple “In-
vite of Death” messages capable to kill one device with one
single packet

Some of the tested equipment was really robust in term of
input handling: the only vulnerabilities found were stateful,
where a sequence of messages with particular fields and a
specific order had to be send in order to take down the de-
vice. Figure 5 shows one of such stateful vulnerability found,
where the messages are all syntactically compliant with the
protocol, but their sequence order in the transaction and di-
alogs provoked a DoS in the target device. The messages are
illustrative, but anonymized allowing the vendor to fix the
bug. We have discovered even sequences of up to 10 mes-
sages leading to the crash of a hardphone. Such sequences
can not be obtained by simple stateless fuzzers, showing us
the interest of stateful SIP fuzzers. We have informed all the
vendors and left them the necessary time to fix the vulner-

abilities. This is inline with a responsible disclosure policy.
We will release shorty on the usual dissemination channels
the security advisories and the proof of concept exploit code.

Figure 5: Statefull Vulnerability Example

Two vulnerabilities that we are allowed to present in this
paper, have been disclosed by us on the voipsec and full-
disclosure mailing lists one day before this paper was sub-
mitted. The vendors confirmed them and also provided fixed
software for these issues.

• Asterisk: after sending a crafted message the soft-
ware crashes abruptly. The message in this case is an
anonymous INVITE where the SDP contains 2 con-
nection headers. The first one must be valid, however
the second should not having an invalid IP address.
The callee needs not to be a valid user or dialplan.
In case where Asterisk is set to disallow anonymous
call, a valid user and password should be known, and
while responding the corresponding INVITE challenge
the information should be crafted as above. Asterisk
1.4.1, 1.2.14, 1.2.15, 1.2.16 versions are affected by it.

• Cisco Phone 7940 running firmware P0S3-07-4-00: af-
ter sending a crafted INVITE message the device im-
mediately reboots. The phone does not check properly
the sipURI field of the Remote-Party-ID in the mes-
sage.

The previously mentioned vulnerabilities are particularly
dangerous since one packet is capable to take down either a
Asterisk PBX or an individual phone. In the case of the As-
terisk PBX, the vulnerability can be used to execute remote
code and take control of the PBX leading thus to major
abuses, among which fraudulous service usage, voice eaves-
dropping and a further penetration of the internal network
are the leading ones. On the other hand the taking down
of remote phones with a single message is also very dan-
gerous in a pure VoIP network. Along the overall tests
we also learned which fields were ignored by each entity,
which fields were used without any type of processing, which
helped us to improve our fuzzing techniques. However, many
entities generate messages that syntactically incorrect after
some crafted messages rather than just ignoring or rejecting

Figure 6: Statefull SIP Scenario
The quotation (?) and exclamation marks (!) are as in Figure 4.
The enable() function creates a fork in the current state machine to habilitate the other state
machine, meanwhile, information like Dialog ID and Transaction ID is transfer to keep the
state consciousness.

them. Figure 6 shows some of the scenarios used by our
evaluations.

8. CONCLUSIONS
Our paper describes a stateful protocol fuzzer for SIP. The
main contribution of our paper is a flexible, adaptive fuzzer
capable to track the state of the targeted application and
device. One of the components of our work is quite generic
and reusable for any protocol for which an underlying gram-
mar is known. The second one is dependent on the domain
specifics (SIP). To the best of our knowledge, this is the
first SIP fuzzer capable to go beyond the simple generation
of random input data. Our method is based on a learning
algorithm where real network traces are used to learn and
train an attack automata. This automata is evolving during
the fuzzing process. We performed tests on VoIP phones and
the results are promising: for each phone we found at least
one vulnerability and several protocol errors. We follow a
responsible disclosure policy, where vendors were informed
and left the time to fix the issues. We could detail in this
paper only the vulnerabilities, where the vendors could fix
the concerned software/firmware, but in the short future all
will be announced over the usual dissemination channels and
on our website3. We will continue our work by integrating
other protocols (H.323., RTP), testing more devices (session
border controllers, routers, media gateway controllers) and
refining the learning/testing algorithms used in our frame-
work.

9. REFERENCES
[1] H. Abdelnur, R. State, I. Chrisment, and C. Popi.

“Assessing the security of VoIP Services”. In The 10th
IFIP/IEEE Symposium on Integrated Management
(IM 2007), Munich, Germany, May 2007.

[2] D. Aitel. “The Advantages of Block-Based Protocol
Analysis for Security Testing”. Immunity Inc,
February 2002.

[3] D. Aitel. “MSRPC Fuzzing with SPIKE 2006”.
Immunity Inc, August 2006.

[4] G. Banks, M. Cova, V. Felmetsger, K. C. Almeroth,
R. A. Kemmerer, and G. Vigna. Snooze: Toward a

3http://madynes.loria.fr/

stateful network protocol fuzzer. In S. K. Katsikas,
J. Lopez, M. Backes, S. Gritzalis, and B. Preneel,
editors, ISC, volume 4176 of Lecture Notes in
Computer Science, pages 343–358. Springer, 2006.

[5] B. Beizer. Software Testing Techniques. John Wiley &
Sons, Inc., New York, NY, USA, 1990.

[6] D. Crocker. “Augmented BNF for Syntax
Specifications: ABNF”. Standards Track, November
1997.

[7] S. Embleton, S. Sparks, and R. Cunningham.
“Sidewinder: An Evolutionary Guidance System for
Malicious Input Crafting”. Black Hat, August 2006.

[8] B. Ford. “Parsing Expression Grammars: A
Recognition-Based Syntactic Foundation”.
Symposium on Principles of Programming Languages,
January 2004.

[9] R. Kaksonen. “A Functional Method for Assessing
Protocol Implementation Security”, Licentiate Thesis.
VTT Publications 447. ISBN 951-38-5873-1, 2001.

[10] D. Lee, D. Chen, R. Hao, R. Miller, J. Wu, and
X. Yin. “A Formal Approach for Passive Testing of
Protocol Data Portions”. In ICNP ’02: Proceedings of
the 10th IEEE International Conference on Network
Protocols, pages 122–131. IEEE Computer Society,
2002.

[11] L. Li, N. Krasnogor, and J. Garibaldi. “Automated
self-assembly programming paradigm: Initial
investigations”. In The Third IEEE International
Workshop on Engineering of Autonomic and
Autonomous Systems, pages 25–34, Potsdamn,
Germany, 2006. IEEE Computer Society.

[12] P. M. Maurer. “Generating Test Data with Enhanced
Context-Free Grammars”. IEEE Softw., 7(4):50–55,
1990.

[13] H. Sengar, D. Wijesekera, H. Wang, and S. Jajodia.
Voip intrusion detection through interacting protocol
state machines. In DSN, pages 393–402. IEEE
Computer Society, 2006.

[14] O. University. PROTOS Test-Suite: c07-sip.
http://www.ee.oulu.fi/research/ouspg/protos/testing/c07/sip,
2005.

