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Abstract. Topological derivatives for elasticity problems are used in shape and topology
optimization in structural mechanics. We propose an approach to the asymptotic analysis
of singular perturbations of geometrical domains. This approach can be used in order to
determine the exact solutions of elasticity boundary value problems in domains with
small holes, and determine the explicit asymptotic expansions of solutions with respect
to small parameter which describes the radius of internal hole. The elastic potentials of
Muskhelishvili gives us an explicite solution in the ring C(ρ,R) = {ρ < |x| < R} in the
form of complex valued series. The series depends on the small parameter, the radius ρ of
the ring, and we are interested in the behavior of the series for the passage ρ → 0. Such
analysis leads to the expansion of the elastic energy in the form

E(ρ,R) = E(0, R) + ρ2E1(R) + ρ4E2(R) + . . . ,

where E1(R) is used to determine the first order topological derivatives of shape func-
tionals, and E2(R) can be used to determine the second order topological derivatives of
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shape functionals. In the paper the first order term E1(R) is given, however the method
is general and can be used to determine the subsequent terms of the energy expansion
and the topological derivatives of higher order.

Key Words. Shape optimization, topological derivative, optimal design, contact prob-
lem, compliance optimization, topology optimization.

1 Introduction

In the engineering literature there are many results concerning the shape optimization
of contact problems in elasticity. The boundary variations technique for such problems
is described in [36] in the framework of nonsmooth analysis combined with the speed
method. Nonsmooth analysis is necessary since the shape differentiability of solutions
to contact problems is obtained only in the framework of Hadamard differentiability of
metric projections onto polyhedric sets in the appropriate Sobolev spaces. However, to
our best knowledge, there is no numerical methods for simultaneous shape and topology
optimization [41] of contact problems. The main difficulty in analysis of contact problems
is associated with the nonlinearity of the nonpenetration condition over the contact zone
which makes the boundary value problem nonsmooth. In the paper we propose a method
for numerical evaluation of topological derivatives for such problems.

In a series of previous works [37],[38],[39],[40] the authors introduced the notion and
developed a method of its efficient computing for the so-called topological derivative.
This derivative is applicable to domain functionals defined as integrals of some functions
depending on solutions to elliptic boundary value problems e.g. of the Poisson equation
or of the elasticity boundary value problems. This derivative approximates the effect of
making a small hole in a domain, allowing thus to consider topology changes.

The approach proved to be promising and has been used for shape optimization, the
identification of inclusions [14], and extended to other similar problems [20],[19]. Recently
it has been generalized to simultaneous topology and shape optimization [41], giving rise
to new necessary optimality conditions. We refer also e.g. to [19], [10], [33], for some
application of the topological sensitivity analysis in the linear case. Numerical methods
are presented in [1], [3], [8], [9], [18]. Asymptotic analysis, in particular in elasticity, is
described in [6], [2], [13], [21], [24], [26], [27], [28], [29], [30], [31], [32], [34], [38], [39], [40],
and of unilateral problems, including the sensitivity analysis, is considered in [4], [5], [15],
[35], [42].

The knowledge of topological derivatives is required for the optimality conditions of
simultaneous shape and topology optimization. The topological derivative of a given shape
functional can be determined from the variations of the shape functional created by the
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variations of the topology of geometrical domains. The topology variations are defined
by nucleation of small holes or cavities or more generally small defects in geometrical
domains. The modern mathematical background for evaluation of such derivatives by the
asymptotic analysis techniques of boundary value problems is established in [26]. In [26]
the error estimates for asymptotic approximations of solutions to boundary value problems
in singularly perturbed geometrical domains are provided in the weighted Hölder spaces.
The asymptotic approximations of solutions are used in order to established the explicit
formulae for the topological derivatives of shape functionals.

2 Shape optimization and topological derivatives

The shape and topology optimization is one of the most important mathematical problems
in structural mechanics. There are numerous application in solid mechanics, we refer to
the monographs [7], [17], [22], [23], [25], [36], for the specific examples. In the paper we
consider the elasticity boundary values problems, therefore we restrict ourselves to the
shape functional in the form of the elastic energy. This corresponds to the minimization
of the energy or equivalently maximization of the compliance.

2.1 Contact problems

Our goal is to establish the conical differentiability with respect to the topology variations
of solutions for two dimensional contact problem in the elasticity. Let us consider the
bounded domain Ω with the boundary ∂Ω = Γ0 ∪ Γc. On Γ0 the displacement vector
of the elastic body is given, on Γc the frictionless contact conditions are prescribed. To
specify the week formulation we need an expression for the symmetric bilinear form and
for the convex set K ⊂ H1(Ω)2.

The method of analysis is the same as in the case of Signorini problem for Laplacian.
We start with the formulation of the free boundary problem in unperturbed domain Ω.
The form of variational inequality is straightforward.

Contact problem in Ω Find u = u(Ω) = (u1, u2) and σ = (σ)ij, i, j = 1, 2, such that

−div σ = f in Ω , (1)

Cσ − ǫ(u) = 0 in Ω , (2)

u = 0 on Γ0 , (3)

uν ≥ 0, σν ≤ 0, σνuν = 0 στ = 0 on Γc . (4)
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Here

σν = σijνjνi, στ = σν − σν =
{

σi
τ

}2

i=1
, σν = {σijνj}2

i=1 ,

ǫij(u) =
1

2
(ui,j + uj,i), i, j = 1, 2, ǫ(u) = (ǫij)

2
i,j=1,

{Cσ}ij = cijkℓσkℓ, cijkℓ = cjikℓ = ckℓij, cijkℓ ∈ L∞(Ω).

The Hooke’s tensor C satisfies the ellipticity condition

cijkℓξjiξkℓ ≥ c0|ξ|2, ∀ξji = ξij, c0 > 0, (5)

and we have used the summation convention over repeated indices.
When the topology of Ω is changed, we have the following contact problem in the

domain Ωρ with the small hole B(ρ).

Contact problem in Ωρ. Find u = u(Ωρ) = (u1, u2) and σ = (σ)ij, i, j = 1, 2, such
that

−divσ = f in Ωρ , (6)

Cσ − ǫ(u) = 0 in Ωρ , (7)

u = 0 on Γ0 , (8)

σν = 0 on Γρ , (9)

uν ≥ 0, σν ≤ 0, σνuν = 0 στ = 0 on Γc . (10)

We assume for simplicity that the case of isotropic elasticity is considered, thus the sym-
metric bilinear form associated with the boundary value problem (1)-(4) is given by

a(u,u) =

∫

Ω

[

(λ + µ)(ǫ11 + ǫ22)
2 + µ(ǫ11 − ǫ22)

2 + µγ2
12

]

dx, (11)

where γ12 = 2ǫ12 and λ, µ are Lame constants.
The problem (6)-(10) is approximated by the problem with modified bilinear form in

the following way.

Approximation of contact problem in Ωρ. Let us surround the hole B(ρ) with
the circle ΓR = ∂B(R) where R is fixed. Then in the set ΩR = Ω \ B̄(R) the solution to
the problem (6)-(10) may be approximated by the solution v of another problem in the
whole domain Ω with boundary conditions as in (1)-(4), but a modified bilinear form of
the energy functional

a(ρ;v,v) = a(v,v) + ρ2b(v,v) + o(ρ2) in H1(Ω)2 . (12)
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The derivative b(v,v) of the bilinear form a(ρ;v,v) with respect to ρ2 at ρ = 0+ is given
by the expression

b(v,v) = −2πev(0) − 2πµ

λ + 3µ

(

σIIδ1 − σ12δ2

)

, (13)

where all the quantities are evaluated for the displacement field v according to formulae
given below in terms of the line integrals over ΓR.
Hence, we can determine the bilinear form a(ρ;v,w) for all v,w, from the equality

2a(ρ;v,w) = a(ρ;v + w,v + w) − a(ρ;w,w) .

In the same way the bilinear form b(v,w) is determined from the formula for b(v,v).
The convex set is defined in this case by

K = {v ∈ H1(Ω)2|vν ≥ 0 on Γc , v = g on Γ0} . (14)

Let us consider the following variational inequality which provides a sufficiently precise
for our purposes approximation uρ of the solution u(Ωρ) to contact problem (6)-(10),

uρ ∈ K : a(ρ;u,v − u) ≥ L(ρ;v − u) ∀v ∈ K . (15)

The result obtained is the following, for simplicity we assume that the linear form L(ρ; ·)
is independent of ρ.

Theorem 1 For ρ sufficiently small we have the following expansion of the solution uρ

with respect to the parameter ρ at 0+,

uρ = u(Ω) + ρ2q + o(ρ2) in H1(Ω)2 , (16)

where the topological derivative q of the solution u(Ω) to the contact problem is given by
the unique solution of the following variational inequality

q ∈ SK(u) = {v ∈ (H1
Γ0

(Ω))2|vν ≤ 0 on Ξ(u) , a(0;u,v) = 0} (17)

a(0;q,v − q) + b(u,v − q) ≥ 0 ∀v ∈ SK(u) . (18)

The coincidence set Ξ(u) = {x ∈ Γs|u(x).ν(x) = 0} is well defined [35] for any function
u ∈ H1(Ω)2, and u ∈ K is the solution of variational inequality (14) for ρ = 0.

Remark 1 In the linear case, it can be shown that ‖u(Ωρ)− uρ‖ = o(ρ2) in the norm of
appropriate weighted space. We refer the reader to [26] for the related error estimates in
the Hölder weighted spaces. In general, we cannot expect that uρ is close to u(Ωρ) in the
vicinity of Bρ, therefore the weighted spaces should be used for error estimates.

5



For the convenience of the reader we provide the explicit formulae for the terms in b(v,v)
appearing in (13). They are

2πev(0) =
λ + µ

π2R6

(
∫

ΓR

(v1x1 + v2x2) ds

)2

+

+
µ

π2R6

(
∫

ΓR

(

(1 − 9k)(v1x1 − v2x2) +
12k

R2
(v1x

3
1 − v2x

3
2)

]

ds

)2

+ (19)

+
µ

π2R6

(
∫

ΓR

[

(1 + 9k)(v1x2 + v2x1) −
12k

R2
(v1x

3
2 + v2x

3
1)

]

ds

)2

,

with

σII =
µ

πR3

∫

ΓR

[

(1 − 9k)(v1x1 − v2x2) +
12k

R2
(v1x

3
1 − v2x

3
2)

]

ds,

σ12 =
µ

πR3

∫

ΓR

[

(1 + 9k)(v1x2 + v2x1) −
12k

R2
(v1x

3
2 + v2x

3
1)

]

ds,

and

δ1 =
9k

πR3

∫

ΓR

[

(v1x1 − v2x2) −
4

3R2
(v1x

3
1 − v2x

3
2)

]

ds,

δ2 =
9k

πR3

∫

ΓR

[

(v1x2 + v2x1) −
4

3R2
(v1x

3
2 + v2x

3
1)

]

ds.

Here

k =
λ + µ

λ + 3µ
.

2.2 Correction to the energy functional

In this subsection we shall sketch the derivation of formulae for b(v,v) as given in [43].
Let us consider the contribution, in the absence of volume forces, of the energy integral
over the circle surrounding the origin (i.e. the potential location of the small hole)

eR(u) =
1

2

∫

B(R)

(σ : ǫ) dx =
1

2

∫

ΓR

u
T (σ.n) ds (20)

to the global elastic energy.We shall leave the displacement on ΓR unchanged and consider
the distortion to the stress field caused by introducing the small hole, denoted here by σ̂:

δeR =
1

2

∫

ΓR

u
T (σ̂.n) ds. (21)
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This distortion may be explicitely computed using the well known solution of the plane
elasticity system in R2 with small circular void. To this end we need expressions for the
values of strains in the center of the circle in terms of the values of displacement on ΓR.
These are calculated as follows (derivation is given in [43]).

Let us define I1(k, l) and I2(k, l) as

I1(k, l) =
1

α(k, l)

∫

ΓR

u1x
k
1x

l
2 ds , I2(k, l) =

1

β(k, l)

∫

ΓR

u2x
k
1x

l
2 ds , (22)

where

α(k, l) = Rk+l+2

∫ 2π

0

cosk+1 φ sinl φ dφ ,

β(k, l) = Rk+l+2

∫ 2π

0

cosk φ sinl+1 φ dφ ,

whenever these expressions make sense, i.e. if k is odd and l even or vice versa. Observe
that α(k, 0) = β(0, k) and

α(1, 0) = πR3, α(3, 0) =
3

4
πR5, α(1, 2) =

1

4
πR5, α(5, 0) =

5

8
πR7, α(3, 2) =

1

8
πR7

and so on. Furthermore, let

δ1 = 9k ([I1(1, 0) − I2(0, 1)] − [I1(3, 0) − I2(0, 3)]) ,

δ2 = 9k ([I1(0, 1) + I2(1, 0)] − [I1(0, 3) + I2(3, 0)]) .
(23)

In terms of these symbols the formulae for the exact values of strain components at the
point x0 = 0 read as follows:

ǫ11 + ǫ22 = I1(1, 0) + I2(0, 1) ,

ǫ11 − ǫ22 = I1(1, 0) − I2(0, 1) − δ1 ,

γ12 = I1(0, 1) + I2(1, 0) + δ2 .

(24)

These values are used in (21), which may be rewritten as

δeR = −1

2
πρ2

[

(λ + µ)(ǫ11 + ǫ22)
2 + µ(ǫ11 − ǫ22)

2 + µγ2
12+

+

(

1 − 1

k
+

ρ2

R2

1

k

)

(σIIδ1 − σ12δ2)
]

.

(25)

Then due to Hooke’s law

δeR = −πρ2eu(0) − 1

2
πρ2

[

(

1 − 1

k
+

ρ2

R2

1

k

)

(σIIδ1 − σ12δ2)
]

. (26)
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which leads immediately to (13).
In order to make clear the origin of (19) we collect below the dependences given by

(23),(24) and write down the explicit expression for the terms appearing in (25):

ǫ11 + ǫ22 =
1

πR3

∫

ΓR

(u1x1 + u2x2) ds,

ǫ11 − ǫ22 =
1

πR3

∫

ΓR

[

(1 − 9k)(u1x1 − u2x2) +
12k

R2
(u1x

3
1 − u2x

3
2)

]

ds,

γ12 =
1

πR3

∫

ΓR

[

(1 + 9k)(u1x2 + u2x1) −
12k

R2
(u1x

3
2 + u2x

3
1)

]

ds,

δ1 =
9k

πR3

∫

ΓR

[

(u1x1 − u2x2) −
4

3R2
(u1x

3
1 − u2x

3
2)

]

ds,

δ2 =
9k

πR3

∫

ΓR

[

(u1x2 + u2x1) −
4

3R2
(u1x

3
2 + u2x

3
1)

]

ds.

The above derivation has one drawback, namely due to the use of the particular solution
in the infinite medium with a small hole it gives only the first term in the asymptotic
expansion of the energy. In the next section we propose the general procedure, so we are
able to produce as well the higher order terms in the asymptotic expansion.

3 Explicit elasticity solution in the ring

Let us consider the plane elasticity problem in the ring centered around zero with external
radius R and internal radius ρ. We use polar coordinates (r, θ) with er pointing outwards
and eθ perpendicularly in the counter-clockwise direction. Assume that the displacement
on the outer boundary is given, while the inner boundary is free. We want to compare
solution to such a problem to the one defined in the full circle, with the same displacement
data. To this end we shall construct the exact representation of both solutions, using the
complex variable method of [23]. It has been shown there that

σrr − iσrθ = 2Re φ′ − e2iθ(z̄φ′′ + ψ′)

σrr + iσθθ = 4Re φ′

2µ(ur + iuθ) = e−iθ(κφ − zφ̄′ − ψ̄)

(27)
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where φ, ψ are given by complex series

φ = A log(z) +
k=+∞
∑

k=−∞

akz
k

ψ = −κĀ log(z) +
k=+∞
∑

k=−∞

bkz
k

(28)

Here µ – Lame constant, ν – Poisson ratio, κ = 3 − 4ν in the plain strain case, and
κ = (3 − ν)/(1 + ν) for plane stress.

The displacement data are given in the form of Fourier series,

2µ(ur + iuθ) =
k=+∞
∑

k=−∞

Ake
ikθ (29)

The traction-free condition on some circle means σrr = σrθ = 0. After taking into account
simple relations

z̄ = r2 1

z
, z = reiθ, e−iθ = r

1

z
we get for displacements the formula

2µ(ur + iuθ) = 2κAr log(r)
1

z
− Ā

1

r
z+

+

p=+∞
∑

p=−∞

[κrap+1 − (1 − p)ā1−pr
−2p+1 − b̄−(p+1)r

−2p−1]zp
(30)

Hence, comparing (29) and (30) gives, assuming substitution r := R,

p = − 1: 2κAr log(r) + (κa0 − b̄0) − 2ā2r
2 = A−1

p =0: κra1 − rā1 −
1

r
b̄−1 = A0

p =1: − Ā + κr2a2 − b̄−2
1

r2
= A1

p *∈{−1, 0, +1}: κrp+1ap+1 − (1 − p)ā1−pr
−p+1 − b̄−(p+1)r

−(p+1) = Ap

(31)

Similarly we obtain representation of tractions on some circle

σrr − iσrθ = 2A
1

z
+ (κ + 1)

1

r2
Āz+

+

p=+∞
∑

p=−∞

[(1 + p)(1 − p)ap+1 + (1 − p)ā1−pr
−2p − (p − 1)

1

r2
bp−1]z

p
(32)
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and the resulting traction-free condition, assuming substitution r := ρ,

p = − 1: 2A + 2ā2r
2 + 2

1

r2
b−2 = 0

p =0: a1 + ā1 +
1

r2
b−1 = 0

p =1: (κ + 1)
1

r2
Ā = 0

p *∈{−1, 0, +1}: (1 + p)(1 − p)ap+1 + (1 − p)ā1−pr
−2p − (p − 1)

1

r2
bp−1 = 0

(33)

Denote d0 = κa0 − b̄0. For the full circle we must eliminate singularities, i.e. b−k = a−k =
A = 0 for k = 1, 2, . . . and then using (31) obtain

d0
0 = A−1 +

2

κ
Ā1

Re a0
1 =

1

(κ − 1)R
Re A0, Im a0

1 =
1

(κ + 1)R
Im A0

a0
k =

1

κRk
Ak−1, k = 2, 3, . . .

b0
k = − 1

Rk
[(k + 2)

1

κ
Ak+1 + Ā−(k+1)], k = 1, 2, . . .

(34)

Let us check the formulas for uniformly stretched (compressed) circle. Then A0 = 2µur(R)
and other Ak vanish. Hence only

a0
1 =

2µ

(κ − 1)R
ur(R)

is different from 0 and ψ = 0, φ = a0
1z. According to e.g. [16] the solution should be

ur(r) = ur(R)r/R. Indeed, using (27) we get

2µ(ur + iuθ) = r
1

z
(κa0

1z − ā0
1z] = 2µ

r

R
ur(R).

The other test of (31) is applying it to the ring with different displacement conditions at
r = ρ and r = R. Then these formulas allow, after longer calculations, to obtain the same
solution as in [11].

In further analysis we consider the ring and assume ρ < 0.5R. Then from (31) for
r = R and (33) for r = ρ, by considering first p ∈ {−1, 0, 1}, we get A = 0 and

d0 = A−1 +
2R4

κR4 + ρ4
Ā1
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a2 =
R2

κR4 + ρ4
A1

Re a1 =
R

(κ − 1)R2 + 2ρ2
Re A0, Im a1 =

1

κ + 1
Im A0

b−1 = −2ρ2Re a1 = − 2ρ2R

(κ − 1)R2 + 2ρ2
Re A0

b−2 = −ρ4ā2 = − ρ4R2

κR4 + ρ4
Ā1

Here we may again test the correctness of formulas. From [16] we get the the solution for
the uniformly stretched ring with unloaded inner boundary: It reads, in the plain strain
case,

ur(r) =

[

ρ2

ρ2 + (1 − 2ν)

1

r
+

1 − 2ν

ρ2 + (1 − 2ν)
r

]

uR(1)

Again, A0 = 2µur(R = 1), and from (27)

a1 =
1

(κ − 1) + 2ρ2
2µuR(1), b−1 = − 2ρ2

(κ − 1) + 2ρ2
2µuR(1).

Hence φ = a1z, ψ = b−1
1
z

and

2µur(r) = r
1

z

[

κa1z − za1 − b−1
1

r2
z

]

=

=

[

(κ − 1)
1

(κ − 1) + 2ρ2
r +

2ρ2

(κ − 1) + 2ρ2

1

r

]

2µuR(1).

Taking into account that κ = 3 − 4ν we get the same result.
Observe, that

d0 − d0
0 = −ρ4 2

κ(κR4 + ρ4)
Ā1

a1 − a0
1 = −ρ2 2

(κ − 1)R((κ − 1)R2 + 2ρ2)
Re A0

a2 − a0
2 = −ρ4 1

κR2(κR4 + ρ4)
A1

(35)

There remains to compute the rest of terms. Taking p = +k, k = 2, 3, . . . in (31) for
r = R and (33) for r = ρ gives

κak+1R
k+1 + (k − 1)ā−(k−1)R

−(k−1) − b̄−(k+1)R
−(k+1) = Ak

(k + 1)ak+1ρ
2(k+1) + ā−(k−1)ρ

2 + bk−1ρ
2k = 0

(36)
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and for p = −k, k = 2, 3, . . .

κa−(k−1)R
−(k−1) − (k + 1)āk+1R

k+1 − b̄k−1R
k−1 = A−k

−(k − 1)a−(k−1)ρ
2 + āk+1ρ

2(k+1) + b−(k+1) = 0
(37)

We eliminate a−(k−1) and b−(k+1) using

[

a−(k−1)

b−(k+1)

]

=

[

−(k + 1)ρ2k , −ρ2(k−1)

−k2ρ2(k+1) , −(k − 1)ρ2k

]

·
[

āk+1

b̄k−1

]

= Tk(ρ) ·
[

āk+1

b̄k−1

]

(38)

and get the system which may be rewritten as

Sk(ρ) ·
[

ak+1

bk−1

]

=

[

Ak

Ā−k

]

(39)

with entries

Sk(ρ)11 = κRk+1 − (k2 − 1)R−(k−1)ρ2k + k2R−(k+1)ρ2(k+1)

Sk(ρ)12 = −(k − 1)(R−(k−1)ρ2(k−1) − R−(k+1)ρ2k)

Sk(ρ)21 = −(k + 1)(Rk+1 + κR−(k−1)ρ2k)

Sk(ρ)22 = −Rk−1 − κR−(k−1)ρ2(k−1)

(40)

In fact the formulas (38), (40) are correct also for k = 0, 1 and ρ > 0.
The matrix Sk(ρ) is a perturbation of Sk(0), which would produce the solution for

the full circle, namely a0
k+1, b0

k−1. Observe that Tk(0) = 0. Direct computations lead to
estimates

|a3 − a0
3| ≤ Λ

(

|A2|ρ4 + |A−2|ρ2
)

(41)

and for k = 4, 5, . . .

|ak − a0
k| ≤ Λ

(

|Ak−1|ρ3(k−1)/2 + |A−(k−1)|ρ3(k−2)/2
)

(42)

where the exponent k/2 has been used to counteract the growth of k2 in terms like k2ρk/2.
Similarly

|b1 − b0
1| ≤ Λ

(

|A2|ρ4 + |A−2|ρ2
)

(43)

and for k = 2, 3, . . .

|bk − b0
k| ≤ Λ

(

|Ak+1|ρ3(k+1)/2 + |A−(k+1)|ρ3k/2
)

(44)

From relation (38) we get another estimate

|a−k| ≤ Λρ2k
(

|Ak+1| + |A−(k+1)|
)

, k = 1, 2, . . . (45)

12



end
|b−k| ≤ Λρ2(k−1)

(

|Ak−1| + |A−(k−1)|
)

, k = 3, 4, . . . (46)

Here Λ is a constant independent from ρ and Ai. Observe that the corrections proportional
to ρ2 are present only in a1, a3, b−1, a−1. The rest is of the order at least O(ρ3) (in fact
O(ρ4)).

The condition for Ai, namely

k=+∞
∑

k=−∞

√
1 + k2 |Ak|2 ≤ Λ0 (47)

together with bounds (35),(41),(42),(43), (44),(45),(46) ensure, that the expression for
elastic energy concentrated in the ring splits into the one corresponding to the full circle,
correction proportional to ρ2 and the rest, which is uniformly of the order O(ρ3) for all u

satisfying
‖u‖2

H1/2(ΓR) ≤ Λ0

4 Numerical illustration

Rugby ball. Let us take ur = s0 cos2 θ = 1
2
s0 + 1

2
s0 cos 2θ. Hence

Ak = [. . . ,
1

2
µs0, 0, A0 = µs0 , 0,

1

2
µs0, . . .]

The resulting distortion for ρ = 0.2 and r = 0.3 are shown in Fig.1 (solid line - undeformed,
dashed - deformed ring, dotted - deformed ball):

Bubble. Now we take ur = s0 sin 4θ. Hence

Ak = [. . . , µs0i, 0, 0, 0, A0 = 0 , 0, 0, 0,−µs0i, . . .]

The resulting distortions for ρ = 0.2 and r = 0.3 are shown in Fig.2 using the same types
of lines.

Asymptotics. In the second numerical experiment - bubble - only A−4 and A4 were
nonzero, what means, that the difference between positions of the contour r = 0.3 for full
circle and the ring should behave like ρ6. In the first experiment it should be ρ2. In Fig.3
we show the slopes of this difference for ρ = [0.05, 0.10, 0.15, 0.20, 0.25] in log–log graph
(solid - rugby, dashed - bubble):
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Figure 1: Rugby-like distortion and the detail near the central hole (exaggerated).
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Figure 2: Bubble-like distortion and the detail near the central hole (exaggerated).
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Figure 3: The slope of diminishing influence of the hole for rugby and bubble (below)
type of distortions.
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Figure 4: The pattern of distortions for both experiments.

Comparison of distortions. The deformations for ρ = 0.2 and several intermidiate
radii (dashed - undeformed, solid - deformed contours) are shown in Fig.4. It may again
be seen that the influence of the outer boundary distortion vanishes quicker for the bubble
case, where Ak with smaller indices are nonzero.
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5 Explicit expansion of elastic energy

The elastic energy contained in the ring has the form

2E(ρ, R) =

∫

C(ρ,R)

σ(uρ) : ǫ(uρ) dx =

∫

ΓR

uρσ(uρ).n ds. (48)

Since uρ = u on Γρ,

2E(ρ, R) =

∫

ΓR

uσ(uρ).n ds. (49)

Now σ(uρ) is in fact of the form σ(uρ) = σρ(u), because uρ = u on ΓR, which means
that uρ = uρ(u). If we split σρ into

σρ(u) = σ
0 + ρ2

σ
1(u) + O(ρ4) (50)

then

2E(ρ,R) = 2E(0, R) + 2ρ2

∫

ΓR

uσ
1(u).n ds + +O(ρ4). (51)

Thus the problem reduces to finding σ
1(u).

From (27), (28) we know that σρ(u) is a linear function of infinite vectors a, b, while
σ

0(u) is the same function of a
0, b0. Here a

0, b0 are computed for B(R), while a, b

correspond to C(ρ,R). In order obtain σ
1(u) it is enough to express a, b as

a = a
0 + ρ2

a
1 + O(ρ4)

b = b
0 + ρ2

b
1 + O(ρ4)

(52)

because then
σ

1(u) = σ
1(a1, b1; u).

Let us observe as well that
∫

ΓR

uσ
1(u).n ds = R

∫ 2π

0

(σ1
rrur + σ1

rθuθ) dθ = R

∫ 2π

0

ℜ[(σ1
rr − iσ1

rθ)(ur + iuθ)] dθ (53)

The analysis of formulae (34) for a
0, b0 and their counterparts a, b leads to the conclusion,

that the only nonzero terms in a
1, b1 will be a1

3, a
1
1, a

1
−1, b

1
−1, b

1
1.

Taking into account that A = 0 in (28) for our problem,

φ = φ0 + ρ2φ1 + O(ρ4)

ψ = ψ0 + ρ2ψ1 + O(ρ4)
(54)
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where

φ1 = a1
−1

1

z
+ a1

1z + a1
3z

3, ψ1 = b1
−1

1

z
+ b1

1z. (55)

As a result

σ1
rr − iσ1

rθ = 2ℜ[−a1
−1

1

z2
+ a1

1 + 3a1
3z

2] − e2iθ(6a1
3|z̄|2 + 2a1

−1

z̄

z3
+ b1

1 − b1
−1

1

z2
). (56)

Computing corrections to coefficients. The matrix Sk(ρ) may be for k = 2 ex-
pressed as

S2(ρ) = S2(0) + ρ2S1
2 + O(ρ4).

Using (40)

S2(0)

[

a0
3

b0
1

]

=

[

A2

Ā−2

]

we may get
[

a1
3

b1
1

]

= −S−1
2 (0)S1

2

[

a0
3

b0
1

]

(57)

where

S2(0) =

[

κR3 , 0
−3R3 , −R

]

S1
2 =

[

0 , −1/R
0 , −κ/R

]

.

Similarly

T2(ρ) = 0 + ρ2T 1
2 + O(ρ4), T 1

2 =

[

0 , −1
0 , 0

]

.

Hence, using (38),(57) we get finally

a1
−1 = −b̄0

1 , a1
3 =

1

κR4
b0
1

b1
1 =

3 + κ2

κR2
b0
1 , a1

1 = − 2

(κ − 1)R2
ℜa0

1 (58)

b1
−1 = −2ℜa0

1

Since, as is obvious, we need only A0, A2, A−2 and

Ak =
µ

π

∫ 2π

0

(ur + iuθ)e
−ikθ dθ

as well as
ur + iuθ = (u1 + iu2)e

−iθ
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we obtain

A0 =
µ

π

∫ 2π

0

(u1 + iu2)e
−iθ dθ

A2 =
µ

π

∫ 2π

0

(u1 + iu2)e
−3iθ dθ

A0 =
µ

π

∫ 2π

0

(u1 + iu2)e
+iθ dθ

(59)

Now we shall return to the integral (53). Using (56) we get

σ1
rr − iσ1

rθ = B1
0 + B1

2e
2iθ + B1

−2e
−2iθ, (60)

where

B1
0 = 2a1

1 −
1

r2
b1
−1, B1

2 = − 1

r2
ā1
−1 − 3a1

3R
2 + b1

1

B1
−2 = 3ā1

3R
2 − 3

R2
a1
−1

From (53) is obvious that only a part of displacement will contribute to the integral,
namely

ur + iuθ =
1

2µ
[A−2e

−2iθ + A0 + A2e
2iθ].

Then

1

2µR

∫ 2π

0

(B1
0 + B1

2e
2iθ + B1

−2e
−2iθ)(A−2e

−2iθ + A0 + A2e
2iθ) dθ =

=
π

µR
(B1

0A0 + B1
2A−2 + B1

−2A2)
(61)

Now we are able to collect all formulae and obtain the final expression, using (34),(60),(61)
∫

ΓR

uσ
1(u).n ds =

=
1

R2

[2(κ − 2)

(κ − 1)2
(ℜA0)

2 − (κ + 1)|A−2|2 −
9(κ + 1)

κ2
|A2|2 −

6(κ + 1)

κ
ℜ(A2A−2)

]

.

(62)

Numerical scheme. From (59) it follows that

ℜA0 =
µ

π

∫ 2π

0

(u1 cos θ + u2 sin θ) dθ

A2 =
µ

π

∫ 2π

0

(u1 cos 3θ + u2 sin 3θ) dθ + i
µ

π

∫ 2π

0

(u2 cos 3θ − u1 sin 3θ) dθ

A−2 =
µ

π

∫ 2π

0

(u1 cos θ − u2 sin θ) dθ + i
µ

π

∫ 2π

0

(u2 cos θ + u1 sin θ) dθ

(63)
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Here values of displacements are taken as ui(R cos θ, R sin θ). After discretization these
integrals constitute weighted sums of values of ui at certain points on ΓR. If we assume
piecewise linear approximation over triangles, then it is well known that

uh
i (x) = x

T





x1
1 x1

2 1
x2

1 x2
2 1

x3
1 x3

2 1





−1

Ui = x
T M−1Ui = (M−T

x)T Ui = c
T Ui

where uh
i (x) is a value of the approximation of ui at a point x inside the triangle defined

by vertices x
1, x2, x3 and Ui = [U1

i , U2
i , U3

i ]T is a vector of the values of ui at these vertices.
Observe that c is a vector of weights with which nodal values enter into the expression
for uh

i (x).
Let now U = [u1

1, u
1
2, . . . , u

K
1 , uK

2 ]T be a vector of nodal values of u for the global
triangulation. Then we may write down the following formulae

µ

π

∫ 2π

0

u1 cos θ dθ = c
T
11U

µ

π

∫ 2π

0

u2 sin θ dθ = s
T
21U

µ

π

∫ 2π

0

u1 cos 3θ dθ = c
T
13U

µ

π

∫ 2π

0

u2 sin 3θ dθ = s
T
23U

µ

π

∫ 2π

0

u1 sin θ dθ = s
T
11U

µ

π

∫ 2π

0

u2 cos θ dθ = c
T
21U

µ

π

∫ 2π

0

u1 sin 3θ dθ = s
T
13U

µ

π

∫ 2π

0

u2 cos 3θ dθ = c
T
23U

Here sij, cij are sparse vectors of weights with which nodal values of u enter into appro-
priate integrals. In this notation

(ℜA0)
2 = ‖(c11 + s21)

T
U‖2

|A2|2 = ‖(c13 + s23)
T
U‖2 + ‖(c23 − s13)

T
U‖2

|A−2|2 = ‖(c11 − s21)
T
U‖2 + ‖(c21 + s11)

T
U‖2

ℜ(A2A−2) = U
T (c13 + s23)(c11 − s21)U − U

T (c23 − s13)(c21 + s11)U

(64)

Taking into account (62) we may conclude that the first term in the correction of energy
is a well defined quadratic form. Similar, only more complicated expressions may be
obtained for further terms corresponding to ρ4 and higher.

The derivation described above is new and while it gives the same result as in Section
2 for the first term, it is much more general.
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No 48 de Mathématiques et Applications. Paris: Springer; 2005.

[13] Il’in AM. Matching of Asymptotic Expansions of Solutions of Boundary Value Prob-
lems. Translations of Mathematical Monographs. Vol. 102, AMS 1992.

[14] L. Jackowska-Strumi!l!lo L. Soko!lowski J. Żochowski A. Henrot = A. On numerical
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22



[36] Soko!lowski J. Zolesio JP. Introduction to Shape Optimization. Shape Sensitivity
Analysis. New York: Springer Verlag, 1992.
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