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Abstract

The computation of intersection and self-intersection loci of parameterized surfaces
is an important task in Computer Aided Geometric Design. We address these prob-
lems via four resultants with separated variables; two of them are specializations
of general multivariate resultants and the two others are specializations of deter-
minantal resultants. We give a rigorous study in these four cases and provide new
formulas in terms of Bezoutian matrix.

Key words: Algebraic surfaces, intersection locus, self-intersection locus,
resultants, Bezoutian.

1 Introduction

A common representation of surfaces in Solid Modeling and Computer Aided
Geometric Design (CAGD) uses parameterized patches, i.e. images of maps of
the form

Φ : [0, 1]× [0, 1] → R3

(u, v) 7→ Φ(u, v) =

(
Φ1(u, v)

Φ0(u, v)
,
Φ2(u, v)

Φ0(u, v)
,
Φ3(u, v)

Φ0(u, v)

)
(1)

where Φ0,Φ1,Φ2,Φ3 are polynomials with real coefficients and bi-degree (m,n).
When Φ0(u, v) is a non-zero constant (independent of u and v), Φ is called
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a polynomial map, otherwise Φ is called a rational map. These patches are
encountered in many applications [10], and spline surfaces are made by gluing
them together.

There are many articles presenting methods and algorithms to intersect two
patches [24,20,15,23] and to compute self-intersections loci [13,21,25,27,26].
These operations still need to be improved and computer algebra techniques
can help. Among them, generalized resultant (for instance sparse resultant)
techniques have been successfully employed [18,19,7].

The computation of self-intersection of a patch or intersection of two patches
are important problems in CAGD; they were the main topics of the European
project GAIA II [12]. Several strategies have been developed to address these
problems: either via multivariate resultants [7], or via special case study [14],
or via approximate implicitization [9,26], or via numerical methods [13].

Numerical methods algorithms are very efficient, however they often rely on
samplings, and have the weakness common to these techniques: if the size
of a loop in the (self-)intersection locus is smaller than the step-size of the
sampling, it might become invisible and the program is unable to compute it.
There are heuristics to choose the step-size, but they do not really overcome
this difficulty.

Therefore, symbolic (or semi-numeric) methods are essential in order to solve
completely these tasks. For that purpose, the parameterizations should be also
algebraic. The most commonly used algebraic representations in CAGD are
the so-called NURBS and particularly the polynomial patches.

In this paper, we will present new tools developed for this purpose. Namely
specific sparse resultants and corresponding Bezoutian formulas allowing to
compute, in each case presented below, a bivariate polynomial which is the
equation of a plane projection of the double points locus. This polynomial
is represented as the determinant of a small matrix, and thus it is useful for
further post-processing.

For this setting, we prepare the equations for the elimination procedure in
order to get a special format that we call with separated variables. Then we
show that the obtained systems have nice properties that we further study
and exploit.

We construct an unmixed bivariate resultant Res(P1, P2, P3) where the three
polynomials Pi(x, y) = fi(x) − gi(y), and apply it to the computation of im-
plicit equations of self-intersection and intersection loci of polynomial surfaces
which is an important task in CAGD and Solid Modeling. In practice, this re-
sultant is computed via a Bezoutian matrix, and it is related to (but different
from) the toric resultant studied in [19,18]. In the case of rational surfaces,
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we will use an anisotropic resultant to address the intersection problem and
a determinantal resultant in the presence of base points to address the self-
intersection problem. For each case, we show how to build a square matrix
(namely a Bezoutian matrix) whose determinant is the expected resultant.

We implemented our algorithms in Maple; an illustration and comparisons
with the Maple package bires written by Amit Khetan are presented. We
will show that the size of the matrix used in our approach to compute the
different resultants are smaller than those given by Khetan’s method [18].

The methodology that we will use along this paper to obtain an elimination
formula adapted to our special situations can be summarized as follows. Start-
ing from a given polynomial system E, the first step is to ”homogenize” it (i.e.
to embed it into an irreducible projective variety) with the condition that the
obtained homogeneous system Eh do not have base-points. Then, by the gen-
eral theory of resultants, this system can be seen as a particular instance of
a general resultant which is not identically zero. Moreover, the particular in-
stance is always geometrically irreducible because, due to the hypothesis that
Eh is base-point free, the incidence variety is a vector bundle. However, it need
not to be algebraically reduced, but this property can be shown through well
chosen specializations. This approach will be applied to the four different cases
corresponding respectively to intersection and self-intersection of polynomial
and rational parameterizations.

The paper is organized as follows. The next section provides a short overview
on the Bezoutian matrix and its main property. In section 3, we precise the
applications in CAGD and set the equations and the elimination problems for
intersection and self-intersection. In section 4, we go back to our main CAGD
applications and make explicit how our resultants can be used. We sketch also
the algorithms and present examples. Sections 5 and 6 are more theoretical
and they contain the proofs of our results. In section 5, we prove that in our
situation, the specialization process is valid and that resultants (which are
anisotropic) can be computed by nice Bezoutian formulas. In section 6, we
describe an adapted version of the determinantal resultant and prove that
these resultants can also be computed by simple Bezoutian formulas.

2 Overview on the Bezoutian matrix

In this short section we recall a well known matrix construction to eliminate
variables from polynomial systems. We will apply it to prove formulas for
bivariate resultants that will be used to solve the intersection and the self-
intersection problems that we address.
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Definition 1 Let f0, . . . , fn be n + 1 polynomials in n variables x1, . . . , xn
with coefficients in a commutative ring R. The Bezoutian of f0, . . . , fn is the
following polynomial in 2n variables x1, . . . , xn, y1, . . . , yn :

Bezf0,...,fn(x; y) :=

∣∣∣∣∣∣∣∣∣∣∣

f0(x) ∂1f0(x, y) · · · ∂nf0(x, y)
...

...
...

...

fn(x) ∂1fn(x, y) · · · ∂nfn(x, y)

∣∣∣∣∣∣∣∣∣∣∣

(2)

where

∂ifj(x, y) :=
fj(y1, . . . , yi−1, xi, . . . , xn)− fj(y1, . . . , yi, xi+1, . . . , xn)

xi − yi
.

Set Bezf0,...,fn(x; y) =
∑
α,β cα,βx

αyβ with cα,β ∈ R. Fixing an order on the
monomials, the matrix (cα,β)α,β whose rows are indexed by the yβ such that
there exists α with cα,β 6= 0, and columns are indexed by the xα such that there
exists β with cα,β 6= 0, is called the Bezoutian matrix of f0, . . . , fn.

Notice that we can substitute x by y in the first column of the determinant
Bezf0,...,fn(x; y) since fj(x)−fj(y) =

∑n
i=1(xi−yi)∂ifj(x, y). Observe also that

the Bezoutian matrix does not have a null row or a null column.

The Bezoutian matrix is an interesting tool in elimination theory because it
allows to eliminate several variables at once in polynomial systems. More pre-
cisely, suppose given a system f0(c, x) = · · · = fn(c, x) = 0 where c denotes a
collection of parameters and x denotes a collection of variables. Then, under
suitable conditions of genericity [5, Theorem 2.2] it can be shown that there
exists an irreducible polynomial in the parameters c which vanishes for a value
c0 of c if and only if the zero locus of f0(c0, x) = · · · = fn(c0, x) = 0 is strictly
larger than the zero locus of f0(c, x) = · · · = fn(c, x) = 0. This irreducible
polynomial is called the generalized resultant of f0(c, x), . . . , fn(c, x) with re-
spect to the variables x. Moreover it divides the determinant of any maximal
minor of the Bezoutian matrix of f0(c, x), . . . , fn(c, x) [5, Theorem 3.4] (see also
[7, Theorem 3.7] for general statements). Therefore, if ∆(c) stands for the de-
terminant of a maximal minor of the Bezoutian matrix of f0(c, x), . . . , fn(c, x),
then the vanishing of ∆ at a given value c0 of c is a necessary condition for
the vanishing of the generalized resultant of f0(c, x), . . . , fn(c, x) at c0. In gen-
eral, this condition is not sufficient; for instance, in the univariate case the
determinant of the Bezoutian matrix of two polynomials with different de-
grees differs from their resultant by a power of the leading coefficient of one
of these polynomials. We refer the reader to [5, §4] for more examples and
illustrations.

In this paper, we will consider four special classes of bivariate resultants for
which we will prove that the determinants of the associated Bezoutian matrices
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are exactly equal to the corresponding generalized resultants.

3 The main results

In this section we state four theorems addressing two important tasks in
CAGD: the intersection and the self-intersection problems for polynomial and
rational surfaces. The proofs of these results are rather technical as they re-
quire some knowledge in algebraic geometry and rely on the use of specific
resultants; they will be given in sections 5 and 6. Note also that the condition
sufficiently generic required in the following results will also be completely
described at that time.

3.1 Intersection problem

First we describe a particular projection of the pre-image curve (i.e the curve
in the parameter space which maps to the intersection locus). We consider the
intersection of two patches S1 and S2 given by parameterizations Φ(u, v) and
Ψ(s, t) with the same features as (1) that we view in the projective space P3.

The set S1 ∩S2 corresponds to the quintuple of parameters (u, v, s, t, λ), with
λ 6= 0, such that Φ(u, v) = λΨ(s, t). This set form a curve C in R5 that we can
describe (i.e. give the topology and witness points on each component) via a
well chosen projection on a plane

C1 = {(u, t) : ∃ (v, s, λ) with λ 6= 0 and Φ(u, v) = λΨ(s, t)}.

Our geometric task is equivalent to describe the curve C1. Its implicit equa-
tion is obtained by eliminating v, s, λ in the system Φ(u, v) = λΨ(s, t) of 4
equations defining C.

In the polynomial case (i.e. Φ0(u, v) = Ψ0(s, t) = 1), the question reduces to
the elimination of 2 variables v and s in a system of 3 polynomial equations
in 4 variables (there is no λ).

Theorem 2 (see subsection 5.1) Suppose given two sufficiently generic pa-
rameterized polynomial surfaces of bi-degree (m,n):

(u, v) 7→
(
Φ1(u, v),Φ2(u, v),Φ3(u, v)

)
,

(s, t) 7→
(
Ψ1(s, t),Ψ2(s, t),Ψ3(s, t)

)
.
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The implicit equation of the projection of their intersection locus onto the
plane (u, t) equals the determinant of the mn ×mn Bezoutian matrix, given
by the formula (2), of Φ1(u, v)−Ψ1(s, t),Φ2(u, v)−Ψ2(s, t),Φ3(u, v)−Ψ3(s, t)
viewed as polynomials in v and s.

In the rational case, we have the following result:

Theorem 3 (see subsection 6.1) Suppose given two sufficiently generic pa-
rameterized rational surfaces of bi-degree (m,n):

(u, v) 7→
(

Φ1(u, v)

Φ0(u, v)
,
Φ2(u, v)

Φ0(u, v)
,
Φ3(u, v)

Φ0(u, v)

)
,

(s, t) 7→
(

Ψ1(s, t)

Ψ0(s, t)
,
Ψ2(s, t)

Ψ0(s, t)
,
Ψ3(s, t)

Ψ0(s, t)

)
.

The implicit equation of the projection of their intersection locus onto the
plane (u, t) equals the determinant of the mn×mn matrix B(u, t) defined by

UB(u, t)V t =
1

(v − v1)(s− s1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Φ0(u, v) Φ0(u, v1) Ψ0(s, t) Ψ0(s1, t)

Φ1(u, v) Φ1(u, v1) Ψ1(s, t) Ψ1(s1, t)

Φ2(u, v) Φ2(u, v1) Ψ2(s, t) Ψ2(s1, t)

Φ3(u, v) Φ3(u, v1) Ψ3(s, t) Ψ3(s1, t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

where U and V denote the monomial vectors

U := [sivj, i = 0 . . .m− 1, j = 0 . . . n− 1],

V := [s1
iv1

j, i = 0 . . .m− 1, j = 0 . . . n− 1].

Observe that UB(u, t)V t in Theorem 3 is a polynomial in v, v1, s, s1, u, t.

3.2 Self-intersection problem

We start with a parameterization Φ given by (1) that we view in P3 and, as
in the previous subsection, we will describe a well chosen projection of the
pre-image curve of the self-intersection locus.

The set of double points of Φ can be characterized by a curve

C = {(u1, v1, u2, v2, λ) : (u1, v1) 6= (u2, v2), λ 6= 0,Φ(u1, v1) = λΦ(u2, v2)}
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in R5. It can also be described in a simpler way by a curve of its well chosen
projection (generically 1 to 1) C1 on R2:

C1 = {(u, v);∃ (k, l, λ) : (k, l) 6= 0, λ 6= 0, and Φ(u, v + k) = λΦ(u+ l, v)}.

Our geometric task is equivalent to describe the curve C1. Its implicit equation
is obtained by the elimination of l, k, λ in the system of 4 equations defining
C1.

If the variables u, v are fixed, we remark that the point (k, l, λ) = (0, 0, 1) is
a base-point (i.e. a solution which is independent of u and v) of the system
Φ(u, v + k)− λΦ(u+ l, v) = 0 defining C1. We will exploit this observation to
develop an adapted resultant for the self-intersection problem in subsections
5.2 and 6.2.

In the polynomial case, we have the following result:

Theorem 4 (see subsection 5.2) Suppose given a sufficiently generic pa-
rameterized polynomial surface of bi-degree (m,n):

(u, v) 7→
(
Φ1(u, v),Φ2(u, v),Φ3(u, v)

)
.

The implicit equation of the projection of its self-intersection locus onto the
plane (u, v) equals the determinant of the (mn − 1) × (mn − 1) Bezoutian
matrix B(u, v) defined by the formula (2):

UB(u, v)V t = BezΦ1(u,v+k)−Φ1(u+l,v),Φ2(u,v+k)−Φ2(u+l,v),Φ3(u,v+k)−Φ3(u+l,v)(k, l; k1, l1)

with U :=
[
likj, (i, j) ∈ {0, . . . ,m− 1} × {0, . . . , n− 1} \ {0, 0}

]
, and

V :=
[
l1
ik1

j, (i, j) ∈ {0, . . . ,m− 1} × {0, . . . , n− 1} \ {0, 0}
]
.

In the rational case, we have:

Theorem 5 (see subsection 6.2) Suppose given a sufficiently generic pa-
rameterized rational surface of bi-degree (m,n):

(u, v) 7→
(

Φ1(u, v)

Φ0(u, v)
,
Φ2(u, v)

Φ0(u, v)
,
Φ3(u, v)

Φ0(u, v)

)
.

The implicit equation of the projection of its self-intersection locus onto the
plane (u, v) equals the determinant of the (mn − 1) × (mn − 1) Bezoutian
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matrix B(u, v) defined by the formula (2):

UB(u, v)V t =

1

(k − k1)(l − l1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Φ0(u, v + k) Φ0(u, v + k1) Φ0(u+ l, v) Φ0(u+ l1, v)

Φ1(u, v + k) Φ1(u, v + k1) Φ1(u+ l, v) Φ1(u+ l1, v)

Φ2(u, v + k) Φ2(u, v + k1) Φ2(u+ l, v) Φ2(u+ l1, v)

Φ3(u, v + k) Φ3(u, v + k1) Φ3(u+ l, v) Φ3(u+ l1, v)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

where U and V denote the monomial vectors

U :=
[
likj, (i, j) ∈ {0, . . . ,m− 1} × {0, . . . , n− 1} \ {0, 0}

]
,

V :=
[
l1
ik1

j, (i, j) ∈ {0, . . . ,m− 1} × {0, . . . , n− 1} \ {0, 0}
]
.

Notice that UB(u, v)V t in Theorem 5 is a polynomial in k, k1, l, l1, u, v.

4 Comments and illustrations

The four theorems given in Section 3 are parts of a general approach to the
intersection and self-intersection problems of algebraic surfaces that we now
illustrate. For this purpose, we focus on the polynomial self-intersection prob-
lem; the three other cases can be treated similarly.

Consider a surface given by

(u, v) ∈ R2 7→
(
Φ1(u, v),Φ2(u, v),Φ3(u, v)

)
∈ R3

a polynomial parameterization of bi-degree (m,n) and define the polynomials

Pi(u, v, l, k) := Φi(u, v + k)− Φi(u+ l, v) , i = 1, 2, 3,

of bi-degree (m,n) in the variables (l, k) with polynomial coefficients in (u, v)
of bi-degree (m,n). Set

R(u, v) := Res
(
P1(u, v, l, k), P2(u, v, l, k), P3(u, v, l, k)

)

where the right hand side in this equality is a resultant operator that will be
precised in subsection 5.2. In order to draw the portion of the projection of
the self-intersection curve of the parameterized surface, say D, contained in
[0, 1]2, we should find a point on each of its connected components. A point on
a component crossing the border of the square is easily found, so the difficulty
is essentially concentrated on the internal loops. A common way to find a
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point on such a loop is to compute all the critical points of D on an axis, e.g.
the u-axis. This amounts to solve the bivariate system

R(u, v) =
∂R

∂u
(u, v) = 0.

Once we get a point on each connected component of D contained in [0, 1]2, the
computer algebra part of the process is completed. Then a numerical marching
algorithm can be used to compute the points (u, v+k, u+ l, v) ∈ [0, 1]4 needed
to draw efficiently the pre-image curve or any of its plane projection. Note that
a part of this process can be done by exploiting the kernel of the matrix which
is used to compute the resultant R(u, v): for instance, if the couple (u, v)

satisfies det
(
B(u, v)

)
= 0, the vector U in Theorem 4 is in the kernel of the

transpose of this matrix, so we can often obtain k and l as the quotient of two
sub-minors of B(u, v) (see [4] for precise results).

An illustrative example. Let S be a parameterized surface of bidegree
(2, 2) given by:

Φ1(s, t) := 2 s2 − t2 s2 − 5 t s2 + 7 s+ 3 t2 s+ s t− 1 + 6 t2 − 2 t,

Φ2(s, t) := 9 t2 s2 − 5 t s2 + 2 t2 s+ 4 s t+ s− 7 t2 + 9 t,

Φ3(s, t) := t s2 + 2 s t− 2 t2.

To find the self-intersection locus of S, we express that this parameterization
takes the same value at the two pairs of parameters (s, t) = (u, v + k) and
(s, t) = (u+ l, v). By Theorem 4 we form the Bezoutian of the three polynomi-
als Φi(u, v+k)−Φi(u+l, v) for i = 1, 2, 3 (see Defintion 1) which can be written
as UB(u, v)V t, with U = (l, k, lk) and V = (l1, k1, l1k1). The matrix B(u, v)
is a 3× 3 symmetric matrix of rank 3. Its determinant D(u, v) is of bi-degree
(10, 10) in (u, v) and of total degree 14. At a generic point (u, v) on the curve
D(u, v) = 0, B(u, v) is of rank 2, therefore the kernel of tB(u, v) = B(u, v) is
generated by a vector of type U . By Cramer’s rules, the entries of U are given
by 2 × 2-minors of B(u, v), and after simplifications we find that l and k are
given by two rational functions L(u, v) and K(u, v) of total degree 6 in (u, v).

The graph of the curve D(u, v) = 0 is drawn in Figure 1. We notice that at the
point (u, v) = (−1.05,−0.049) three local components of this curve intersect
(see Figure 2). This can be checked by a formal algebraic computation.

Now the graphs spanned by
(
u, v+K(u, v)

)
and by

(
u+L(u, v), v

)
, when (u, v)

ranges on the graph of D(u, v), have also three local components intersecting
at the two images of (u, v) = (−1.05,−0.049). Geometrically, on the surface S
this corresponds to a singularity of the self-intersection curve similar to that
of the Roman Steiner’s surface depicted in [8].
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Fig. 1. A view of the double-point locus

u

21

v

-1-3

0

0

-2

2

-2

-1

-4

1

Fig. 2. The projection of the double-point locus

Comparison with Khetan’s formulas. We end this section by comparing
the four new elimination formulas we gave in Section 3 with the formulas given
by Khetan to compute bivariate sparse resultants [18]. As far as we know, it
is the lonely known matrix based method that produces exact elimination for-
mulas. We implemented the constructions of matrices presented in Section 3
in Maple and used the Maple package bires written by Khetan. Khetan’s for-
mulas are designed for bivariate resultants of any three polynomials, whereas
our formulas are only available for bivariate resultants of polynomials with
separated variables. However, since we took into account this particular struc-
ture, our formulas compared most of the time favorably to the ones given by
Khetan. Moreover, we observed sometimes that Khetan’s hybrid matrix is not
full rank in some cases whereas the determinant of the matrix we propose
gives exactly the projection of the intersection and self-intersection curve that
we are looking for.

The following table presents some experiments. In the first column, we indicate
the bi-degree of a randomly chosen rational surface. The second column gives
the size of the matrix constructed by bires to compute the self-intersection
locus of this rational surface, whereas the last column yields the size of the
matrix obtained by Theorem 5 to solve the same problem.
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Bi-degree Size of bires matrix Size of Bezoutian matrix

(2, 2) 11× 11 3× 3

(3, 2) 17× 17 5× 5

(3, 3) 27× 27 8× 8

The size of matrices obtained by Theorem 5 are significantly smaller than the
ones given by Khetan’s approach. It follows that the computation of the self-
intersection locus is highly increase because the more time-consuming step is
by large the computation of determinants of these matrices (their construction
is negligible compared to the computation of their determinants). Finally, we
mention that Khetan’s formulas may fail to be non-zero; for instance, for
randomly chosen rational surface of bi-degree (2,2), his approach returns a
11× 11 matrix which is not full rank.

From now on, we focus on the proofs of the four theorems given in Section 3.

5 Bivariate resultants with separated variables

In this section, we suppose given three univariate polynomials of degree m ≥ 1

fi(x) := ai,0x
m + ai,1x

m−1 + · · ·+ ai,m−1x+ ai,m ∈ Z[ai,0, . . . , ai,m][x]

and three univariate polynomials of degree n ≥ 1

gi(y) := bi,0y
n + bi,1y

n−1 + · · ·+ bi,n−1y + bi,n ∈ Z[bi,0, . . . , bi,n][y].

Hereafter we will consider resultants of the three following bivariate polyno-
mials with separated variables

Pi(x, y) := fi(x)− gi(y) ∈ A[x, y], i = 1, 2, 3,

where A := Z[(ai,j)i=1,2,3;j=0,...,m, (bi,j)i=1,2,3;j=0,...,n] denotes the universal coef-
ficients ring of these polynomials.

5.1 The dense case

This case will be applied to solve the intersection problem for polynomial
surfaces.
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To compute the classical resultant (sometimes called Macaulay’s resultant)
of the polynomials P1(x, y), P2(x, y) and P3(x, y), we first need to homoge-
nize them to the projective space by introducing a new variable. But it is
clear that this resultant is identically zero, since this homogenization pro-
duces at least one base-point (i.e. a common root) in P2. To overcome this
problem, a natural idea is to change variables and compute the classical re-
sultant of the polynomials P1(x

n, ym), P2(x
n, ym) and P3(x

n, ym) which is not
identically zero. However, this resultant could be non reduced: it could be a
power of an irreducible polynomial. As described in [16], its reduced part cor-
responds to a resultant which is obtained by a (special) quasi-homogenization
of P1(x, y), P2(x, y) and P3(x, y) to a weighted projective space aP2. We will
rely on this construction which has been fully studied in [16,17].

Recall that the weighted projective plane aP2 with a weight a = (a0, a1, a2) ∈
N3 over a field K is just the quotient space by the following relation: two points
(x0, x1, x2) and (y0, y1, y2) in K3\{0} are equivalent if there exists λ ∈ C∗ such
that (x0, x1, x2) = (λa0y0, λ

a1y1, λ
a2y2). For instance, the weighted projective

plane with the weight (1, 1, 1) is simply the usual projective plane. For more
details on this topic we refer the reader to [1].

In general, the specialization of a given resultant operator to a set of non-
generic polynomials may gives either an identically zero polynomial or a non
irreducible polynomials on the restricted parameter space. However we will
show that the specializations of some resultants are correct for our classes of
non-generic polynomials but this requires a precise analysis and a rigorous
proof, given below.

In our setting, introducing a new variable z, we homogenize P1(x, y), P2(x, y)
and P3(x, y) to the weighted projective space aP2 with homogeneous coordi-
nates (x, y, z) of weight (n,m, 1). We get, for i = 1, 2, 3, the quasi-homogeneous
polynomials in A[x, y, z]:

fhi (x, z) :=
m∑

j=0

ai,jx
m−jznj , ghi (y, z) :=

n∑

j=0

bi,jy
n−jzmj

and P h
i (x, y, z) := fhi (x, z) − ghi (y, z) of weight mn. We denote by ResaP2 the

anisotropic resultant of three polynomials in aP2. Hereafter we consider the
graded polynomial ring A with the usual grading: each of its variables has
weight 1.

Proposition 6 The specialization ResaP2(P h
1 , P

h
2 , P

h
3 ) of the anisotropic re-

sultant is a non-zero polynomial. It is homogeneous of degree mn with respect
to the coefficients of each polynomial P1, P2 and P3, and hence has total degree
3mn. Moreover it is an irreducible element in A.

Proof. By specializing P h
1 to xm, P h

2 to yn and P h
3 to zmn the anisotropic resul-
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tant R := ResaP2(P h
1 , P

h
2 , P

h
3 ) equals 1 and it is hence non-zero. Moreover, by

the general result of [16,17], R is homogeneous with respect to the coefficients
of each polynomial P1, P2 and P3 of degree mn.

The difficult point is to prove the irreducibility of R. We first prove that R is
geometrically irreducible (i.e. it is a power of an irreducible polynomial). To
do this we consider the incidence variety

W := {((x : y : z), (ai,j, bi,j)) : P h
1 = P h

2 = P h
3 = 0} ⊂ aP2 × A3(m+n+2)

and its two canonical projections π1 and π2 onto the first and the second factor
respectively. By construction π1 gives W a structure of vector bundle over aP2

which is an irreducible variety. We deduce thatW is itself an irreducible variety
and therefore that its image by π2 is irreducible in the affine space A3(m+n+2).
This image has the same support than the zero locus of R and hence it follows
that R is a certain power, say e, of an irreducible polynomial. Finally, to see
that e = 1 we need to prove that the projection of W by π2 is bi-rational onto
its image. This done by considering the specialization φ defined, for generic
αi
′s and βj

′s by

φ(P h
1 ) =

m∏

i=1

(x− αiz
n) , φ(P h

2 ) =
n∏

j=1

(y − βjz
m) , φ(P h

3 ) = xm − yn

which sends the anisotropic resultant R to

φ(R) = ResaP2(
m∏

i=1

(x− αiz
n),

n∏

j=1

(y − βjz
m), xm − yn) =

m,n∏

i,j=1

ResaP2(x− αiz
n, y − βjz

m, xm − yn) =
m,n∏

i,j=1

(αni − βmj ).

(these two last equalities rely on properties of anisotropic resultants proved
in [16]). Since the above product contains the irreducible and reduced factor
(α1 − β1), e must be equal to 1. 2

We just proved the existence of a non-zero particular resultant which is adapted
to our setting. The next task is to show that this resultant can be computed as
the determinant of a certain square matrix, namely a Bezoutian matrix that
we now describe.

It is easy to check that the Bezoutian (see Definition 1) associated to the

13



polynomials P1(x, y), P2(x, y) and P3(x, y):

BezP1,P2,P3(x, y;x1, y1) = −

∣∣∣∣∣∣∣∣∣∣∣

f1(x)− g1(y)
f1(x)−f1(x1)

x−x1

g1(y)−g1(y1)
y−y1

f2(x)− g2(y)
f2(x)−f2(x1)

x−x1

g2(y)−g2(y1)
y−y1

f3(x)− g3(y)
f3(x)−f3(x1)

x−x1

g3(y)−g3(y1)
y−y1

∣∣∣∣∣∣∣∣∣∣∣

and to deduce, after manipulations on the columns, that this Bezoutian has a
particular symmetry property (which is not true in general), namely

BezP1,P2,P3(x1, y1;x, y) = BezP1,P2,P3(x, y; x1, y1).

The (x1, y1)-monomial support of this Bezoutian (i.e. the set of monomials
x1

iy1
j having non-zero coefficients) is {0, . . . ,m−1}×{0, . . . , n−1}, and have

hence exactly mn elements. By the symmetry property, the (x, y)-monomial
support is the same. Therefore the Bezoutian matrix B of P1, P2, P3 is, in this
case, a square matrix of size mn and we have:

Theorem 7 The determinant of the Bezoutian matrix B of P1, P2, P3 equals
the anisotropic resultant ResaP2(P h

1 , P
h
2 , P

h
3 ) up to a sign 1 in A.

Proof. From the discussion in Section 2, ResaP2(P h
1 , P

h
2 , P

h
3 ) divides det(B).

Moreover, it is easy to see by Definition 1 that each entry of B is a polynomial
in A which has total degree 3 and is homogeneous of degree 1 with respect
to the coefficients of each polynomial P1, P2 and P3. Therefore, det(B) ∈
A is homogeneous with respect to the coefficients of each P1, P2 and P3 of
degree mn. Now, if det(B) is non-zero, it equals the anisotropic resultant
ResaP2(P h

1 , P
h
2 , P

h
3 ) up to a non-zero constant. Considering the specialization

φ defined by φ(P1) = xm, φ(P2) = yn and φ(P3) = 1, it is easy to check that

φ
(
BezP1,P2,P3(x, y;x1, y1)

)
=
xm − xm1
x− x1

× yn − yn1
y − y1

,

and that φ(det(B)) = ±1. So det(B) 6= 0 and the theorem is proved. 2

Note that, in more general setting, other formulations of the anisotropic re-
sultant as a determinant of a square matrix has already been established in
[17], and also in [18] as a sparse resultant. Theorem 7 is a simple expression
in the particular case of polynomial systems with separated variables.

1 It is possible to fix the sign in this equality by requiring an ordering on the
(x, y)-monomial and the (x1, y1)-monomial supports of B.
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5.2 The residual case

This case is adapted to the determination of self-intersection loci of polynomial
surfaces.

We keep the notations of the subsection 5.1, but now we assume that the
polynomials fi(x) and gi(x), for all i = 1, 2, 3, have the same constant term
(which is the case in the self-intersection problem), or in other words that

P1(0, 0) = P2(0, 0) = P3(0, 0) = 0.

Thus we have for i = 1, 2, 3, ai,m = bi,n and we view P1, P2 and P3 as polyno-
mials in A′[x, y], where A′ := Z[(ai,j)i=1,2,3;j=0,...,m, (bi,j)i=1,2,3;j=0,...,n−1] is the
universal coefficients ring.

Similarly to the previous subsection, we introduce a new variable z and homog-
enize the polynomials to the weighted projective space aP2 with coordinates
(x, y, z) of weight (n,m, 1). Then we have, for i = 1, 2, 3,

fhi (x, z) :=
m∑

j=0

ai,jx
m−jznj, ghi (y, z) := ai,mz

mn +
n−1∑

j=0

bi,jy
n−jzmj

and P h
i (x, y, z) := fhi (x, z) − ghi (x, z) are quasi-homogeneous of weight mn.

However, in this new setting, the anisotropic resultant ResaP2(P h
1 , P

h
2 , P

h
3 ) is

degenerate because P h
1 , P

h
2 and P h

3 vanish at the same point P := (0 : 0 : 1)
independently of their coefficients.

In order to deal with this base-point and get a non-identically zero resultant,
we consider the blow-up πP : aP̃2 → aP2 of the weighted projective space along
the point P whose definition ideal is IP := (x, y), with exceptional divisor D.
Following techniques developed in [2,6] (see also [7] for a quick overview), we
obtain the so-called residual resultant, and denoted by ResaP̃2(P h

1 , P
h
2 , P

h
3 ). It

provides a necessary and sufficient condition for the zero locus in aP2 of the
system P h

1 (x, y, z) = P h
2 (x, y, z) = P h

3 (x, y, z) = 0 to be, scheme-theoretically,
strictly bigger than the point P . For more details, we refer the reader to [2,7,6].

Proposition 8 The residual anisotropic resultant ResaP̃2(P h
1 , P

h
2 , P

h
3 ) is a non-

zero polynomial. It is homogeneous of degree mn− 1 with respect to the coef-
ficients of each polynomial P1, P2, P3 and of total degree 3mn − 3. Moreover
it is an irreducible element in A′.

Proof. The proof is similar to that of Proposition 6, as it amounts to consider
an anisotropic residual resultant instead of a simple anisotropic one.

The geometric irreducibility of R̃ := ResaP̃2(P h
1 , P

h
2 , P

h
3 ) follows from two facts.

First, the blow-up aP̃2 is an irreducible projective variety, since aP2 is itself a
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projective irreducible variety. Second, the incidence variety

W̃ = {(t̃, (ai,j, bi,j)) : P̃ h
1 (t̃) = P̃ h

2 (t̃) = P̃ h
3 (t̃) = 0} ⊂ aP̃2 × A3(m+n+1)

is a vector bundle over aP̃2. Here P̃ h
i denotes the virtual transform of P h

i by
the blow-up πP (i.e. π∗P (P h

i ) divided only one time by the exceptional divisor
D).

As P is a smooth point in aP2, the self-intersection number
∫

aP̃2 D2 of D
equals −1. Since each P h

i is quasi-homogeneous of degree mn, the multi-degree
formula for residual resultants (see [2]) shows that R̃ is homogeneous, with
respect to the coefficients of each Pi, of degree mn+

∫
aP̃2 D2 = mn− 1.

Finally, to prove that R̃ 6= 0 and it is not a power of an irreducible polyno-
mial, we exhibit a specialization of P1, P2 and P3 such that the corresponding
specialization of R̃ is non-zero and contains an irreducible and reduced factor,
as we did in the proof of Proposition 6. For that purpose, we compute

ResaP̃2(x
m−1∏

i=1

(x − αiz
n), y

n−1∏

i=1

(y − βiz
m), xm − yn) =

m−1,n−1∏

i,j=1

(αni − βmj ).

2

Having defined the anisotropic residual resultant, we now describe how to
compute it as the determinant of a Bezoutian matrix.

We proceed exactly as in the dense case, by considering the Bezoutian ma-
trix of the polynomials P1, P2, P3. The only difference is that ai,m = bi,n for
i = 1, 2, 3, which implies that the (x, y)-monomial support (resp. the (x1, y1)-
monomial support) of this Bezoutian does not contain the monomial 1 = x0y0

(resp. 1 = x0
1y

0
1) and hence contains only mn− 1 elements. Therefore, we get

a square matrix B̃ of size mn− 1 and we have:

Theorem 9 The determinant of the Bezoutian matrix B̃ of P1, P2, P3 is ex-
actly the residual anisotropic resultant ResaP̃2(P h

1 , P
h
2 , P

h
3 ) up to a sign in A′.

Proof. From the discussion in Section 2, ResaP̃2(P h
1 , P

h
2 , P

h
3 ) divides det(B̃). It

is straightforward to check that each entry of B̃ is a polynomial in A′ which has
total degree 3 and is homogeneous of degree 1 with respect to the coefficients
of each P1, P2 and P3. Therefore det(B̃) ∈ A′ is homogeneous with respect
to the coefficients of each polynomial P1, P2 and P3 of degree mn − 1. Now,
considering the specialization φ defined by φ(P1) = xm + x, φ(P2) = yn and

φ(P3) = x− y, we obtain that φ
(
BezP1,P2,P3(x, y;x1, y1)

)
is equal to

16



(
xm − xm1
x− x1

+ 1
) (

yn + (x− y)
yn − yn1
y − y1

)
− (xm + x)

(
yn − yn1
y − y1

)
.

This implies that φ(det(B̃)) = ±1 and concludes the proof. 2

6 Bivariate determinantal resultants with separated variables

With the strategy described in Section 3, the computation of the intersection
locus of two rational surfaces requires the elimination of variables x, y, λ in a
polynomial system of the form

φi(x) = λψi(y), i = 0 . . . 3 and λ 6= 0,

where the φi’s (resp. the ψi’s) are univariate polynomials in the variable x
(resp. y) of given degreem ≥ 1 (resp. n ≥ 1). This is equivalent to the fact that
the 4× 2 matrix defined by the φi’s and ψi’s has rank 1 at some point (x, y).
This leads to the notion of determinantal resultant introduced and studied
in [2]. Therefore, to study the intersection and self-intersection problems for
rational surfaces we need an extension of tools used in the polynomial case to
the determinantal setting.

Introducing new variables x̄ and ȳ, we can put this system into a (bi)-projective
context to first eliminate the variable λ. Then, we eliminate the two couples of
homogeneous variables (x, x̄) and (y, ȳ) from the bi-homogeneous polynomial
system

(
φh0(x, x̄) : φh1(x, x̄) : φh2(x, x̄) : φh3(x, x̄)

)
=

(
ψh0 (y, ȳ) : ψh1 (y, ȳ) : ψh2 (y, ȳ) : ψh3 (y, ȳ)

)
∈ P3,

where, for i = 0, 1, 2, 3, deg(φhi ) = m ≥ 1 and deg(ψhi ) = n ≥ 1.

This elimination problem does not correspond to the projection of a complete
intersection incidence variety, as in Section 5, then the previous theory of re-
sultants does not apply. However, there is a generalization of the previous
approach where the incidence variety is a determinantal one, and one can de-
fine a determinantal resultant (see [3]). It turns out that this can be applied in
our setting: this elimination problem fits into the class of determinantal poly-
nomial systems (which is much larger than the class of complete intersection
ones).

We re-formulate the elimination problem as the necessary and sufficient con-
dition on the parameters of the polynomials φhi and ψhi , i = 0 . . . 3, so that
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there exists a point
(
(x : x̄), (y : ȳ)

)
∈ P1 × P1 which satisfies

rank



φ0(x, x̄) φ1(x, x̄) φ2(x, x̄) φ3(x, x̄)

ψ0(y, ȳ) ψ1(y, ȳ) ψ2(y, ȳ) ψ3(y, ȳ)


 < 2.

Let us fix the notations. From now on, we suppose given four univariate poly-
nomials of degree m ≥ 1, i = 0 . . . 3,

φi(x) := ai,0x
m + ai,1x

m−1 + · · ·+ ai,m−1x+ ai,m ∈ Z[ai,0, . . . , ai,m][x]

and their corresponding homogenizations φhi (x, x̄) ∈ Z[ai,0, . . . , ai,m][x, x̄], as
well as four univariate polynomials of degree n ≥ 1, i = 0 . . . 3,

ψi(y) := bi,0y
n + bi,1y

n−1 + · · ·+ bi,n−1y + bi,n ∈ Z[bi,0, . . . , bi,n][y]

and their corresponding homogenizations ψhi (y, ȳ) ∈ Z[bi,0, . . . , bi,n][y, ȳ]. We
denote by A := Z[(ai,j)i=0,...,3;j=0,...,m, (bi,j)i=0,...,3;j=0,...,n] the universal coeffi-
cients ring of these polynomials.

We will use the theory of determinantal resultants developed in [3]. In partic-
ular, we will provide new formulas to compute determinantal resultants with
separated variables using Bezoutian matrices.

6.1 The dense case

Let us denote by X := P1 × P1, OX the vector bundle of rational functions
on X, and consider two vector bundles E := O4

X and F := OX(m, 0) ⊕
OX(0, n). Taking the coefficients of polynomials φi’s and ψi’s in C, this system
corresponds to a map of vector bundles on X, ρ : E → F , whose matrix is
given by

M
(
(x, x̄), (y, ȳ)

)
:=



φ0(x, x̄) φ1(x, x̄) φ2(x, x̄) φ3(x, x̄)

ψ0(y, ȳ) ψ1(y, ȳ) ψ2(y, ȳ) ψ3(y, ȳ)


 .

Following [3], the determinantal resultant associated to this morphism exists
and corresponds to the necessary and sufficient condition on φi’s and ψi’s
coefficients so that there exists a point

(
(x0 : x̄0), (y0 : ȳ0)

)
∈ P1×P1 satisfying

rankM
(
(x0 : x̄0), (y : ȳ0)

)
≤ 1.

We denote this determinantal resultant, which is an element in A defined up
to a sign, by ResX(M). In this case, we have the following proposition:
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Proposition 10 The determinantal resultant ResX(M) is a non-zero irre-
ducible polynomial in A. Moreover, for each j ∈ {0, . . . , 3}, it is a homoge-
neous polynomial with respect to the coefficients of φj and ψj of degree mn,
and it is hence a homogeneous element in A of degree 4mn.

Proof. First, we will justify the existence of ResX(M). Set H = Hom(E,F ).
Although the vector bundle H is not very ample on X, the proof of Theorem 1
in [3] applies. In this proof, the very ampleness hypothesis is used to show that
the projection from the incidence variety W to the projectivized parameter
space P(H):

W = {(x, φ) ∈ X × P(H) : rank(φ(x)) ≤ 1} → P(H)

is bi-rational onto its image (which is called the resultant variety). The ar-
gument is the following: given a zero-dimensional sub-scheme z of P1 × P1 of
degree two (that is two distinct points or a double point), the locus of matri-
ces φ in P(H) of rank lower or equal to 1 on z is of co-dimension twice the
co-dimension of matrices of rank lower or equal to 1 on only one smooth point
(which is here 3). In our particular situation, this property remains true, even
if H is not very ample.

To obtain the claimed partial degrees we use the intersection theory as devel-
oped in [11]: given an integer j ∈ {0, . . . , 3} we know from [3] that the degree
of ResX(M) with respect to the coefficients of φj and ψj equals the coefficient
of the monomial αj in the coefficient of t3 in the expansion of the series

−
∏4
i=1(1− αit)

ct(F )
= − 1

ct(F )
(1− (α1 + α2 + α3 + α4)t+ · · · )

where ct(F ) denotes the Chern polynomial of F . We deduce that this degree
is exactly the degree of the coefficient of t2 in the series 1/ct(F ). Denoting by
H1 (resp.H2) the class of the generic point in the first (resp. second) factor P1

of X, we have

ct(F ) = ct
(
OX(m; 0)

)
ct

(
OX(0;n)

)
= (1 +mH1)(1 + nH2)

= 1 +mH1 + nH2 +mnH1H2.

It follows that

1

ct(F )
= 1− c1(F )t+

(
c1(F )2 − c2(F )

)
t2 + · · ·

from which we obtain that the degree of ResX(M) with respect to the coeffi-
cients of φj and ψj equals
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∫

X
c1(F )2 − c2(F ) =

∫

X
(mH1 + nH2)

2 −mnH1H2

=
∫

2mnH1H2 −mnH1H2 =
∫

X
mnH1H2 = mn.

2

Remark 11 We recall from [3] that ResX(M) is, for all (p, q) ∈ N2 such that
p ≥ 3m − 1 and q ≥ 3n − 1, the determinant of the following graded part of
the Eagon-Northcott complex

S[−3,−1](p−3m;q−n)

⊕
S[−2,−2](p−2m;q−2n)

⊕
S[−1,−3](p−m;p−3n)

∂2−→
S[−2,−1]4(p−2m;q−n)

⊕
S[−1,−2]4(p−m;q−2n)

∂1−→ S[−1,−1]6(p−m;q−n)

∧2ρ−−→ S[0, 0](p;q)
where S is the ring

S := (Z[(ai,j)i=0,...,3,j=0,...,m]⊗Z Z[(bi,j)i=0,...,3,j=0,...,n])⊗Z (Z[x, x̄]⊗Z Z[y, ȳ])

which is equipped (via tensor products) with two (bi-graded) gradings that
we denote by S[−,−](−,−). In particular, ResX(M) vanishes if and only if the
rank of the 9mn× 24mn matrix

S[−1,−1]6(2m−1;2n−1)

∧2ρ−−→ S[0, 0](3m−1;3n−1)

drops. Moreover, from this result we can deduce that ResX(M) ∈ A is ho-
mogeneous with respect to the coefficients of (φi)i=0,...,3 (resp.(ψi)i=0,...,3) of
degree 2mn.

We now turn to the computation of this determinantal resultant in our setting.
We consider the four polynomials

Pi(x, y, λ) := φi(x)− λψi(y), i = 0 . . . 3,

and we compute the Bezoutian BezP0,...,P3(x, y, λ;x1, y1, λ1) which equals

−λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ0(x)
φ0(x)−φ0(x1)

x−x1
ψ0(y)

ψ0(y)−ψ0(y1)
y−y1

φ1(x)
φ1(x)−φ1(x1)

x−x1
ψ1(y)

ψ1(y)−ψ1(y1)
y−y1

φ2(x)
φ2(x)−φ2(x1)

x−x1
ψ2(y)

ψ2(y)−ψ2(y1)
y−y1

φ3(x)
φ3(x)−φ3(x1)

x−x1
ψ3(y)

ψ3(y)−ψ3(y1)
y−y1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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This Bezoutian does not depend on the variable λ1, and we can eliminate λ
from it by defining

Bez′P0,...,P3
(x, y;x1, y1) :=

BezP0,...,P3(x, y, λ;x1, y1, λ1)

λ
.

It is clear that Bez′P0,...,P3
(x, y;x1, y1) = Bez′P0,...,P3

(x1, y1 : x, y). The (x1, y1)-
monomial support (and hence also its (x, y)-monomial support) of this Be-
zoutian is {0 . . .m − 1} × {0 . . . n − 1}. Therefore we can construct a square
matrix B′ of size mn from it and we have:

Theorem 12 The determinant of the matrix B′ equals to the determinantal
resultant ResX(M) in A up to a sign.

Proof. From the discussion in Section 2, ResX(M) divides det(B′). Since they
have the same degree as homogeneous elements in A, we deduce that the
claimed result will be proved if we show that det(B′) equals ±1 for a given
specialization. For this, we consider the specialization ρ defined by

ρ(φ0) = xm, ρ(φ1) = 0, ρ(φ2) = 0, ρ(φ3) = 1,

ρ(ψ0) = 0, ρ(ψ1) = yn, ρ(ψ2) = 1, ρ(ψ3) = 0.

It is straightforward to check that ρ(det(B′)) = ±1 (the sign depends on the
ordering chosen on monomials to construct B′). 2

6.2 The residual case

With the same notations as in subsection 6.1, we now assume that for i =
0 . . . 3, the polynomials φi(x) and ψi(y) have the same constant term (which
is the case for the self-intersection problem); that is

φi(0) = ai,m = bi,n = ψi(0) for i = 0, 1, 2, 3.

The ring A′ := Z[(ai,j)i=0,1,2,3;j=0,...,m, (bi,j)i=0,1,2,3;j=0,...,n−1] denotes the univer-
sal coefficients ring.

We remark that the determinantal resultant ResX(M) ∈ A′ in Proposition 10
is identically zero in this case because the matrix M is always of rank less or
equal to 1 at P =

(
(0 : 1), (0 : 1)

)
∈ P1×P1. So, we are no longer considering

all the morphisms E → F , but only those having rank 1 at this point P .

Similarly to what we did in subsection 5.2, we can overtake this difficulty by
considering the blow-up πP : X̃ → X = P1 × P1 of X along P . Then the
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morphism π∗P (E) → π∗P (F ) have generically rank 2 outside the exceptional
divisor D and rank 1 on D. Therefore, for such a general morphism, the co-
kernel Q fits in the exact sequence

π∗P (E)|D → π∗P (F )|D → Q→ 0

and is a vector bundle of rank 1 over D. It follows that the kernel F̃ of the
canonical surjective morphism π∗P (F ) → Q→ 0 is also a vector bundle 2 over
X̃ and has the same rank than F . We have the exact sequence

0 → F̃ → π∗P (F ) → Q→ 0. (3)

It turns out that the morphism π∗P (E) → π∗P (F ) factors through F̃ and the
residual determinantal resultant we are looking for is the determinantal re-
sultant of vector bundles Ẽ := π∗P (E) and F̃ over X̃. We will denote it by
ResX̃(M). It gives a necessary and sufficient condition so that the determi-
nantal locus in X corresponding to the condition

rank



φ0(x, x̄) φ1(x, x̄) φ2(x, x̄) φ3(x, x̄)

ψ0(y, ȳ) ψ1(y, ȳ) ψ2(y, ȳ) ψ3(y, ȳ)


 < 2

is, scheme-theoretically, strictly bigger than the point P .

Proposition 13 The residual determinantal resultant ResX̃(M) is a non-zero
irreducible polynomial in A′. Moreover, for each integer j ∈ {0, . . . , 3}, it is
homogeneous with respect to the coefficients of φj and ψj of degree mn − 1,
and hence it is a homogeneous element in A′ of degree 4mn− 4.

Proof. The proof of the irreducibility of ResX̃(M) is exactly the same than the
one given in Proposition 10 using the general theory developed in [3]. Given an
integer j ∈ {0, . . . , 3}, the degree of ResX̃(M) with respect to the coefficients
of φj and ψj equals the degree of the coefficient of t2 in the series 1/ct(F̃ ).
From the exact sequence (3) we deduce that ct(F̃ )ct(Q) = ct(F ). Moreover,
using the definition of M and Q we have Q ' OD, so we deduce that

1

ct(F̃ )
=
ct(OD)

ct(F )
=

1

ct(F )ct(OX̃(−D))
=

1

ct(F )
× 1

1−Dt

=
(
1− c1(F )t+ (c1(F )2 − c2(F ))t2 + · · ·

) (
1 +Dt+D2t2 + · · ·

)
.

Hence the degree of ResX̃(M) with respect to the coefficients of φj and ψj

2 this is a consequence of the fact that Q has rank 1. The construction of F̃ is
known as an elementary transformation of the vector bundle F (see [22] for more
details).
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equals

∫

X̃
D2 − c1(F )D + c1(F )2 − c2(F ) =

∫

X̃
c1(F )2 − c2(F ) +

∫

X̃
D2 = mn− 1.

As a consequence, the residual determinantal resultant ResX̃(M) is an homo-
geneous element in A′ of degree 4(mn− 1) = 4mn− 4. 2

To compute this residual determinantal resultant we use, as before, Bezoutian
matrices. With the same notations and computations as in subsection 6.1,
we build the Bezoutian matrix B′ of size mn × mn. However in this more
particular setting, the couple (0, 0) (associated to the monomial 1) is not in
the (x, y)-monomial support and not also in the (x1, y1)-monomial support. In
this way, we consider the mn− 1×mn− 1 sub-matrix B̃′ of B′ corresponding
to erase the row and the column which defines the monomial 1.

Theorem 14 The determinant of the matrix B̃′ equals the residual determi-
nantal resultant ResX̃(M) in A′ up to a sign.

Proof. From the discussion in Section 2, ResX̃(M) divides det(B̃′). Since these
two polynomials have the same degree as homogeneous elements in A′, we
deduce that the claimed result is proved if we show that det(B̃′) equals ±1 for
a given specialization. To do this, we consider the specialization ρ defined by

ρ(φ0) = xm + x, ρ(φ1) = 0, ρ(φ2) = x, ρ(φ3) = 1,

ρ(ψ0) = 0, ρ(ψ1) = yn, ρ(ψ2) = −y, ρ(ψ3) = 1,

and it is straightforward to check that ρ(det(B̃′)) = ±1 (the sign depends on
the ordering chosen on monomials to construct the matrix B̃′). 2

7 Conclusion

In this paper we presented a re-formulation of computer algebra problems
related to the determination of the self-intersection and intersection loci of
polynomial surfaces patch and in the more general case of rational patches used
for NURBS. We gave simple and efficient formulas to compute the implicit
equation of certain projections of these loci. The next step is to study a numeric
adaptation of the original approach described in this paper.
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The authors thanks André Hirschowitz for helpful discussions on elementary
transformations of vector bundles.

References

[1] M. Beltrametti and L. Robbiano. Introduction to the theory of weighted
projective spaces. Exposition. Math., 4(2):111–162, 1986.

[2] L. Busé. Etude du résultant sur une variété algébrique. PhD thesis, Université
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