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On Mirković-Vilonen cycles and crystal combinatorics

Pierre Baumann and Stéphane Gaussent∗

Abstract

Let G be a complex connected reductive group and let G∨ be its Langlands dual.
Let us choose a triangular decomposition n−,∨ ⊕ h∨ ⊕ n+,∨ of the Lie algebra of G∨.
Braverman, Finkelberg and Gaitsgory show that the set of all Mirković-Vilonen cycles
in the affine Grassmannian G

(
C((t))

)
/G
(
C[[t]]

)
is a crystal isomorphic to the crystal of

the canonical basis of U(n+,∨). Starting from the string parameter of an element of the
canonical basis, we give an explicit description of a dense subset of the associated MV
cycle. As a corollary, we show that the varieties involved in Lusztig’s algebraic-geometric
parametrization of the canonical basis are closely related to MV cycles. In addition, we
prove that the bijection between LS paths and MV cycles constructed by Gaussent and
Littelmann is an isomorphism of crystals.

1 Introduction

Let G be a complex connected reductive group, G∨ be its Langlands dual, and G be its affine
Grassmannian. The geometric Satake correspondence of Lusztig [23], Ginzburg [13] and
Beilinson and Drinfeld [3] is a tensor equivalence from the category of G(C[[t]])-equivariant
perverse sheaves of C-vector spaces on G to the category of complex finite dimensional repre-
sentations of G∨. In this equivalence, the representation that corresponds to a perverse sheaf
L is the hypercohomology of L, endowed with a suitable action of G∨ (which depends on the
choice of a pinning of G).

We fix now a pair of opposite Borel subgroups in G, so as to be enabled to speak of
weights and dominance. Then each dominant weight λ for G∨ determines a G(C[[t]])-orbit Gλ

in G . Under the geometric Satake correspondence, the intersection cohomology of the (usually
singular) closure Gλ becomes the underlying space of the irreducible rational G∨-module L(λ)
with highest weight λ.

In [28], Mirković and Vilonen present a proof of the geometric Satake correspondence valid
in any characteristic. Their main tool is a class Z (λ) of subvarieties of Gλ, the so-called MV
cycles, which affords a basis of the intersection cohomology of Gλ. It is tempting to try to
compare this construction with standard bases in L(λ), for instance with the canonical basis
of Lusztig [24] (also known as the global crystal basis of Kashiwara [16]).

Several works achieve such a comparison on a combinatorial level. More precisely, let us
recall that the combinatorial object that indexes naturally the canonical basis of L(λ) is the
crystal B(λ). In [9], Braverman and Gaitsgory endow the set Z (λ) with the structure of a
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crystal and show the existence of an isomorphism of crystals Ξ(λ) : B(λ)
≃
−→ Z (λ). In [12],

Gaussent and Littelmann introduce a set Γ+
LS(γλ) of “LS galleries”. They endow it with the

structure of a crystal and they associate an MV cycle Z(δ) ∈ Z (λ) to each LS gallery δ ∈

Γ+
LS(γλ). Finally they show the existence of an isomorphism of crystals χ : B(λ)

≃
−→ Γ+

LS(γλ)
and they prove that the map Z : Γ+

LS(γλ) → Z (λ) is a bijection. One of the results of the
present paper (Theorem 27) says that Gaussent and Littelmann’s map Z is the composition
Ξ(λ) ◦ χ−1; in particular Z is an isomorphism of crystals.

Let Λ be the lattice of weights of G∨, let n−,∨⊕ h⊕ n+,∨ be the triangular decomposition
of the Lie algebra of G∨ afforded by the pinning of G, and let B(−∞) be the crystal of
the canonical basis of U(n+,∨). Then for each dominant weight λ, the crystal B(λ) can be
embedded into a shifted version Tw0λ⊗B(−∞) of B(−∞), where w0λ is the smallest weight

of B(λ). It is thus natural to consider a big crystal B̃(−∞) =
⊕

λ∈Λ Tλ ⊗B(−∞) in order

to deal with all the B(λ) simultaneously. The isomorphisms Ξ(λ) : B(λ)
≃
−→ Z (λ) then

assemble in a big bijection Ξ : B̃(−∞)
≃
−→ Z . The set Z here collects subvarieties of G that

have been introduced by Anderson in [1]. These varieties are a slight generalization of the
usual MV cycles; indeed Z ⊇ Z (λ) for each dominant weight λ. Kamnitzer [14] calls the
elements of Z “stable MV cycles”, but we will simply call them MV cycles. The existence of
the crystal structure on Z and of the isomorphism of crystals Ξ mentioned above is due to
Braverman, Finkelberg and Gaitsgory [8].

The crystal B(−∞) can be parametrized in several ways. Two families of parametriza-
tions, usually called the Lusztig parametrizations and the string parametrizations (see [6]),
depend on the choice of a reduced decomposition of the longest element in the Weyl group of
G; they establish a bijection between B(−∞) and tuples of natural integers. On the contrary,
Lusztig’s algebraic-geometric parametrization [26] is intrinsic and describes B(−∞) in terms
of closed subvarieties in U−

(
C[[t]]

)
, where U− is the unipotent radical of the negative Borel

subgroup of G.
A central result of the present paper (Theorem 16) provides an explicit description of the

cycle Ξ(t0 ⊗ b) starting from the string parameter of b ∈ B(−∞). In the course of his work
on MV polytopes [14], Kamnitzer obtains a similar result, this time starting from the Lusztig
parameter of b. We explain in Section 4.3 that our result is equivalent to Kamnitzer’s one. We
feel that our approach, which is foreign to Kamnitzer’s methods, has its own advantages. In-
deed we obtain four new results. Firstly, we translate Braverman, Finkelberg and Gaitsgory’s
original definition of the crystal operations on Z in a concrete formula (Proposition 14).
Secondly, we have an explicit birational morphism from a variety of the form Ca × (C×)b to
Ξ(t0⊗ b) (Remark 17). Thirdly, we show how the string cone (i.e., the domain of parameters
for the string parametrization) appears naturally with MV cycles (Proposition 18). Fourthly,
we explain why Lusztig’s algebraic-geometric parametrization is closely related closed to MV
cycles (Proposition 20).

The paper consists of four sections (plus the introduction). Section 2 fixes some notation
and gathers facts and terminology from the theory of crystals bases. Section 3 recalls several
standard constructions in the affine Grassmannian and presents the known results concerning
MV cycles. Section 4 defines Braverman and Gaitsgory’s crystal operations on MV cycles and
presents our results concerning string parametrizations. Section 5 establishes that Gaussent
and Littelmann’s bijection Z : Γ+

LS(γλ)→ Z (λ) is a crystal isomorphism. Each section opens
with a short summary which gives a more detailed account of its contents.

We wish to thank M. Ehrig, J. Kamnitzer, P. Littelmann, I. Mirković, S. Morier-Genoud
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and G. Rousseau for fruitful conversations, vital information and/or useful indications.

2 Preliminaries

The task devoted to Section 2.1 is to fix the notation concerning the pinned group G. In
Section 2.2, we fix the notation concerning crystal bases for G∨-modules.

2.1 Notations for pinned groups

In this whole paper, G will be a complex connected reductive algebraic group. We assume
that a Borel subgroup B+ and a maximal torus T ⊆ B+ are fixed. We let B− be the opposite
Borel subgroup to B+ relatively to T . We denote the unipotent radical of B± by U±.

We denote the character group of T by X = X∗(T ); we denote the lattice of all one-
parameter subgroups of T by Λ = X∗(T ). A point λ ∈ Λ is a morphism of algebraic groups
C× → T, a 7→ aλ. We denote the root system and the coroot system of (G,T ) by Φ and
Φ∨ = {α∨ | α ∈ Φ}, respectively. The datum of B+ splits Φ into the subset Φ+ of positive
roots and the subset Φ− of negative roots. We set Φ∨

+ = {α∨ | α ∈ Φ+}. We denote by
X++ = {η ∈ X | ∀α∨ ∈ Φ∨

+, 〈η, α
∨〉 > 0} and Λ++ = {λ ∈ Λ | ∀α ∈ Φ+, 〈α, λ〉 > 0}

the cones of dominant weights and coweights. We index the simple roots as (αi)i∈I . The
coroot lattice is the subgroup ZΦ∨ generated by the coroots in Λ. The height of an element
λ =

∑
i∈I niα

∨
i in ZΦ∨ is defined as ht(λ) =

∑
i∈I ni. The dominance order on X is the

partial order 6 defined by
η > θ ⇐⇒ η − θ ∈ NΦ+.

The dominance order on Λ is the partial order 6 defined by

λ > µ⇐⇒ λ− µ ∈ NΦ∨
+.

For each simple root αi, we choose a non-trivial additive subgroup xi of U+ such that
aλxi(b)a

−λ = xi

(
a〈αi,λ〉b

)
holds for all λ ∈ Λ, a ∈ C×, b ∈ C. Then there is a unique morphism

ϕi : SL2 → G such that

ϕi

(
1 b
0 1

)
= xi(b) and ϕi

(
a 0
0 a−1

)
= aα∨

i

for all a ∈ C×, b ∈ C. We set

yi(b) = ϕi

(
1 0
b 1

)
and si = ϕi

(
0 1
−1 0

)
.

Let NG(T ) be the normalizer of T in G and let W = NG(T )/T be the Weyl group of
(G,T ). Each element si normalizes T ; its class si modulo T is called a simple reflection.
Endowed with the set of simple reflections, the Weyl group becomes a Coxeter system. Since
the elements si satisfy the braid relations, we may lift each element w ∈ W to an element
w ∈ G so that w = si1 · · · sil for any reduced decomposition si1 · · · sil of w. For any two
elements w and w′ in W , there exists an element λ ∈ ZΦ∨ such that ww′ = (−1)λ w w′. We
denote the longest element of W by w0. We extend the additive form ht to Λ by setting
ht(λ) = ht(λ− w0λ)/2 (the result belongs to 1

2Z).
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Let α be a positive root. We make the choice of a simple root αi and of an element w ∈W
such that α = wαi. Then we define the one-parameter additive subgroups

xα : b 7→ w xi(b)w
−1 and x−α : b 7→ w yi(b)w

−1 (1)

and the element sα = w siw
−1. Products in G may then be computed using several commu-

tation rules:

• For all λ ∈ Λ, all root α, all a ∈ C× and all b ∈ C,

aλxα(b) = xα

(
a〈α,λ〉b

)
aλ. (2)

• For any root α and any a, b ∈ C such that 1 + ab 6= 0,

xα(a)x−α(b) = x−α

(
b/(1 + ab)

)(
1 + ab

)α∨

xα

(
a/(1 + ab)

)
. (3)

• For any positive root α and any a ∈ C×,

xα(a)x−α(−a−1)xα(a) = x−α(−a−1)xα(a)x−α(−a−1) = aα∨

sα = sα a
−α∨

. (4)

• (Chevalley’s commutator formula) If α and β are two linearly independent roots, then
there are numbers Ci,j,α,β ∈ {±1,±2,±3} such that

xβ(b)−1xα(a)−1xβ(b)xα(a) =
∏

i,j>0

xiα+jβ

(
Ci,j,α,β(−a)ibj

)
(5)

for all a and b in C. The product in the right-hand side is taken over all pairs of positive
integers i, j for which iα+ jβ is a root, in order of increasing i+ j.

2.2 Crystals

Let G∨ be the Langlands dual of G. This reductive group is equipped with a Borel subgroup
B+,∨ and a maximal torus T∨ ⊆ B+,∨ so that Λ is the weight lattice of T∨ and Φ∨ is the
root system of (G∨, T∨), the set of positive roots being Φ∨

+. The Lie algebra g∨ of G∨ has a
triangular decomposition g∨ = n−,∨ ⊕ h∨ ⊕ n+,∨.

A crystal for G∨ (in the sense of Kashiwara [19]) is a set B endowed with applications

ẽi, f̃i : B→ B ⊔ {0}, εi, ϕi : B→ Z ⊔ {−∞}, and wt : B→ Λ,

where 0 is a ghost element added to B in order that the maps ẽi and f̃i may be everywhere
defined. These applications are required to satisfy certain axioms, which the reader may find
in Section 7.2 of [19]. The application wt is called the weight.

A morphism from a crystal B to a crystal B′ is an application ψ : B ⊔ {0} → B′ ⊔ {0}
satisfying ψ(0) = 0 and compatible with the structure maps ẽi, f̃i, εi, ϕi and wt. The
conditions are written in full detail in [19].

Given a crystal B, one defines a crystal B∨ whose elements are written b∨, where b ∈ B,
and whose structure maps are given by

wt(b∨) = −wt(b),

εi(b
∨) = ϕi(b) and ϕi(b

∨) = εi(b),

ẽi(b
∨) = (f̃ib)

∨ and f̃i(b
∨) = (ẽib)

∨,
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where one sets 0∨ = 0. The correspondence B B∨ is a covariant functor. (Caution: Usually
in this paper, the symbol ∨ is used to adorn inverse roots or objects related to the Langlands
dual. Here and in Section 4.5 however, it will also be used to denote contragredient duality
for crystals.)

The most important crystals for our work are the crystal B(∞) of the canonical basis of
U(n−,∨) and the crystal B(−∞) of the canonical basis of U(n+,∨). The crystal B(∞) is a
highest weight crystal; this means that it has an element annihilated by all operators ẽi and
from which any other element of B(∞) can be obtained by applying the operators f̃i. This
element is unique and its weight is 0; we denote it by 1. Likewise the crystal B(−∞) is a
lowest weight crystal; its lowest weight element has weight 0 and is also denoted by 1.

The antiautomorphism of the algebra U(n−,∨) that fixes the Chevalley generators leaves
stable its canonical basis; it therefore induces an involution b 7→ b∗ of the set B(∞). This
involution ∗ preserves the weight. The operators f̃i and b 7→ (f̃ib

∗)∗ correspond roughly to
the left and right multiplication in U(n−,∨) by the Chevalley generator with index i (see
Proposition 5.3.1 in [17] for a more precise statement). One could therefore expect that f̃i

and b 7→ (f̃jb
∗)∗ commute for all i, j ∈ I. This does not hold but one can analyze precisely

the mutual behavior of these operators. In return, one obtains a characterization of B(∞)
as the unique highest weight crystal generated by a highest weight element of weight 0 and
endowed with an involution ∗ with specific properties (see Section 2 in [18], Proposition 3.2.3
in [20], and Section 12 in [8] for more details).

For any weight λ ∈ Λ, we consider the crystal Tλ with unique element tλ, whose structure
maps are given by

wt(tλ) = λ, ẽitλ = f̃itλ = 0 and εi(tλ) = ϕi(tλ) = −∞

(see Example 7.3 in [19]). There are two operations ⊕ and ⊗ on crystals (see Section 7.3

in [19]). We set B̃(−∞) =
⊕

λ∈Λ Tλ ⊗B(−∞). Thus for any b ∈ B(−∞), any λ ∈ Λ and
any i ∈ I,

εi(tλ ⊗ b) = εi(b)− 〈αi, λ〉, ẽi(tλ ⊗ b) = tλ ⊗ ẽi(b),

ϕi(tλ ⊗ b) = ϕi(b), f̃i(tλ ⊗ b) = tλ ⊗ f̃i(b),

wt(tλ ⊗ b) = wt(b) + λ.

We transport the involution ∗ from B(∞) to B(−∞) by using the isomorphism B(−∞) ∼=

B(∞)∨ and by setting (b∨)∗ = (b∗)∨ for each b ∈ B(∞). Then we extend it to B̃(−∞) by
setting

(tλ ⊗ b)
∗ = t−λ−wt(b) ⊗ b

∗.

For λ ∈ Λ, we denote by L(λ) the irreducible rational representation of G∨ whose highest
weight is the unique dominant weight in the orbit Wλ. We denote the crystal of the canonical
basis of L(λ) by B(λ). It has a unique highest weight element bhigh and a unique lowest weight
element blow, which satisfy ẽibhigh = f̃iblow = 0 for any i ∈ I. If λ is dominant, there is a
unique embedding of crystals κλ : B(λ) →֒ B(∞) ⊗ Tλ; it maps the element bhigh to 1 ⊗ tλ
and its image is

{b⊗ tλ | b ∈ B(∞) such that ∀i ∈ I, εi(b
∗) 6 〈αi, λ〉}

(see Proposition 8.2 in [19]). If λ is antidominant, then the sequence

B(λ) ∼= B(−λ)∨
(κ−λ)∨

−−−−→
(
B(∞)⊗T−λ

)∨ ∼= Tλ ⊗B(−∞)

5



defines an embedding of crystals ιλ : B(λ) →֒ Tλ⊗B(−∞); it maps the element blow to tλ⊗1
and its image is

{tλ ⊗ b | b ∈ B(−∞) such that ∀i ∈ I, ϕi(b
∗) 6 −〈αi, λ〉}.

3 The affine Grassmannian

In Section 3.1, we recall the definition of an affine Grassmannian and explain that it is endowed
with the structure of an ind-variety. In Section 3.2, we present several properties of orbits
in the affine Grassmannian of G under the action of the groups G

(
C[[t]]

)
and U±

(
C((t))

)
.

Section 3.3 recalls the notion of MV cycle, in the original version of Mirković and Vilonen
and in the somewhat generalized version of Anderson. Finally Section 3.4 introduces maps
from the affine Grassmannian of G to the affine Grassmannian of Levi subgroups of G.

An easy but possibly new result in this section is Proposition 5 (iii). Joint with Mirković
and Vilonen’s work, it implies the expected Proposition 7, which provides the dimension
estimates that Anderson needs for his generalization of MV cycles.

3.1 Definitions

We denote the ring of formal power series by O = C[[t]] and we denote its field of fractions
by K = C((t)). We denote the valuation of a non-zero Laurent series f ∈ K × by val(f).
Given a complex linear algebraic group H, we define the affine Grassmannian of H as the
space H = H(K )/H(O). The class in H of an element h ∈ H(K ) will be denoted by [h].

Example. If H is the multiplicative group Gm, then

H = K
×/O×

val
∼= Z.

More generally, if H is a torus, then the map λ 7→ [tλ] is a bijection from the lattice X∗(H)
of one-parameter subgroups in H onto the affine Grassmannian H .

The affine Grassmannian H has the structure of an ind-scheme (see [2] for H = GLn or
SLn and Chapter 13 of [21] for H simple). This means that H is a ringed space isomorphic
to the direct limit of a system

H0 →֒H1 →֒H2 →֒ · · ·

of schemes of finite type over C and of closed embeddings. We here observe that a subset of H

which is noetherian for the induced topology is necessarily contained in Hn for some n > 0.
When H is reductive, H can be H(K )-equivariantly embedded in a projective space

P(V ), where V is an infinite dimensional representation of H(K ). In other words, there is
an H(K )-equivariant very ample line bundle on H . Moreover one can find an increasing and
exhaustive filtration of V by H(O)-invariant finite dimensional subspaces Vn. The assignment
Hn = H ∩P(Vn) then defines a directed system as above, such that each Hn is a projective
variety and is invariant under the action of H(O).

The affine Grassmannian of the groups G and T considered in Section 2.1 will be denoted
by G and T , respectively. The inclusion T ⊆ G gives rise to a closed embedding T →֒ G .

6



3.2 Orbits

We first look at the action of the group G(O) on G by left multiplication. The orbit G(O)[tλ]
depends only on the W -orbit of λ in Λ, and the Cartan decomposition of G(K ) says that

G =
⊔

Wλ∈Λ/W

G(O)[tλ].

For each coweight λ ∈ Λ, the orbit Gλ = G(O)[tλ] is a quasiprojective scheme of finite type
over C. If λ is dominant, then its closure is

Gλ =
⊔

µ∈Λ++

λ>µ

Gµ; (6)

this is a projective scheme of finite type over C.
From this, one can quickly deduce that it is often possible to truncate power series when

dealing with the action of G(O) on G . Given an positive integer s, let G(s) denote the s-th
congruence subgroup of G(O), that is, the kernel of the reduction map G(O)→ G(O/tsO).

Proposition 1 For each noetherian subset Z of G , there exists a level s such that G(s) fixes
Z pointwise.

Proof. Consider Gn =
⊔

ν∈Λ++

ht(ν)6n

Gν . The Cartan decomposition shows that (Gn)n>0 is an

increasing and exhaustive filtration of G , and Equation (6) shows that each Gn is closed. We
conclude that each noetherian subset Z of G is contained in Gn for n sufficiently large. To
prove the proposition, it is thus enough to show that for each integer n, there is s > 1 such
that G(s) fixes Gn pointwise.

Let λ ∈ Λ, and choose s > 1 larger than 〈α, λ〉 for all α ∈ Φ. Using that G(s) is generated

by elements (1 + tsp)λ and xα(tsp) with λ ∈ Λ, α ∈ Φ and p ∈ O, one readily checks that
G(s) fixes the point [tλ]. Since G(s) is normal in G(O), it pointwise fixes the orbit Gλ. The
proposition follows then from the fact that each Gn is a finite union of G(O)-orbits. �

We now look at the action of the unipotent group U±(K ) on G . It can be described by
the Iwasawa decomposition

G =
⊔

λ∈Λ

U±(K )[tλ].

We will denote the orbit U±(K )[tλ] by S±
λ . Proposition 3.1 (a) in [28] asserts that the closure

of a stratum S±
λ is the union

S±
λ =

⊔

µ∈Λ

±(λ−µ)>0

S±
µ . (7)

This equation implies in particular

S±
λ = S±

λ \

(
⋃

i∈I

S±
λ∓α∨

i

)
,

which shows that each stratum S±
λ is locally closed.
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As pointed out by Mirković and Vilonen (Equation (3.5) in [28]), these strata S±
λ can be

understood in terms of a Bia lynicki-Birula decomposition: indeed the choice of a dominant
and regular coweight ξ ∈ Λ defines an action of C× on G , and

S±
λ = {x ∈ G | lim

a→0
a∈C×

a±ξ · x = [tλ]}

for each λ ∈ Λ. We will generalize this result in Remark 9. For now, we record the following
two (known and obvious) consequences:

• The set of points in G fixed by the action of T is precisely {[tλ] | λ ∈ Λ}; in other words,
G T is the image of the embedding T →֒ G .

• If Z is a closed and T -invariant subset of G , then Z meets a stratum S±
λ if and only if

[tλ] ∈ Z.

The following proposition is in essence due to Kamnitzer (see Section 3.3 in [14]).

Proposition 2 Let Z be an irreducible and noetherian subset of G . Then {λ ∈ Λ | Z ∩S±
λ 6=

∅} is finite and has a largest or smallest element. Denoting this element by µ, the intersection
Z ∩ S±

µ is open and dense in Z.

Given an irreducible and noetherian subset Z in G , we indicate the coweight µ exhibited in
Proposition 2 by the notation µ±(Z).

Proof of Proposition 2. We first observe that the Cartan decomposition and the equality
G T = {[tλ] | λ ∈ Λ} imply that (Gν)T = {[twν ] | w ∈ W} for each coweight ν ∈ Λ. It
follows that (Gν)T is finite. Recall the subsets Gn =

⊔
ν∈Λ++

ht(ν)6n

Gν used in the proof of Propo-

sition 1. Then (Gn)T is finite for each n ∈ N. Since Gn is closed and T -invariant, this means
that it meets only a finite number of strata S±

λ . Thus a noetherian subset of G meets only a
finite number of strata S±

λ , for it is contained in Gn for n big enough.
Assume now that Z is an irreducible and noetherian subset of G . Each intersection Z∩S±

λ

is locally closed in Z and Z is covered by a finite number of such intersections, therefore there

exists a coweight µ for which the intersection Z∩S±
µ is dense in Z. Then Z ⊆ S±

µ ; by Equation

(7), this means that µ is the largest or the smallest element in {λ ∈ Λ | Z∩S±
λ 6= ∅}. Moreover

Z ∩ S±
µ is locally closed; it is therefore open in its closure in Z, which is Z. �

Examples 3. • If Z is an irreducible and noetherian subset of G , then Z ∩ S+
µ+(Z) ∩ S

−
µ−(Z)

is dense in Z. Thus Z and Z are contained in S+
µ+(Z) ∩ S

−
µ−(Z). One deduces from this the

equality µ±(Z) = µ±(Z).

• For any coweight λ ∈ Λ, µ±(Gλ) = µ±
(
Gλ

)
is the largest or smallest element in the orbit

Wλ.

We now present a method that allows to find the parameter λ of an orbit Gλ or S±
λ to

which a given point of G belongs. Given a C-vector space V , we may form the K -vector
space V ⊗C K by extending the base field and regard V as a subspace of it. In this situation,
we define the valuation val(v) of a non-zero vector v ∈ V ⊗C K as the largest n ∈ Z such
that v ∈ V ⊗ tnO; thus the valuation of a non-zero element v ∈ V is zero. We define the

8



valuation val(f) of a non-zero endomorphism f ∈ EndK (V ⊗C K ) as the largest n ∈ Z such
that f(V ⊗C O) ⊆ V ⊗ tnO; equivalently, val(f) is the valuation of f viewed as an element in
EndC(V )⊗C K .

For each weight η ∈ X, we denote by V (η) the simple rational representation of G whose
highest weight is the dominant weight in the orbit Wη, and we choose an extremal weight
vector vη ∈ V (η) of weight η. The structure map g 7→ gV (η) from G to EndC(V (η)) of this
representation extends to a map from G(K ) to EndK (V (η) ⊗C K ); we denote this latter
also by g 7→ gV (η), or simply by g 7→ (g·?) if there is no risk of confusion.

Proposition 4 Let g ∈ G (K ).

(i) The antidominant coweight λ ∈ Λ such that [g] ∈ Gλ is characterized by the equations

∀η ∈ X++, 〈η, λ〉 = val(gV (η)).

(ii) The coweight λ ∈ Λ such that [g] ∈ S±
λ is characterized by the equations

∀η ∈ X++, ±〈η, λ〉 = − val(g−1 · v±η).

Proof. Assertion (ii) is due to Kamnitzer (this is Lemma 2.4 in [14]), so we only have to prove
Assertion (i). Let η ∈ X++. Then for each weight θ of V (η), the element tλ acts by t〈λ,θ〉

on the θ-weight subspace of V (η). Here 〈λ, θ〉 > 〈λ, η〉, for λ is antidominant and θ 6 η. It
follows that val

(
(tλ)V (η)

)
= 〈λ, η〉; in other words, the proposed formula holds for g = tλ.

To conclude the proof, it suffices to observe that val(gV (η)) depends only of the double coset
G(O)gG(O), for the action of G(O) leaves V (η)⊗C O invariant. �

We end this section with a proposition that gives some information concerning intersec-
tions of orbits. We agree to say that an assertion A(λ) depending on a coweight λ ∈ Λ holds
when λ is enough antidominant if

(∃N ∈ Z) (∀λ ∈ Λ) (∀i ∈ I, 〈αi, λ〉 6 N) =⇒ A(λ).

Proposition 5 (i) Let λ, ν ∈ Λ. If S+
λ ∩ S

−
ν 6= ∅, then λ > ν.

(ii) Let λ ∈ Λ. Then S+
λ ∩ S

−
λ =

{
[tλ]
}
.

(iii) Let ν ∈ Λ such that ν > 0. If λ ∈ Λ is enough antidominant, then S+
λ+ν∩S

−
λ = S+

λ+ν∩Gλ.

The proof of this proposition requires a lemma.

Lemma 6 Let ν ∈ Λ such that ν > 0. If λ ∈ Λ is enough antidominant, then S+
λ+ν∩S

−
λ ⊆ Gλ.

Proof. For the whole proof, we fix ν ∈ Λ such that ν > 0.
For each η ∈ X++, we make the following construction. We form the list (θ1, θ2, . . . , θN )

of all the weights of V (η), repeated according to their multiplicities and ordered in such a
way that (θi > θj ⇒ i < j) for all indices i, j. Thus N = dimV (η), θ1 = η > θi for all i > 1,
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and θ1 + θ2 + · · ·+ θN is W -invariant hence orthogonal to ZΦ∨. We say then that a coweight
λ ∈ Λ satisfies Condition Aη(λ) if

∀j ∈ {1, . . . , N}, 〈θ1 − θj, λ〉 6 〈θj + θj+1 + · · ·+ θN , ν〉.

Certainly Condition Aη(λ) holds if λ is enough antidominant.
Now we choose a finite subset Y ⊆ X++ that spans the lattice X up to torsion. To

prove the lemma, it is enough to show that S+
λ+ν ∩ S

−
λ ⊆ Gλ for all antidominant λ satisfying

Condition Aη(λ) for each η ∈ Y .
Let λ satisfying these requirements and let g ∈ U−(K )tλ be such that [g] ∈ S+

λ+ν . We
use Proposition 4 (i) to show that [g] ∈ Gλ. Let η ∈ Y . Let (v1, v2, . . . , vN ) be a basis of
V (η) such that for each i, vi is a vector of weight θi. We denote the dual basis in V (η)∗ by
(v∗1 , v

∗
2 , . . . , v

∗
N ); thus v∗i is of weight −θi. Then

val(gV (η)) = min
{

val(〈v∗j , g · vi〉)
∣∣ 1 6 i, j 6 N

}
.

The choice g ∈ U−(K )tλ implies that the matrix of gV (η) in the basis (vi)16i6N is lower

triangular, with diagonal entries
(
t〈θi,λ〉

)
16i6N

. Let i 6 j be two indices. Then

g · (vi ∧ vj+1 ∧ vj+2 ∧ · · · ∧ vN ) = t〈θj+1+θj+2+···+θN ,λ〉(g · vi) ∧ vj+1 ∧ vj+2 ∧ · · · ∧ vN .

Therefore

val(〈v∗j , g · vi〉) + 〈θj+1 + θj+2 + · · ·+ θN , λ〉

= val(〈v∗j ∧ v
∗
j+1 ∧ v

∗
j+2 ∧ · · · v

∗
N , g · (vi ∧ vj+1 ∧ vj+2 ∧ · · · ∧ vN )〉)

= val(〈g−1 · (v∗j ∧ v
∗
j+1 ∧ v

∗
j+2 ∧ · · · v

∗
N ), vi ∧ vj+1 ∧ vj+2 ∧ · · · ∧ vN 〉)

> val(g−1 · (v∗j ∧ v
∗
j+1 ∧ · · · ∧ v

∗
N ))

= 〈θj + θj+1 + · · ·+ θN , λ+ ν〉;

the last equality here comes from Proposition 4 (ii), taking into account that [g] ∈ S+
λ+ν and

that v∗j ∧ v
∗
j+1 ∧ · · · ∧ v

∗
N is a highest weight vector of weight −(θj + θj+1 + · · · + θN ) in

∧N−j+1 V (η)∗. By Condition Aη(λ), this implies

val(〈v∗j , g · vi〉) > 〈θj, λ〉+ 〈θj + θj+1 + · · · + θN , ν〉 > 〈η, λ〉.

Therefore val(gV (η)) > 〈η, λ〉. On the other hand, val(gV (η)) 6 val(〈v∗1 , g · v1〉) = 〈η, λ〉. Thus
the equality val(gV (η)) = 〈η, λ〉 holds for each η ∈ Y , and we conclude by Proposition 4 (i)
that [g] ∈ Gλ. �

Proof of Proposition 5. We first prove Assertion (i). We let C× act on G through a dominant
and regular coweight ξ ∈ Λ. Let λ, ν ∈ Λ and assume there exists an element x ∈ S+

λ ∩ S
−
ν .

Then
[tν ] = lim

a→0
a−ξ · x belongs to S+

λ =
⋃

ν∈Λ
λ>ν

S+
ν .

This shows that λ > ν.
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If µ ∈ Λ is enough antidominant, then

S+
µ ∩ S

−
µ ⊆ S

+
µ ∩ Gµ =

{
[tµ]
}

by Lemma 6 and Formula (3.6) in [28]. Thus S+
µ ∩ S

−
µ =

{
[tµ]
}

if µ is enough antidominant.
It follows that for each λ ∈ Λ,

S+
λ ∩ S

−
λ = tλ−µ ·

(
S+

µ ∩ S
−
µ

)
= tλ−µ ·

{
[tµ]
}

=
{

[tλ]
}
.

Assertion (ii) is proved.
Now let ν ∈ Λ such that ν > 0. By Lemma 6, the property

∀σ, τ ∈ Λ, (0 6 τ 6 ν and λ 6 σ 6 λ+ ν) =⇒ (S+
σ+τ ∩ S

−
σ ⊆ Gσ) (8)

holds if λ is enough antidominant. We assume that this is the case and that moreover

Wλ ∩ {σ ∈ Λ | σ 6 λ+ ν} = {λ}.

We now show the equality S+
λ+ν ∩ S

−
λ = S+

λ+ν ∩ Gλ. Let us take x ∈ S+
λ+ν ∩ Gλ. Calling σ

the coweight such that x ∈ S−
σ , we necessarily have λ 6 σ 6 λ + ν. Setting τ = λ + ν − σ,

we have 0 6 τ 6 ν and x ∈ S+
σ+τ ∩ S

−
σ , whence x ∈ Gσ by our assumption (8). This entails

σ ∈ Wλ, then σ = λ, and thus x ∈ S−
λ . This reasoning shows S+

λ+ν ∩ Gλ ⊆ S+
λ+ν ∩ S

−
λ . The

converse inclusion also holds (set τ = ν and σ = λ in (8)). Assertion (iii) is proved. �

Remark. Assertion (ii) of Proposition 5 can also be proved in the following way. Let K be
the maximal compact subgroup of the torus T . The Lie algebra of K is k = i(Λ ⊗Z R). The
affine Grassmannian G is a Kähler manifold and the action of K on G is hamiltonian. Let
µ : G → k∗ be the moment map. Fix a dominant and regular coweight ξ ∈ Λ. Then R×

+

acts on G through the map R×
+ →֒ C× ξ

−→ T . The map 〈µ, iξ〉 from G to R strictly increases
along any non-constant orbit for this R×

+-action. Now take λ ∈ Λ and x ∈ S+
λ ∩ S

−
λ . Then

lima→0 a
ξ · x = lima→∞ aξ · x = [tλ]. Thus 〈µ, iξ〉 cannot increases strictly along the orbit

R×
+ · x. This implies that this orbit is constant; in other words, x = [tλ].

3.3 Mirković-Vilonen cycles

Let λ, ν ∈ Λ. In order that S+
ν ∩Gλ 6= ∅, it is necessary that [tν ] ∈ Gλ

T
, hence that ν−λ ∈ ZΦ∨

and that ν belongs to the convex hull of Wλ in Λ⊗Z R.
Assume that λ is antidominant and denote by L(w0λ) the irreducible rational representa-

tion of G∨ with lowest weight λ. Mirković and Vilonen proved that the intersection S+
ν ∩ Gλ

is of pure dimension ht(ν − λ) and has as much irreducible components as the dimension of
the ν-weight subspace of L(w0λ) (Theorem 3.2 and Corollary 7.4 in [28]). From this result
and from Proposition 5 (iii), one readily deduces the following fact.

Proposition 7 Let λ, ν ∈ Λ with ν > 0. Then the intersection S+
λ+ν ∩ S

−
λ (viewed as a

reduced subscheme of G ) is of pure dimension ht(ν) and has as much irreducible components
as the dimension of the ν-weight subspace of U(n+,∨).

Proof. As an abstract variety, S+
λ+ν ∩ S

−
λ does not depend on λ, because the action of tµ

on G maps S+
λ+ν ∩ S

−
λ onto S+

λ+µ+ν ∩ S
−
λ+µ, for any µ ∈ Λ. We may therefore assume that

λ is enough antidominant so that the conclusion of Proposition 5 (iii) holds and that the
(λ+ ν)-weight space of L(w0λ) has the same dimension as the ν-weight subspace of U(n+,∨).
The proposition follows then from Mirković and Vilonen results. �
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If X is a topological space, we denote the set of irreducible components of X by Irr(X).
For λ, ν ∈ Λ, we set

Z (λ)ν = Irr
(
S+

ν ∩ Gλ

)
.

An element Z in a set Z (λ)ν is called an MV cycle. Such a Z is necessarily a closed,
irreducible and noetherian subset of G . It is also T -invariant, for the action of the connected

group T on S+
ν ∩ Gλ does not permute the irreducible components of this intersection closure.

The coweight ν can be recovered from Z by the rule µ+(Z) = ν; indeed Z is the closure of
an irreducible component Y of S+

ν ∩ Gλ, so that µ+(Z) = µ+(Y ) = ν. The union

Z (λ) =
⊔

ν∈Λ

Z (λ)ν .

is therefore disjoint.
We finally set

Z =
⊔

λ,ν∈Λ
λ>ν

Irr
(
S+

λ ∩ S
−
ν

)
.

Arguing as above, one sees that if Z is an irreducible component of S+
λ ∩ S

−
ν , then λ and ν

are determined by Z through the equations µ+(Z) = λ and µ−(Z) = ν. Using Example 3,
one checks without difficulty that for any irreducible and noetherian subset Z of G ,

Z ∈ Z ⇐⇒ Z is an irreducible component of S+
µ+(Z) ∩ S

−
µ−(Z)

⇐⇒ dimZ = ht(µ+(Z)− µ−(Z)). (9)

A result of Anderson (Proposition 3 in [1]) asserts that for any λ, ν ∈ Λ with λ antidomi-
nant,

Z (λ)ν =
{
Z ∈ Z

∣∣µ+(Z) = ν, µ−(Z) = λ and Z ⊆ Gλ

}
.

This fact implies that if λ 6 µ are two antidominant coweights and if Z ∈ Z (µ), then
tµ−λ · Z ∈ Z (λ). The set Z appears thus as the right way to stabilize the situation, namely

Z =

{

tν · Z

∣∣∣∣∣ ν ∈ Λ, Z ∈
⊔

λ∈Λ++

Z (λ)

}

.

It seems therefore legitimate to call MV cycles the elements of Z .
From now on, our main aim will be to describe MV cycles as precisely as possible. The

easiest case is treated in the following example.

Example 8. This example addresses the case where G has semisimple rank 1. Then there is
just one simple root, say α. Let λ and ν in Λ such that λ > ν; thus λ − ν = nα∨, where
n = 〈α, λ− ν〉/2 is a natural number. We specialize the equality

x−α(−a−1) = xα(−a) aα∨

sα xα(−a)

to the value a = −qtn, where q ∈ O×. Multiplying on the left by tν and noting that
(−q)α∨

sα xα(qtn) ∈ G(O), we get the equality

[
x−α(q−1t−〈α,λ+ν〉/2) tν

]
=
[
xα(qt〈α,λ+ν〉/2) tλ

]
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in G . The element displayed here depends only on the class of q modulo tnO, and the map
q 7→

[
x−α(q−1t−〈α,λ+ν〉/2) tν

]
gives a bijection from

(
O/tnO

)×
=
{
a0 + a1t+ · · ·+ an−1t

n−1
∣∣ (a0, a1, . . . , an−1) ∈ Cn, a0 6= 0

}

onto S+
λ ∩ S

−
ν . This latter is therefore isomorphic to the product C× × Cn−1, hence is irre-

ducible. It follows that the intersection closure S+
λ ∩ S

−
ν is either irreducible (if λ−ν ∈ NΦ∨

+)
or empty (otherwise). In other words, the map Z 7→ (µ+(Z), µ−(Z)) is a bijection from Z

onto
{

(λ, ν)
∣∣ λ− ν ∈ Nα∨

}
.

To deal with the more general case requires an adequate indexation of Z . This will be
done in Section 4 using Kashiwara’s crystal bases.

3.4 Parabolic retractions

In Section (5.3.28) of [3], Beilinson and Drinfeld describe a way to relate G with the affine
Grassmannians of Levi subgroups of G. We rephrase their construction in a slightly less
general context.

Let P be a parabolic subgroup of G which contains T , let M be the Levi factor of P
that contains T , and let P and M be the affine Grassmannians of P and M . The diagram

G ←֓ P ։ M yields similar diagrams G(K ) ←֓ P (K ) ։ M(K ) and G
i
←− P

π
−→ M .

The continuous map i is bijective but is not an homeomorphism in general (P has usually
more connected components than G ). We may however define the (non-continuous) map
rP = π ◦ i−1 from G to M .

To the inclusion M ⊆ G corresponds an embedding M
j
→֒ G . The group P (K ) acts on

M via the projection P (K ) ։ M(K ) and acts on G via the embedding P (K ) →֒ G(K ).
The map rP can then be characterized as the unique P (K )-equivariant section of j.

For instance, when P is the Borel subgroup B±, the Levi factor M is the torus T and
the group P (K ) contains the group U±(K ). The map rB± : G → T , being a U±(K )-
equivariant section of the embedding T →֒ G , sends the whole stratum S±

λ to the point [tλ],
for each λ ∈ Λ.

Remark 9. The map rP can also be understood in terms of a Bia lynicki-Birula decomposition.
Indeed let g, p and t be the Lie algebras of G, P and T . We write g = t ⊕

⊕
α∈Φ gα for the

root decomposition of g and put ΦP = {α ∈ Φ | gα ⊆ p}. Choosing now ξ ∈ Λ such that

∀α ∈ ΦP , 〈α, λ〉 > 0 and ∀α ∈ Φ \ ΦP , 〈α, λ〉 < 0,

one may check that rP (x) = lim a→0
a∈C×

aξ · x for each x ∈ G . This construction justifies the

name of parabolic retraction we give to the map rP .

As noted by Beilinson and Drinfeld (see the proof of Proposition 5.3.29 in [3]), parabolic
retractions enjoy a transitivity property. Namely considering a pair (P,M) inside G as above

and a pair (Q,N) inside M , we get maps G
rP−→ M

rQ
−→ N . The preimage R of Q by the

quotient map P ։M is a parabolic subgroup of G, and N is the Levi factor of R that contains
T . The composition rQ ◦rP is a R(K )-equivariant section of the embedding N →֒ G ; it thus
coincides with rR.

13



We will mainly apply these constructions to the case of standard parabolic subgroups.
Let us fix the relevant terminology. For each subset J ⊆ I, we denote by U±

J the subgroup
of G generated by the images of the morphisms x±αj

for j ∈ J . We denote the subgroup
generated by T ∪ U+

J ∪ U
−
J by MJ and we denote the subgroup generated by B+ ∪MJ by

PJ . Thus MJ is the Levi factor of PJ that contains T . We shorten the notation and denote
the parabolic retraction rPJ

simply by rJ . The Weyl group of MJ can be identified with the
parabolic subgroup WJ of W generated by the simple reflections sj with j ∈ J ; we denote
the longest element of WJ by w0,J .

The Iwasawa decomposition for MJ writes

MJ =
⊔

λ∈Λ

U±
J (K )[tλ].

For λ ∈ Λ, we denote the U±
J (K )-orbit of [tλ] by S±,J

λ .

Lemma 10 For each λ ∈ Λ, S+
λ = (rJ)−1

(
S+,J

λ

)
and w0,JS

+

w−1

0,J
λ

= (rJ)−1
(
S−,J

λ

)
.

Proof. Consider the transitivity property rR = rQ ◦ rP of parabolic retractions written above
for P = PJ , M = MJ and N = T . For the first formula, one chooses moreover Q = TU+

J , so

that R = B+. Recalling the equality (rB+)−1
(
[tλ]
)

= S+
λ and its analogue (rQ)−1

(
[tλ]
)

= S+,J
λ

for MJ , we see that the desired formula simply computes the preimage of [tλ] by the map
rR = rQ ◦ rP .

For the second formula, one chooses Q = TU−
J , whence R = w0,J B

+w0,J
−1. Here we

have
(rR)−1

([
tλ
])

= w0,J (rB+)−1
([
tw

−1

0,J
λ]) = w0,J S

+

w−1

0,J
λ

and (rQ)−1
(
[tλ]
)

= S−,J
λ . Again the desired formula simply computes the preimage of [tλ] by

the map rR = rQ ◦ rP . �

To conclude this section, we note that for any K -point h of the unipotent radical of PJ ,
any g ∈ PJ (K ) and any x ∈ G ,

rJ(gh · x) = (ghg−1) · rJ(gx) = rJ(gx), (10)

because ghg−1 is a K -point of the unipotent radical of PJ and thus acts trivially on MJ .

4 Crystal structure and string parametrizations

For each dominant coweight λ, the set Z (λ) yields a basis of the rational G∨-module L(λ).
One may therefore expect that Z (λ) can be turned in a natural way into a crystal isomorphic
to B(λ), an idea made precise by Braverman and Gaitsgory in [9]. Later in [8], these two
authors and Finkelberg extended this result by endowing Z with the structure of a crystal

isomorphic to B̃(−∞). We recall this crucial result in Section 4.1; along the way, we char-
acterize the crystal operations on Z in a suitable way for comparisons (Proposition 12) and
translate their definition in more algebraic terms (Proposition 14).

The central result of Section 4 is Theorem 16 (in Section 4.2). Given an element b ∈

B(−∞), this theorem describes the MV cycle Ξ(t0 ⊗ b) that corresponds to t0 ⊗ b ∈ B̃(−∞)
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almost as concretely as Example 8 describes MV cycles in the case of semisimple rank 1;
indeed the MV cycle Ξ(t0 ⊗ b) is given as the closure of an explicit subset Ỹi,c, where c is
the string parameter in direction i of b. This description implies that MV cycles are rational
varieties.

In the course of his work on MV polytopes [14, 15], Kamnitzer was lead to a similar
construction of Ξ(t0⊗b), this time from the Lusztig parameter of b. In Section 4.3, we explain
how Kamnitzer’s result can be used to give another proof of our Theorem 16. In Section 4.4,
we investigate further the subsets Ỹi,c when the tuple of integers c is not assumed to belong to
the string cone Ci. Our study here relies on Berenstein and Zelevinsky’s characterization of Ci
in terms of i-trails [6]. Finally Section 4.5 presents an application of Theorem 16: we explain
how the algebraic-geometric parametrization of B(−∞) devised by Lusztig [26] is related to
MV cycles.

4.1 Braverman, Finkelberg and Gaitsgory’s crystal structure

In Section 13 of [8], Braverman, Finkelberg and Gaitsgory endow Z with the structure of
a crystal with an involution ∗. The main step of their construction is an analysis of the
behaviour of MV cycles with respect to the standard parabolic retractions. For a subset
J ⊆ I, we denote the analogues of the maps µ± for the affine Grassmannian MJ by µJ

±.
The following theorem is due to Braverman, Finkelberg and Gaitsgory; we nevertheless recall
quickly its proof since we ground the proof of the forthcoming Propositions 12 and 14 on it.

Theorem 11 Let J be a subset of I and let Z ∈ Z be an MV cycle. Set

ZJ = rJ
(
Z ∩ S−

ν

)
∩ S+,J

λ ∩ S−,J
ρ and ZJ = Z ∩ (rJ)−1([tρ]) ∩ S−

ν ,

where λ = µ+(Z), ν = µ−(Z) and ρ = w0,J µ+(w0,J
−1Z). Then the map Z 7→ (ZJ , Z

J) is a
bijection from Z onto the set of all pairs (Z ′, Z ′′), where Z ′ is an MV cycle in MJ and Z ′′

is an MV cycle in G which satisfy

µJ
−(Z ′) = µ+(Z ′′) = w0,J µ+(w0,J

−1Z ′′). (11)

Under this correspondence, one has

µ+(Z) = µJ
+(ZJ),

µ−(Z) = µ−(ZJ),

w0,J µ+(w0,J
−1Z) = µJ

−(ZJ) = µ+(ZJ) = w0,J µ+(w0,J
−1ZJ).

Proof. Let us consider two coweights ν, ρ ∈ Λ, unrelated to the MV cycle Z for the moment.
The group H = U−

J (K ) acts on G , leaving S−
ν stable. On the other hand, S−,J

ρ is the H-orbit

of [tρ]; we denote by K the stabilizer of [tρ] in H, so that S−,J
ρ
∼= H/K. Since the map rJ is

H-equivariant, the action of H leaves stable the intersection S−
ν ∩ (rJ)−1(S−,J

ρ ), the action of
K leaves stable the intersection F = S−

ν ∩ (rJ)−1([tρ]), and we have a commutative diagram

F
� � // H ×K F

��

≃
// S−

ν ∩ (rJ )−1(S−,J
ρ )

rJ

��

H/K
≃

// S−,J
ρ .
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In this diagram, the two leftmost arrows define a fiber bundle.
By Lemma 10, F ⊆ S+

ρ ∩S
−
ν ; therefore the dimension of F is at most ht(ρ−ν). The group

K is connected — indeed K = U−
J (K ) ∩ tρG(O)t−ρ, so it leaves invariant each irreducible

component of F . We thus have a canonical bijection C 7→ C̃ = H ×K C from Irr(F ) onto
Irr(H ×K F ). If moreover X is a subspace of H/K = S−,J

ρ , then the assignment (C,D) 7→
C̃ ∩ (rJ)−1(D) is a bijection from Irr(F ) × Irr(X) onto Irr(S−

ν ∩ (rJ)−1(X)). We will apply
this fact to X = S−,J

ρ ∩ S+,J
λ , where λ ∈ Λ. In this case, each D ∈ Irr(X) has dimension

ht(λ− ρ), so the dimension of C̃ ∩ (rJ)−1(D) is dimC + ht(λ− ρ) 6 ht(λ− ν).
Now let Z be an MV cycle and set λ = µ+(Z), ν = µ−(Z) and ρ = w0,J µ+(w0,J

−1Z) in
the previous setting. By Proposition 2 and Lemma 10,

Z ∩ S−
ν , Z ∩ S+

λ = Z ∩ (rJ )−1
(
S+,J

λ

)
and w0,J

(
w0,J

−1Z ∩ S+

w−1

0,J
ρ

)
= Z ∩ (rJ )−1

(
S−,J

ρ

)

are open and dense subsets in Z. Thus Ż = Z ∩ S−
ν ∩ (rJ)−1

(
S+,J

λ ∩ S−,J
ρ

)
is a closed

irreducible subset of S−
ν ∩ (rJ)−1

(
S+,J

λ ∩S−,J
ρ

)
of dimension dimZ = ht(λ−ν). It is therefore

an irreducible component C̃ ∩ (rJ )−1(D), with moreover dimC = ht(ρ− ν).
One observes then that:

• C̃ ∩ (rJ)−1
(
D∩S−,J

ρ

)
= Z∩S−

ν ∩ (rJ)−1(S−,J
ρ ), because both sides are equal to the closure

of Ż in S−
ν ∩ (rJ )−1(S−,J

ρ ); therefore C = Z ∩ (rJ )−1([tρ]) ∩ S−
ν .

• D = rJ(Ż) = rJ
(
Z ∩ S−

ν

)
∩ S+,J

λ ∩ S−,J
ρ .

• C ⊆ F = S−
ν ∩ S

+
ρ ∩ w0,J S

+

w−1

0,J
ρ
, so µ−(C) = ν and µ+(C) = w0,J µ+(w0,J

−1C) = ρ;

Equivalence (9) implies then that C is an MV cycle.

• D is an MV cycle in MJ with µJ
+(D) = λ and µJ

−(D) = ρ.

Thus ZJ = D and ZJ = C satisfy the conditions stated in the proposition.
Conversely, given Z ′ and Z ′′ as in the statement of the proposition, we set λ = µJ

+(Z ′),

ν = µ−(Z ′′), ρ = µJ
−(Z ′), C = Z ′′∩F , D = Z ′∩S−,J

ρ ∩S+,J
λ and Ż = C̃ ∩ (rJ)−1(D). Then C

is an open and dense subset in Z ′′; it is therefore irreducible with the same dimension as Z ′′,
namely ht(ρ − ν). Since it is a closed subset of F , C is an irreducible component of F . On
the other hand, D is an irreducible component of S−,J

ρ ∩S+,J
λ . The first part of the reasoning

above implies thus that Ż is irreducible of dimension dimC + ht(λ − ρ) = ht(λ − ν). Since

µ+(Ż) = λ and µ−(Ż) = ν, it follows from Equivalence (9) that Z = Ż is an MV cycle.
It is then routine to check that the two maps Z 7→ (ZJ , Z

J) and (Z ′, Z ′′) 7→ Z are mutually
converse bijections. �

We are now ready to define Braverman, Finkelberg and Gaitsgory’s crystal structure on
Z . Let Z be an MV cycle. We set

wt(Z) = µ+(Z).

Given i ∈ I, we apply Theorem 11 to Z and J = {i}. We set ρ = si µ+(si
−1Z) and get a

decomposition (Z{i}, Z
{i}) of Z. Then we set

εi(Z) =

〈
αi,
−µ+(Z)− ρ

2

〉
and ϕi(Z) =

〈
αi,

µ+(Z)− ρ

2

〉
. (12)
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Since µ+(Z)−ρ = µ
{i}
+ (Z{i})−µ

{i}
− (Z{i}) belongs to Nα∨

i , the definition for ϕi(Z) is equivalent
to the equation

µ+(Z)− ρ = ϕi(Z)α∨
i . (13)

The MV cycles ẽiZ and f̃iZ are defined by the following requirements:

µ+(ẽiZ) = µ+(Z) + α∨
i , µ+(f̃iZ) = µ+(Z)− α∨

i , and (ẽiZ){i} = (f̃iZ){i} = Z{i};

if µ+(Z) = ρ, that is, if ϕi(Z) = 0, then we set f̃iZ = 0.
These conditions do define the MV cycles ẽiZ and f̃iZ. Indeed they prescribe the com-

ponents (ẽiZ){i} and (f̃iZ){i} and require

µ
{i}
+

(
(ẽiZ){i}

)
= µ+(ẽiZ) = µ+(Z) + α∨

i = µ
{i}
+ (Z{i}) + α∨

i

µ
{i}
−

(
(ẽiZ){i}

)
= µ+

(
(ẽiZ){i}

)
= µ+(Z{i}) = µ

{i}
− (Z{i})

and

µ
{i}
+

(
(f̃iZ){i}

)
= µ+(f̃iZ) = µ+(Z)− α∨

i = µ
{i}
+ (Z{i})− α∨

i

µ
{i}
−

(
(f̃iZ){i}

)
= µ+

(
(f̃iZ){i}

)
= µ+(Z{i}) = µ

{i}
− (Z{i}).

These latter equations fully determine the components (ẽiZ){i} and (f̃iZ){i} because M{i}

has semisimple rank 1 (see Example 8).
One checks without difficulty that Z , endowed with these applications wt, εi, ϕi, ẽi

and f̃i, satisfies Kashiwara’s axioms of a crystal. On the other hand, let g 7→ gt be the
antiautomorphism of G that fixes T pointwise and that maps x±α(a) to x∓α(a) for all simple
root α and all a ∈ C. Then the involutive automorphism g 7→ (gt)−1 of G extends to G(K )
and induces an involution on G , which we denote by x 7→ x∗. The image of an MV cycle
Z under this involution is an MV cycle Z∗. The properties of this involution Z 7→ Z∗ with
respect to the crystal operations allow Braverman, Finkelberg and Gaitsgory [8] to establish

the existence of an isomorphism of crystals Ξ : B̃(−∞)
≃
−→ Z . This isomorphism is unique

and is compatible with the involutions ∗ on B̃(−∞) and Z . One checks that

Ξ(tλ ⊗ 1) =
{

[tλ]
}
, µ−

(
Ξ(tλ ⊗ b)

)
= λ, (14)

Ξ(tλ ⊗ b) = tλ · Ξ(t0 ⊗ b), dim Ξ(tλ ⊗ b) = ht(wt(b)),

for all λ ∈ Λ and b ∈ B(−∞).
The following proposition gives a useful criterion which says when two MV cycles are

related by an operator ẽi.

Proposition 12 Let Z and Z ′ be two MV cycles in G and let i ∈ I. Then Z ′ = ẽiZ if and
only if the four following conditions hold:

µ−(Z ′) = µ−(Z),

si µ+(si
−1Z ′) = si µ+(si

−1Z),

µ+(Z ′) = µ+(Z) + α∨
i ,

Z ′ ⊇ Z.
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Proof. We first prove that the conditions in the statement of the proposition are sufficient
to ensure that Z ′ = ẽiZ. We therefore assume that the two MV cycles Z and Z ′ enjoy the
conditions above and we set

ρ = si µ+(si
−1Z) = si µ+(si

−1Z ′),

ν = µ−(Z) = µ−(Z ′),

F = S−
ν ∩ (r{i})−1([tρ]).

The proof of Theorem 11 tells us that

C = Z ∩ (r{i})−1([tρ]) ∩ S−
ν and C ′ = Z ′ ∩ (r{i})−1([tρ]) ∩ S−

ν

are two irreducible components of F . The condition Z ′ ⊇ Z entails then C ′ ⊇ C, and thus
C ′ = C. It follows that

Z{i} = C = C ′ = Z ′{i}.

This being known, the assumption µ+(Z ′) = µ+(Z) + α∨
i implies Z ′ = ẽiZ.

Conversely, assume that Z ′ = ẽiZ. Routine arguments show then that the three first
conditions in the statement of the proposition hold. Setting ρ, ν, F , C and C ′ as in the proof
of the sufficiency condition, we get

C = C ∩ F = Z{i} ∩ F = Z ′{i} ∩ F = C ′ ∩ F = C ′.

On the other hand,

Z{i} = S
−,{i}
ρ ∩ S

+,{i}
µ+(Z) ⊆ S

−,{i}
ρ ∩ S

+,{i}
µ+(Z′) = Z ′

{i}.

Adopting the notation C̃ from the proof of Theorem 11, we deduce that

Z ∩ S−
ν ∩ (r{i})−1(S−,{i}

ρ ) = C̃ ∩ (r{i})−1(Z{i} ∩ S
−,{i}
ρ )

contains
Z ′ ∩ S−

ν ∩ (r{i})−1(S−,{i}
ρ ) = C̃ ∩ (r{i})−1(Z ′

{i} ∩ S
−,{i}
ρ ).

The closure Z of the first set is thus contained in the closure Z ′ of the second set. �

For each dominant coweight λ ∈ Λ++, the two sets B(λ) and Z (λ) have the same car-
dinality; indeed they both index bases of two isomorphic vector spaces, namely the rational
irreducible G∨-module with highest weight λ and the intersection cohomology of Gλ, respec-
tively. More is true: in [9], Braverman and Gaitsgory endow Z (λ) with the structure of a

crystal and show the existence of an isomorphism of crystals Ξ(λ) : B(λ)
≃
−→ Z (λ) (see [9],

p. 569).

Proposition 13 The following diagram commutes:

B(λ)
_�

ιw0λ

��

Ξ(λ)
// Z (λ)

_�

��

Tw0λ ⊗B(−∞)
Ξ

// Z .
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Proof. Let Z,Z ′ ∈ Z (λ) and assume that Z ′ is the image of Z by the crystal operator defined
in Section 3.3 of [9]. The definition of this operator is so similar to the definition of our (in
fact, Braverman, Finkelberg and Gaitsgory’s) crystal operator ẽi that a slight modification of
the proof of Proposition 12 yields

µ−(Z ′) = µ−(Z),

si µ+(si
−1Z ′) = si µ+(si

−1Z),

µ+(Z ′) = µ+(Z) + α∨
i ,

Z ′ ⊇ Z.

By Proposition 12, this implies that Z ′ is the image of Z by our crystal operator ẽi. In other
words, the inclusion Z (λ) →֒ Z is an embedding of crystals when Z (λ) is endowed with the
crystal structure from [9].

Thus both maps Ξ◦ιw0λ and Ξ(λ) are crystal embeddings of B(λ) into Z . Also both maps
send the lowest weight element blow of B(λ) onto the MV cycle

{
[tw0λ]

}
. The proposition

follows then from the fact that each element of B(λ) can be obtained by applying a sequence
of crystal operators to blow. �

Remark. One can establish the equality Ξ ◦ ι(B(λ)) = Z (λ) without using Braverman and
Gaitsgory’s isomorphism Ξ(λ) by the following direct argument. Let Z ∈ Z (λ). Certainly
µ−(Z) = w0λ, so by Equation (14), Ξ−1(Z) may be written tw0λ ⊗ b with b ∈ B(−∞). Take

i ∈ I and set ρ = si µ−(si
−1Z). Then si

−1Z meets S−

s−1
i ρ

, and thus
[
ts

−1
i

ρ
]

belongs to si
−1Z,

for si
−1Z is closed and T -stable. From the inclusion Z ⊆ Gλ, we then deduce that [tρ] ∈ Gλ.

Using Equation (6) and the description (Gµ)T =
{

[twµ] | w ∈W
}

, this yields

ρ ∈
{
wµ

∣∣ w ∈W, µ ∈ Λ++ such that λ > µ
}
.

On the other side,

ρ− w0λ = si µ−
(
si

−1Z
)
− µ−(Z) = µ+(Z∗)− si µ+

(
si

−1Z∗
)

= ϕi(Z
∗)α∨

i .

These two facts together entail ϕi(Z
∗) 6 〈αi,−w0λ〉. Since

ϕi(Z
∗) = ϕi(Ξ

−1(Z∗)) = ϕi(Ξ
−1(Z)∗) = ϕi((tw0λ ⊗ b)

∗) = ϕi(t−w0λ−wt(b) ⊗ b
∗) = ϕi(b

∗),

we obtain ϕi(b
∗) 6 〈αi,−w0λ〉. This inequality holds for each i ∈ I, therefore the ele-

ment tw0λ ⊗ b belongs to ιw0λ(B(λ)). We have thus established the inclusion Ξ−1(Z (λ)) ⊆
ιw0λ(B(λ)). Since B(λ) and Z (λ) have the same cardinality, this inclusion is an equality.

We end this section with a proposition that translates Braverman, Finkelberg and Gaits-
gory’s geometrical definition for the crystal operation ẽi into a more algebraic language. For
each positive integer k, we consider the subset

C[t−1]◦k =
{
a−kt

−k + · · ·+ a−1t
−1 | (a−k, . . . , a−1) ∈ Ck, a−k 6= 0

}

of K . For k = 0, we set C[t−1]◦k = {0}.
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Proposition 14 Let Z be an MV cycle, let i ∈ I, and let k ∈ N. Then ẽki (Z) is the closure
of the set {

yi

(
ptεi(Z)

)
z
∣∣ p ∈ t−k

O and z ∈ Z
}
.

Moreover the morphism
(p, z) 7→ yi

(
ptεi(Z)

)
z

from C[t−1]◦k × Z to ẽki (Z) is birational.

Proof. We adopt the notation used in the proof of Theorem 11, with here J = {i}. We

set λ = µ+(Z), ν = µ−(Z), ρ = siµ+(si
−1Z), Ż = Z ∩ S+

λ ∩ S
−
ν ∩

(
si S

+
s−1
i ρ

)
. There is

an irreducible component C of F = S−
ν ∩ (r{i})−1([tρ]) and an irreducible component D of

S
−,{i}
ρ ∩ S

+,{i}
λ such that Ż = C̃ ∩ (r{i})−1(D).

Example 8 and Formula (12) imply that

D = S−,{i}
ρ ∩ S

+,{i}
λ =

{
yi(q

−1tεi(Z))[tρ]
∣∣ q ∈ O

×
}
.

We set
Dk = S−,{i}

ρ ∩ S
+,{i}
λ+kα∨

i
=
{
yi(q

−1t−k+εi(Z))[tρ]
∣∣ q ∈ O

×
}
.

By Theorem 11, the closure Zk of Żk = C̃ ∩ (r{i})−1(Dk) is an MV cycle; by definition of the

crystal operations, Zk = ẽki (Z).
Assume for simplicity that k > 0 (the case k = 0 is similar but has a small notational

complication). Then

Dk =
{
yi(pt

εi(Z))x
∣∣ p ∈ t−k

O
× and x ∈ D

}

=
{
yi(pt

εi(Z)) r+,{i}(z)
∣∣ p ∈ t−k

O
× and z ∈ Ż

}
.

Moreover the map (p, x) 7→ yi(pt
εi(Z))x from C[t−1]◦k ×D to Dk is dominant and injective.

Now consider the map

f : t−k
O × Z → G , (p, z) 7→ yi(pt

εi(Z)) z.

Since C̃ is stable under the action of the group yi(K ), the P{i}-equivariance of r{i} imply

that Żk = f(t−kO×× Ż) and that f induces a bijection from C[t−1]◦k × Ż onto a dense subset
of Żk. We conclude that Zk is the closure of f(t−kO × Z) and that f defines a birational
morphism from C[t−1]◦k × Z to Zk. �

Remark 15. Let Z be an MV cycle and i ∈ I. The particular case k = 0 of Proposition 14
implies that Z is stable under the action of yi

(
ptεi(Z)

)
for any p ∈ O. It follows that for each

integer c ∈ Z, the closure of

{
yi(p) z

∣∣ z ∈ Z and p ∈ K such that val(p) = c
}

is ẽ
εi(Z)−c
i (Z) if c 6 εi(Z) and is Z otherwise. In any case, it is an MV cycle.
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4.2 Description of an MV cycle from the string parameter

We first recall the definition of the string parameter of an element in B(−∞). To each
sequence i = (i1, . . . , il) of elements of I, we associate an injective map Ψi from B(−∞) to
Nl ×B(−∞) by the following recursive definition:

• Ψ() : B(−∞)→ B(−∞) is the identity map.

• If l > 1 and b ∈ B(−∞), then Ψi(b) =
(
c1,Ψj(f̃

c1
i1
b)
)
, where c1 = ϕi1(b) and j = (i2, . . . , il).

To the sequence i, one also associates recursively an element wi ∈W by asking that wi is the
longest of the two elements wj and si1wj, where j = (i2, . . . , il) as above. Finally, one defines
the subset

B(−∞)i =
{
b ∈ B(−∞)

∣∣ ∃(k1, . . . , kl) ∈ Nl, b = ẽk1

i1
· · · ẽkl

il
1
}
.

From Kashiwara’s work on Demazure modules [18] (see also Section 12.4 in [19]), one deduces
that:

• B(−∞)i depends only on wi and not on i.

• If i is a reduced decomposition of the longest element w0 of W , then B(−∞)i = B(−∞).

• B(−∞)i is the set of all b ∈ B(−∞) such that Ψi(b) has the form
(
ci(b), 1

)
for a certain

ci(b) ∈ Nl.

The map ci : B(−∞)i → Nl implicitly defined in the third item above is called the string
parametrization in the direction i. Its image is called the string cone and is denoted by Ci.

Given a sequence i = (i1, . . . , il) of elements of I and a sequence p = (p1, . . . , pl) of
elements of K , we form the element

yi(p) = yi1(p1) · · · yil(pl).

Given the sequence i as above and a sequence c = (c1, . . . , cl) of integers, we set

Ỹi,c =
{

[yi(p)]
∣∣ p ∈ (K ×)l such that val(pj) = c̃j

}
,

where c̃j = −cj −
∑l

k=j+1 ck〈αij , α
∨
ik
〉.

Theorem 16 Let i ∈ I l and b ∈ B(−∞)i; set c = ci(b). Then the MV cycle Ξ(t0 ⊗ b) is the
closure of Ỹi,c.

Proof. We use induction on the length l of the finite sequence i. The assertion certainly holds
when l = 0, for in this case b = 1, c = (), and thus both Ỹi,c and Ξ(t0 ⊗ b) are the one-point
set
{

[t0]
}

.

Now let i ∈ I l and b ∈ B(−∞)i. Set ci(b) = (c1, . . . , cl), j = (i2, . . . , il) and b′ = f̃ c1
i1
b.

Then b′ belongs to B(−∞)j and cj(b
′) is the sequence d = (c2, . . . , cl). By induction, we may

take for granted that

Ξ(t0 ⊗ b
′) = Ỹj,d.

Since Ξ is an isomorphism of crystal, we deduce

Ξ(t0 ⊗ b) = Ξ(t0 ⊗ ẽ
c1
i1
b′) = Ξ

(
ẽc1i1 (t0 ⊗ b

′)
)

= ẽc1i1

(
Ỹj,d

)
.
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On the other hand, we turn the equality ϕi1(b′) = 0 to advantage by computing

εi1

(
Ỹj,d

)
= εi1(t0 ⊗ b

′) = εi1(b′) = −〈αi1 ,wt(b′)〉 = −

l∑

k=2

ck〈αi1 , α
∨
ik
〉 = c1 + c̃1.

Proposition 14 then says that ẽc1i1

(
Ỹj,d

)
= Ỹi,c, which concludes the proof. �

Remark 17. The last assertion of Proposition 14 implies the following more precise statement.

Let i ∈ I l and b ∈ B(−∞)i. Write ci(b) = (c1, . . . , cl) and set ej =
∑l

k=j+1 ck〈αij , α
∨
ik
〉. Then

the map
(p1, . . . , pl) 7→

[
yi1(p1t

−e1) · · · yil(plt
−el)

]

induces a birational morphism from C[t−1]◦c1 × · · · ×C[t−1]◦cl
to the MV cycle Ξ(t0 ⊗ b).

This shows that MV cycles are rational varieties, a fact however already known from
Gaussent and Littelmann’s work (see for instance Theorem 4 in [12]).

4.3 Link with Kamnitzer’s construction

As we have seen in Section 4.2, the choice of a reduced decomposition i of w0 determines a
bijection ci : B(−∞) → Ci, called the “string parametrization”. The decomposition i also
determines a bijection bi : NN → B(−∞), called the “Lusztig parametrization”, which reflects
Lusztig’s original construction [24] of the canonical basis on a combinatorial level. We refer
the reader to [25], [30] and Section 3.1 in [6] for additional information on the map bi and its
construction.

Let b ∈ B(−∞) and let i be a reduced decomposition of w0. Theorem 16 explains how
to construct a dense subset in the MV cycle Ξ(t0 ⊗ b) when one knows the string parameter
ci(b). In his work on MV polytopes, Kamnitzer [14] presents a similar result, which provides
a dense subset of Ξ(t0 ⊗ b) from the datum of the Lusztig parameter b−1

i (b). Our aim in this
section is to compare Kamnitzer’s result with Theorem 16.

Our main tool here is Berenstein, Fomin and Zelevinsky’s work. In a series of papers
(among which [4, 5, 6]), these three authors devise an elegant method that yields all transitions
maps between the different parametrizations of B(−∞) we have met, namely the maps

b−1
j ◦ bi : NN → NN , cj ◦ bi : NN → Cj, b−1

j ◦ c
−1
i : Ci → NN , cj ◦ c

−1
i : Ci → Cj,

where i and j are two reduced decomposition of w0. In recalling their results hereafter, we
will slightly modify their notation; our modifications simplify the presentation, at the price
of the loss of positivity results.

We first alter the string parameter ci by defining a map c̃i from B(−∞) to ZN as follows:
an element b ∈ B(−∞) with string parameter ci(b) = (c1, . . . , cN ) in direction i is sent to the
N -tuple (c̃1, . . . , c̃N ), where c̃j = −cj−

∑N
k=j+1 ck〈αij , α

∨
ik
〉. We denote the image of this map

c̃i by C̃i.
Let i = (i1, . . . , il) be a sequence of elements of I and let a = (a1, . . . , al) be a sequence

of elements of C×. Assuming that the product si1 · · · sil is a reduced decomposition of an
element w ∈ W , Theorem 1.2 in [5] implies the existence of an element zi(a) in U− whose
image in B+\G is the same as yi(a)w−1; this theorem also implies that if i is a reduced
decomposition of w0, then the map zi is a birational morphism from (C×)N to U−. Now
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under the same assumption, the map yi is also a birational morphism from (C×)N to U−. If
i and j are both reduced decompositions of w0, we therefore get birational applications

z−1
j ◦ zi, y−1

j ◦ zi, z−1
j ◦ yi and y−1

j ◦ yi (15)

from CN to itself. After extension of the base field, we may view them as birational applica-
tions from K N to itself.

We need now to define the process of tropicalization. Here we go off Berenstein, Fomin
and Zelevinsky’s purely algebraic way based on total positivity and semifields and follow a
more pedestrian path.

Let k and l be two positive integers and let f : K k → K l be a rational map, represented
as a sequence (f1, . . . , fl) of rational functions in k indeterminates. These indeterminates
are collectively denoted as a sequence p = (p1, . . . , pk). We suppose that no component fj

vanishes identically. Now choose j ∈ {1, . . . , l} and m = (m1, . . . ,mk) ∈ Zk. There exists a
non-empty (Zariski) open subset Ω ⊆ (C×)k such that the valuation of fj(a1t

m1 , . . . , akt
mk)

is a constant f̂j, independent on the point a = (a1, . . . , ak) in Ω. (It is here implicitely
understood that if a ∈ Ω, then neither the numerator nor the denominator of the rational
function fj vanishes after substitution.) The term of lowest degree in fj(a1t

m1 , . . . , akt
mk)

may then be written f̄j(a)tf̂j , where f̄j is a rational function with complex coefficients in the

indeterminates a1, . . . , ak. Of course, f̂j and f̄j depend on the choice of m ∈ Zk, but the
open subset Ω may be chosen to meet the demand simultaneously for all m. Indeed, as we
make the substitution pi = ait

mi , each monomial in the indeterminates p1, . . . , pk in the
numerator or the denominator of fj becomes a non-zero element of K . To find the term

f̄j(a)tf̂j of lowest degree in fj(a1t
m1 , . . . , akt

mk), we collect the monomials in the numerator
of fj that get minimal valuation, and likewise in the denominator. The rôle of the condition
a ∈ Ω is to ensure that no accidental cancellation occurs when we make the sum of these
monomials, in the numerator as well as in the denominator. Since there are only finitely
many monomials, there are only finitely many possibilities for accidental cancellations, hence
finitely many conditions on a to be prescribed by Ω. Moreover monomials in the numerator
or the denominator of fj are selected or discarded according to their valuation, and we can
divide Rk into a finite number of regions, say Rk = D(1)⊔· · ·⊔D(t), so that the set of selected
monomials depends only on the domain D(r) to which m belongs. Since the valuation of each
monomial depends affinely on m, the regions D(1), . . . , D(t) are indeed intersections of affine
hyperplanes and open affine half-spaces, hence are locally closed, convex and polyhedral.
For the same reason, f̂j depends affinely on m in each region D(r); for its part, f̄j remains
constant when m varies inside a region D(r). Finally we note that the choice of the domain
Ω ⊆ (C×)k, the decomposition Rk = D(1) ⊔ · · · ⊔D(t) and the reduction fj 7→ (f̂j , f̄j) may be
carried out for all j ∈ {1, . . . , l} at the same time. In particular each m ∈ Zk yields a tuple
f̂ = (f̂1, . . . , f̂l) of integers and a rational map f̄ = (f̄1, . . . , f̄l) from Ck to Cl. We summarize
these observations in a formalized statement:

Let f : K k → K l be a rational map, without identically vanishing component. Then there
exists a partition Rk = D(1) ⊔ · · · ⊔D(t) of Rk into a finite number of locally closed polyhedral
convex subsets, there exist affine maps f̂ (1), . . . , f̂ (t) : Rk → Rl, there exist rational maps
f̄ (1), . . . , f̄ (t) : Ck → Cl, and there exists an open subset Ω ⊆ (C×)k with the following property:
for each r ∈ {1, . . . , t}, each lattice point m in D(r)∩Zk, each point a ∈ Ω, and each sequence
p ∈ (K ×)k such that the lower degree term of pi is ait

mi , the map f has a well-defined value
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in (K ×)l at p, the map f̄ (r) has a well-defined value in (C×)l at a, and the term of lower

degree of fj(p) has valuation f̂
(r)
j (m) and coefficient f̄

(r)
j (a).

We define the tropicalization of f as the map f trop : Rk → Rl whose restriction to each
D(r) coincides with the restriction of the corresponding f̂ (r); this is a continuous piecewise
affine map. If the rational map f we started with has complex coefficients (that is, if it comes
from a rational map from Ck to Cl by extension of the base field), then the convex subsets
D(r) are cones and the affine maps f (r) are linear.

With this notation and this terminology, Theorems 5.2 and 5.7 in [6] implies that the
maps

b−1
j
◦ bi : NN → NN , c̃j ◦ bi : NN → C̃j, b−1

j
◦ c̃−1

i
: C̃i → NN , c̃j ◦ c̃

−1
i

: C̃i → C̃j

are restrictions of the tropicalizations of the maps in (15).
One may here observe a hidden symmetry. Using the equality w0

2 = (−1)2ρ∨ , where
2ρ∨ is the sum of all positive coroots in Φ∨

+, one checks that the birational maps y−1
j ◦ zi

and z−1
j ◦ yi are equal. These maps have therefore the same tropicalization. In other words,

c̃j ◦ bi and b−1
j
◦ c̃−1

i
are given by the same piecewise affine formulas. The sentence following

Theorem 3.8 in [6] seems to indicate that this fact has escaped observation up to now.
In [14], Kamnitzer introduces subsets Ai(n•) in G , where i is a reduced decomposition of

w0 and n• ∈ NN . Combining Theorem 4.7 in [15] with the proof of Theorem 3.1 in [14], one
can see that Ξ(t0 ⊗ bi(n•)) is the closure of Ai(n•). On the other hand, Theorem 4.5 in [14]
says that

Ai(n•) =
{

[zi(q)]
∣∣ q = (q1, . . . , qN ) ∈ (K ×)N such that val(qj) = nj

}
.

Now fix b ∈ B(−∞) and a reduced decomposition i of w0. Call c̃ = (c̃1, . . . , c̃N ) the
modified string parameter c̃i(b) of b in direction i and call n• = (n1, . . . , nN ) the Lusztig
parameter b−1

i
(b) of b w.r.t. i. The rational maps f = z−1

i
◦ yi and g = y−1

i
◦ zi are mutually

inverse birational maps from K N to itself, and by Berenstein and Zelevinsky’s theorem,

f trop(c̃) = n• and gtrop(n•) = c̃.

The analysis that we made to define the tropicalization of f and g shows the existence of
open subsets Ω and Ω′ of (C×)N and of rational maps f̄ and ḡ from CN to itself such that:

• For each a ∈ Ω and b ∈ Ω′, f̄(a) and ḡ(b) have well-defined values in (C×)N .

• For any N -tuple p of Laurent series whose terms of lower degree are a1t
c̃1, . . . , aN t

c̃N with
(a1, . . . , aN ) ∈ Ω, the evaluation f(p) is a well-defined element q of (K ×)N ; moreover the
lower degree terms of the components of q are f̄1(a)tn1 , . . . , f̄N(a)tnN .

• For any N -tuple q of Laurent series whose terms of lower degree are b1t
n1, . . . , bN t

nN with
(b1, . . . , bN ) ∈ Ω′, the evaluation g(q) is a well-defined element p of (K ×)N ; moreover the
lower degree terms of the components of p are ḡ1(b)tc̃1 , . . . , ḡN (b)tc̃N .

Because f and g are mutually inverse birational maps, so are f̄ and ḡ. One can then assume
that these two latter maps are mutually inverse isomorphisms between Ω and Ω′, by shrinking
these open subsets if necessary. Thus f and g set up a bijective correspondence between

Ω̂ =

{
p ∈ (K ×)N

∣∣∣∣∣
each pj has lower degree term

ajt
c̃j with (a1, . . . , aN ) ∈ Ω

}
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and

Ω̂′ =

{

q ∈ (K ×)N

∣∣∣∣∣
each qj has lower degree term

bjt
nj with (b1, . . . , bN ) ∈ Ω′

}

.

In other words, to each p ∈ Ω̂ corresponds a q ∈ Ω̂′ such that yi(p) = zi(q), and conversely.
This shows the equality

{
[yi(p)]

∣∣ p ∈ Ω̂
}

=
{

[zi(q)]
∣∣ q ∈ Ω̂′

}
.

By Kamnitzer’s theorem, the right-hand side is dense in Ai(n•) hence in Ξ(t0 ⊗ b). We thus
get another proof of our Theorem 16, which claims that Ξ(t0⊗b) is the closure of the left-hand
side.

Remark. We fix a reduced decomposition i of w0. Each MV cycle Z such that µ−(Z) = 0
is the closure of a set Ỹi,c for a certain c ∈ Ci; indeed there exists b ∈ B(−∞) such that
Z = Ξ(t0 ⊗ b), and one takes then c = ci(b). It follows that S−

0 is contained in the union
⋃

c∈Ci
Ỹi,c. On the other side, each Ỹi,c is contained in S−

0 . One could then hope that S−
0 is

the disjoint union of the Ỹi,c for c ∈ Ci, because the analogous property S−
0 =

⊔
n•∈NN Ai(n•)

for the subsets considered by Kamnitzer holds (see Proposition 4.1 in [14]).
This is alas not the case in general, as the following counter-example shows. We take

G = SL4 with its usual pinning and enumerate the simple roots in the usual way (α1, α2, α3).
We choose the reduced decomposition i = (2, 1, 3, 2, 1, 3) and consider

g = y2(−1) y1(1/t) y3(1/t) y2(t) y1(−1/t) y3(−1/t) =





1 0 0 0
0 1 0 0
−1 t− 1 1 0
−1/t 1 0 1



 .

If one tries to factorize an element in gG(O) ∩ U−(K ) as a product

y2(p1) y1(p2) y3(p3) y2(p4) y1(p5) y3(p6)

using Berenstein, Fomin and Zelevinsky’s method [4], and if after that one adjusts c =
(c1, . . . , c6) so that (val(p1), . . . , val(p6)) = (c̃1, . . . , c̃6), then one finds

c1 6 0, c2 6 0, c3 6 0, c4 > 1, c5 > 1, c6 > 1.

These conditions on c must be satisfied in order that [g] belongs to Ỹi,c. However the equations
that define the cone Ci are

c1 > 0, c2 > c6 > 0, c3 > c5 > 0, c2 + c3 > c4 > c5 + c6.

We conclude that [g] 6∈
⋃

c∈Ci
Ỹi,c.

4.4 A description of the string cone Ci

The following result complements Theorem 16.

Proposition 18 Let i = (i1, . . . , iN ) be a reduced decomposition of w0 and let c = (c1, . . . , cN )
be an element in ZN . Let Z be the closure of Ỹi,c and let λ be the coweight c1α

∨
i1

+ · · ·+cNα
∨
iN

.
Then Z is an MV cycle, µ−(Z) = 0 and µ+(Z) ∈ λ+ NΦ∨

+. Moreover µ+(Z) = λ if and only
if c ∈ Ci.
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The only truly difficult point is to prove that c ∈ Ci if µ+(Z) = λ. We will again ground
our proof on Berenstein and Zelevinsky’s work [6], this time on the notion of i-trail. We first
recall what it is about.

We denote the differential at 0 of the one-parameter subgroups xαi
and x−αi

by Ei and
Fi, respectively; they are elements of the Lie algebra of G. Let i = (i1, . . . , iN ) be a reduced
decomposition of w0, let γ and δ two weights in X, let V be a rational G-module, and write
V =

⊕
η∈X Vη for its decomposition in weight subspaces. According to Definition 2.1 in [6],

an i-trail from γ to δ in V is a sequence of weights π = (γ = γ0, γ1, . . . , γN = δ) such that
each difference γj−1 − γj has the form njαij for some non-negative integer nj, and such that
En1

i1
· · ·EnN

iN
defines a non-zero map from Vδ to Vγ . To such an i-trail π, Berenstein and

Zelevinsky associate the sequence of integers dj(π) = 〈γj−1 + γj , α
∨
ij
〉/2.

Assume moreover that G is simply connected. In that case X is the free Z-module with
basis the set of fundamental weights ωi and we can speak of the simple rational G-module
with highest weight ωi, which we denote by V (ωi). Then by Theorem 3.10 in [6], the string
cone Ci is the set of all (c1, . . . , cN ) ∈ ZN such that

∑
j dj(π)cj > 0 for any i ∈ I and any

i-trail π from ωi to w0siωi in V (ωi).
The following lemma explains why i-trails are relevant to our problem.

Lemma 19 Let i, c, Z and λ be as in the statement of the proposition, let i ∈ I, and assume
that G is simply connected. Then 〈ωi, λ−µ+(Z)〉 is the minimum of the numbers

∑
j dj(π)cj

for all weight δ ∈ X and all i-trail π from ωi to δ in V (ωi).

Proof. Let us consider an i-trail π = (γ0, γ1, . . . , γN ) in V (ωi) which starts from γ0 = ωi.
Introducing the integers nj such that γj−1 − γj = njαij , we obtain γj = ωi −

∑j
k=1 nkαik for

each j ∈ {1, . . . , N} and so

dj(π) = 〈ωi, α
∨
ij 〉 −

j−1∑

k=1

nk〈αik , α
∨
ij 〉 − nj.

We then compute

N∑

j=1

dj(π)cj − 〈ωi, λ〉 =
N∑

j=1

(
−nj −

j−1∑

k=1

〈αik , α
∨
ij 〉nk

)
cj = n1c̃1 + · · ·+ nN c̃N ,

where we set as usual c̃j = −cj −
∑N

k=j+1 ck〈αij , α
∨
ik
〉 for each j ∈ {1, . . . , N}.

We adopt the notational conventions set up before Proposition 4. In particular, we embed
V (ωi) inside V (ωi)⊗C K and we view this latter as a representation of the group G(K ). We
also consider a non-degenerate contravariant bilinear form (?, ?) on V (ωi); it is compatible
with the decomposition of V (ωi) as the sum of its weight subspaces and it satisfies (v,Eiv

′) =
(Fiv, v

′) for any i ∈ I and any vectors v and v′ in V (ωi). We extend the contravariant bilinear
form to V (ωi)⊗C K by multilinearity.

By Proposition 2, 〈ωi, µ+(Z)〉 is the maximum of 〈ωi, ν〉 for those ν ∈ Λ such that S+
ν

meets Ỹc,i. Using Proposition 4 (ii), we deduce that

〈ωi, µ+(Z)〉 = max
{
− val

(
g−1 · vωi

) ∣∣∣ g ∈ G(K ) such that [g] ∈ Ỹc,i

}

= max
{
− val

((
v, yi(p)−1 · vωi

)) ∣∣∣ v ∈ V (ωi), p ∈ (K ×)N s. t. val(pj) = c̃j

}
,
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where we wrote p = (p1, . . . , pN ) as usual. Moreover we may ask that the vector v in the last
maximum is a weight vector.

Let us denote by M the minimum of the numbers
∑

j dj(π)cj for all i-trail π in V (ωi)
which start from ωi. We expand the product

yi(p)−1 = exp(−pNFiN ) · · · exp(−p1Fi1) =
∑

n1,...,nN>0

(−1)n1+···+nN pn1

1 · · · p
nN

N

n1! · · ·nN !
FnN

iN
· · ·Fn1

i1

and we substitute in
(
v, yi(p)−1 · vωi

)
: we get a sum of terms of the form

(−1)n1+···+nN pn1

1 · · · p
nN

N

n1! · · · nN !

(
v, FnN

iN
· · ·Fn1

i1
· vωi

)
.

If such a term is not zero, then the sequence

π = (ωi, ωi − n1αi1 , ωi − n1αi1 − n2αi2 , . . . , ωi − n1αi1 − · · · − nNαiN )

is an i-trail and the term has valuation

n1c̃1 + · · ·+ nN c̃N =

N∑

j=1

dj(π)cj − 〈ωi, λ〉 >M − 〈ωi, λ〉.

Therefore the valuation of (v, yi(p)−1 ·vωi
) is greater or equal to M−〈ωi, λ〉 for any v ∈ V (ωi);

we conclude that 〈ωi, µ+(Z)〉 6 〈ωi, λ〉 −M .
Conversely, let π be an i-trail in V (ωi) which starts from ωi such that

∑
j dj(π)cj = M .

With this i-trail come the numbers n1, . . . , nN as before. By definition of an i-trail, there is
then a weight vector v ∈ V (ωi) such that

(
v, FnN

iN
· · ·Fn1

i1
· vωi

)
6= 0.

Given (a1, . . . , aN ) ∈ (C×)N , we set p = (a1t
c̃1, . . . , aN t

c̃N ) and look at the coefficient f
of tM−〈ωi,λ〉 in

(
v, yi(p)−1 · vωi

)
. The computation above shows that f is a polynomial in

(a1, . . . , aN ); it is not zero since the coefficient of an1

1 · · · a
nN

N in f is

(−1)n1+···+nN

n1! · · ·nN !

(
v, FnN

iN
· · ·Fn1

i1
· vωi

)
6= 0.

Therefore there exists p ∈ (K ×)N with val(pj) = c̃j such that
(
v, yi(p)−1 · vωi

)
has valuation

6M − 〈ωi, λ〉. It follows that 〈ωi, µ+(Z)〉 > 〈ωi, λ〉 −M , which completes the proof. �

We now proceed to the proof of the proposition.

Proof of Proposition 18. Let i, c, Z and λ as in the statement of the proposition. That Z is
an MV cycle is a direct consequence of Remark 15, applied repeatedly. Next we observe that
Ỹi,c is contained in S−

0 , by definition of this latter; this entails that µ−(Z) = 0.
If c is the string in direction i of an element b ∈ B(−∞), then Z = Ξ(t0 ⊗ b) by Theorem

16 and therefore

µ+(Z) = wt(Z) = wt(t0 ⊗ b) = wt(b) = wt
(
ẽc1i1 · · · ẽ

cN

iN
1
)

= λ.
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The equality µ+(Z) = λ holds therefore for each c ∈ Ci.
It remains to show that µ+(Z)− λ belongs to NΦ∨

+ and that it is zero only if c ∈ Ci. To
establish that, we may assume without loss of generality that G is simply connected; indeed
our subset Ỹi,c is contained in the connected component of G that contains [1], and it is known
that an isogeny of groups induces a morphism between their respective affine Grassmannians
which restricts to an isomorphism between their “neutral” connected components (see for
instance Section 2 of [12]). We may then make use of the fundamental weights ωi and of the
G-modules V (ωi).

We first observe that µ+(Z) − µ−(Z), µ−(Z) and λ belong to the coroot lattice ZΦ∨;
therefore µ+(Z)− λ belongs to ZΦ∨. Now let i ∈ I. The sequence

π = (ωi, si1ωi, si2si1ωi, . . . , w0ωi)

is an i-trail in V (ωi) for which all dj(π) = 0 for each j. By Lemma 19, we deduce

〈ωi, λ− µ+(Z)〉 6
∑

j

dj(π)cj = 0.

This is enough to guarantee that µ+(Z)− λ ∈ NΦ∨
+.

Suppose now that µ+(Z) = λ. Lemma 19 implies then that
∑

j dj(π)cj > 0 for all i ∈ I,
all weight δ ∈ X and all i-trail π from ωi to δ in V (ωi). In particular, this holds for all i ∈ I
and all i-trail π from ωi to w0siωi in V (ωi). By Theorem 3.10 in [6], this implies c ∈ Ci. �

4.5 Lusztig’s algebraic-geometric parametrization of B

The Lusztig parametrizations bi are practical because they permit a study of B(−∞) by
way of numerical data, but they are not intrinsic for they depend on the choice of a reduced
decomposition i of w0. To avoid this drawback, Lusztig introduces in [26] a parametrization
of B(−∞) in terms of closed subvarieties in arc spaces on U−. We will first recall shortly his
construction and then we will explain a relationship with MV cycles. For simplicity, Lusztig
restricts himself to the case where G is simply laced, but he explains in the introduction of
[26] that his results hold in the general case as well.

Lusztig starts by recalling a general construction. To a complex algebraic variety X and
a non-negative integer s, one can associate the space Xs of all jets of curves drawn on X, of
order s and at the origin. In formulas, one looks at the algebra Cs = C[[t]]/(ts+1) and defines
Xs as the set of morphisms from Spec Cs to X. If X is smooth of dimension n, then Xs is
smooth of dimension (s+ 1)n. There exist morphisms of truncation

· · · → Xs+1 → Xs → · · · → X1 → X0 = X;

the projective limit of this inverse system of maps is the space X(O). Finally the assignment
X  Xs is functorial, hence Xs is a group as soon as X is one.

Now let i be a reduced decomposition of w0. The morphism

yi : (a1, · · · , aN ) 7→ yi1(a1) · · · yiN (aN )

from (C)N to U− gives by functoriality a morphism (yi)s : (Cs)
N → (U−)s. Given an element

d = (d1, . . . , dN ) in NN , we may look at the image of the subset

(td1Cs)× · · · × (tdN Cs) ⊆ (Cs)
N
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by (yi)s. This is a constructible, irreducible subset of (U−)s. If s is big enough, then the
closure of this subset depends only on b = bi(d) and not on i and d individually. (This is
Lemma 5.2 of [26]; the precise condition is that s must be > ht(wt b).) One may therefore
denote this closure by Vb,s; it is a closed irreducible subset of (U−)s of codimension ht(wt b).
Proposition 7.5 in [26] asserts that moreover the assignment b 7→ Vb,s is injective for s big
enough: there is a constant M depending only on the root system Φ such that

(
Vb,s = Vb′,s and s > M ht(wt b)

)
=⇒ b = b′

for any b, b′ ∈ B(−∞). Thus b 7→ Vb,s may be seen as a parametrization of B(−∞) by closed
irreducible subvarieties of (U−)s.

Our next result shows that Lusztig’s construction is related to MV cycles and to Braver-
man, Finkelberg and Gaitsgory’s theorem. We fix a dominant coweight λ ∈ Λ++. By Propo-
sition 1, the map x 7→ x · [tw0λ] from G(O) to G factorizes through the reduction map
G(O)→ Gs when s is big enough, defining thus a map

Υs : Gs → G , x 7→ x · [tw0λ].

On the other hand, we may consider the two embeddings of crystals κλ : B(λ) →֒ B(∞)⊗Tλ

and ιw0λ : B(λ) →֒ Tw0λ ⊗ B(−∞), as in Section 2.2. Finally, the isomorphism B(∞)∨ ∼=
B(−∞) yields a bijection b 7→ b∨ from B(∞) onto B(−∞).

Proposition 20 We adopt the notations above and assume that s is big enough so that the
map Υs exists and that the closed subsets Vb∨,s are defined for each b⊗ tλ in the image of κλ.
Then the diagram

B(λ)
_�

ιw0λ

��

� � κλ
// im(κλ)

b⊗tλ 7→Υs(Vb∨,s)

��

Tw0λ ⊗B(−∞)
Ξ

// Z

commutes.

Proof. This is a consequence of Theorem 16, combined with a result of Morier-Genoud [29].
We first look at the commutative diagram that defines the embedding ιw0λ, namely

B(λ)
K k

κλ

xxrrrrrrrrrr

≃
//

t�

ιw0λ
''NNNNNNNNNNN

B(−w0λ)∨
_�

��

B(−w0λ)oo_ _ _ _ _ _

_�

κ−w0λ

��

B(∞) ⊗Tλ Tw0λ ⊗B(−∞) B(∞)⊗T−w0λ.oo_ _ _

The two arrows in broken line on this diagram are the maps b 7→ b∨; they are not morphisms
of crystals. The map from B(−w0λ) to B(λ) obtained by composing the two arrows on the
top line intertwines the raising operators ẽi with their lowering counterparts f̃i and sends
the highest weight element of B(−w0λ) to the lowest weight element of B(λ); it therefore
coincides with the application denoted by Φ−w0λ in [29].

Now let b ∈ B(λ). We write κλ(b) = b′ ⊗ tλ and κ−w0λ(Φ−1
−w0λ(b)) = b′′ ⊗ t−w0λ; thus

ιw0λ(b) = tw0λ⊗ (b′′)∨. We choose a reduced decomposition i of w0 and we set (c̃1, . . . , c̃N ) =
c̃i((b

′′)∨) and (d1, . . . , dN ) = b−1
i

((b′)∨) (see Section 4.3 for the definition of the map c̃i).
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Corollary 3.5 in [29] asserts then that dj = 〈αij ,−w0λ〉 + c̃j for all j. Setting now c =

ci((b
′′)∨), comparing the definition of Lusztig’s subset Vb′,s with the definition of Ỹi,c and

using Theorem 16, we compute

V(b′)∨,s · [tw0λ] = tw0λ · Ỹi,c = tw0λ · Ξ
(
t0 ⊗ (b′′)∨

)
= Ξ

(
tw0λ ⊗ (b′′)∨

)
= (Ξ ◦ ιw0λ)(b).

�

5 BFG crystal operations on MV cycles and root operators

on LS galleries

Let λ ∈ Λ++ be a dominant coweight. Littelmann’s path model [22] affords a concrete
realization of the crystal B(λ) in terms of piecewise linear paths drawn on Λ⊗Z R; it depends
on the choice of a path joining 0 to λ and contained in the dominant Weyl chamber. In [12],
Gaussent and Littelmann shape a variation of the path model, replacing piecewise linear
paths by galleries in the Coxeter complex of the affine Weyl group W aff . They define a set
Γ+

LS(γλ) of “LS galleries”, which depends on the choice of a minimal gallery γλ joining 0 to λ
and contained in the dominant Weyl chamber. Defining “root operators” eα and fα for each
simple root α in Φ, they endow Γ+

LS(γλ) with the structure of a crystal, which happens to

be isomorphic to B(λ). Using a Bott-Samelson resolution π : Σ̂(γλ) → Gλ and a Bia lynicki-

Birula decomposition of Σ̂(γλ) into a disjoint union of cells C(δ), Gaussent and Littelmann
associate a closed subvariety Z(δ) = π(C(δ)) of G to each LS gallery δ and show that the
map Z is a bijection from Γ+

LS(γλ) onto Z (λ).
The main result of this section is Theorem 27, which says that Z is an isomorphism of

crystals. In other words, the root operators on LS galleries match Braverman and Gaitsgory’s
crystal operations on MV cycles under the bijection Z.

Strictly speaking, our proof for this comparison result is valid only when λ is regular.
The advantage of this situation is that elements in Γ+

LS(γλ) are then galleries of alcoves. In
the case where λ is singular, Gaussent and Littelmann’s constructions involve a more general
class of galleries (see Section 4 in [12]). Such a sophistication is however not needed: our
presentation of Gaussent and Littelmann’s results in Section 5.2 below makes sense even if
λ is singular. Within this framework, our comparison theorem is valid for any λ, regular or
singular.

A key idea of Gaussent and Littelmann is to view the affine Grassmannian as a subset of
the set of vertices of the (affine) Bruhat-Tits building of G(K ). In Section 5.1, we review
quickly basic facts about the latter and study the stabilizer in U+(K ) of certain of its faces.
We warn here the reader that we use our own convention pertaining the Bruhat-Tits building:
indeed our Iwahori subgroup is the preimage of B− by the specialization map at t = 0 from
G(O) to G, whereas Gaussent and Littelmann use the preimage of B+. Our convention is
unusual, but it makes the statement of our comparison result more natural. Section 5.2
recalls the main steps in Gaussent and Littelmann’s construction, in a way that encompasses
the peculiarities of the case where λ is singular. The final Section 5.3 contains the proof of
our comparison theorem. To prove the equality ẽiZ(δ) = Z(eαi

δ) for each LS gallery δ and
for each i ∈ I, we use the criterion of Proposition 12. The first three conditions are easily
checked, while the inclusion Z(δ) ⊆ Z(eαi

δ) is established in Proposition 30.
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5.1 Affine roots, the Coxeter complex and the Bruhat-Tits building

We consider the vector space ΛR = Λ ⊗Z R. We define a real root of the affine root system
(for short, an affine root) as a pair (α, n) ∈ Φ× Z. To an affine root (α, n), we associate:

• the reflection sα,n : x 7→ x−
(
〈α, x〉 − n

)
α∨ of ΛR;

• the affine hyperplane Hα,n = {x ∈ ΛR | 〈α, x〉 = n} of fixed points of sα,n;

• the closed half-space H−
α,n = {x ∈ ΛR | 〈α, x〉 6 n};

• the one-parameter additive subgroup xα,n : b 7→ xα(btn) of G(K ); here b belongs to either
C or K .

We denote the set of all affine roots by Φaff . We embed Φ in Φaff by identifying a root
α ∈ Φ with the affine root (α, 0). We choose an element 0 that does not belong to I; we set
Iaff = I ⊔ {0} and α0 = (−θ,−1), where θ is the highest root of Φ. The elements αi with
i ∈ Iaff are called simple affine roots.

The subgroup of GL(ΛR) generated by all reflections sα,n is called the affine Weyl group
and is denoted by W aff . For each i ∈ Iaff , we set si = sαi

. Then W aff is a Coxeter system when
equipped with the set of generators {si | i ∈ I

aff}. The parabolic subgroup of W aff generated
by the simple reflections si with i ∈ I is isomorphic to W . For each λ ∈ ZΦ∨, the translation
τλ : x 7→ x + λ belongs to W aff . All these translations form a normal subgroup in W aff ,
isomorphic to the coroot lattice ZΦ∨, and W aff is the semidirect product W aff = ZΦ∨ ⋊W .

The group W aff acts on the set Φaff of affine roots: one demands that w(H−
β ) = H−

wβ

for each element w ∈ W aff and each affine root β ∈ Φaff . The action of an element w ∈
W or a translation τλ on an affine root (α, n) ∈ Φ × Z is given by w (α, n) = (wα, n) or
τλ (α, n) =

(
α, n + 〈α, λ〉

)
. One checks that wsαw

−1 = swα for all w ∈ W aff and α ∈ Φaff .
Using Equation (1), one checks that

(tλw )xα(a) (tλ w )−1 = xτλw(α)(±a) (16)

in G(K ), for all λ ∈ ZΦ∨, w ∈W , α ∈ Φaff and a ∈ K .
We denote by H the arrangement formed by the hyperplanes Hβ, where β ∈ Φaff . It

divides the vector space ΛR into faces. Faces with maximal dimension are called alcoves; they
are the connected components of ΛR \

⋃
H∈HH. Faces of codimension 1 are called facets;

faces of dimension 0 are called vertices. The closure of a face is the disjoint union of faces of
smaller dimension. Endowed with the set of all faces, ΛR becomes a polysimplicial complex,
called the Coxeter complex A aff ; it is endowed with an action of W aff .

The dominant open Weyl chamber is the subset

Cdom = {x ∈ ΛR | ∀i ∈ I, 〈αi, x〉 > 0}.

The fundamental alcove
Afund = {x ∈ Cdom | 〈θ, x〉 < 1}

is the complement of
⋃

i∈Iaff H−
αi

. We label the faces contained in Afund by proper subsets of

Iaff by setting

φJ =




⋂

i∈J

Hαi



 \




⋃

i∈Iaff\J

H−
αi
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for each J ⊂ Iaff . For instance φ∅ is the alcove Afund and φI is the vertex {0}. Any face of
our arrangement H is conjugated under the action of W aff to exactly one face contained in
Afund, because this latter is a fundamental domain for the action of W aff on ΛR. We say that
a subset J ⊂ Iaff is the type of a face F if F is conjugated to φJ under W aff .

We denote by B̂ the (Iwahori) subgroup of G(K ) generated by the torus T and by the
elements xα(ta) and x−α(a), where α ∈ Φ+ and a ∈ O. In other words, B̂ is the preimage of
the Borel subgroup B− under the specialization map at t = 0 from G(O) to G. We lift the
simple reflections si to the group G(K ) by setting

si = xαi
(1)x−αi

(−1)xαi
(1) = x−αi

(−1)xαi
(1)x−αi

(−1)

for each i ∈ Iaff . We lift any element w ∈W aff to an element w ∈ G(K ) so that w = si1 · · · sil

for each reduced decomposition si1 · · · sil of w. This notation does not conflict with our earlier
notation si for i ∈ I and w for w ∈ W . For each λ ∈ ZΦ∨, the lift τλ of the translation τλ
coincides with tλ up to a sign (i.e., up to the multiplication by an element of the form (−1)µ

with µ ∈ ZΦ∨).
The affine Bruhat-Tits building I aff is a polysimplicial complex endowed with an action

of G(K ). The affine Coxeter complex A aff can be embedded in I aff as the subcomplex
formed by the faces fixed by T ; in this identification, the action of an element w ∈ W aff on
A aff matches the action of w on (I aff)T . Each face of I aff is conjugated under the action
of G(K ) to exactly one face contained in Afund; we say that a subset J ⊂ Iaff is the type
of a face F if F is conjugated to φJ . Finally there is a G(K )-equivariant map of the affine
Grassmannian G into I aff , which extends the map [tλ] 7→ {λ} from G T into A aff ∼= (I aff)T .

Given a subset J ⊆ Iaff , we denote by P̂J the subgroup of G(K ) generated by B̂ and the
elements si for i ∈ J ; thus B̂ = P̂∅ and G(O) = P̂I . (The subgroup P̂J is the stabilizer in
G(K ) of the face φJ . For each g ∈ G(K ), the stabilizer of the face gφJ is thus the parahoric
subgroup gP̂Jg

−1. This bijection between the set of faces in the affine building and the set of
parahoric subgroups in G(K ) is indeed the starting point for the definition of the building,
see §2.1 in [10].) To shorten the notation, we will write P̂i instead of P̂{i} for each i ∈ Iaff .

Similarly, for each i ∈ Iaff , we will write Wi to indicate the subgroup {1, si} of W aff .
We denote the stabilizer in U+(K ) of a face F of the affine building by Stab+(F ). Our

last task in this section is to determine as precisely as possible the group Stab+(F ) and the
set Stab+(F ′)/Stab+(F ) when F and F ′ are faces of the Coxeter complex such that F ′ ⊆ F .
We need additional notation for that. Given a real number a, we denote the smallest integer
greater than a by ⌈a⌉. To a face F of the Coxeter complex, Bruhat and Tits (see (7.1.1) in [10])
associate the function fF : α 7→ supx∈F 〈α, x〉 on the dual space of ΛR. If α ∈ Φ, then ⌈fF (α)⌉
is the smallest integer n such that F lies in the closed half-space H−

α,n. The function fF is
convex and positively homogeneous of degree 1; in particular, fF (iα+ jβ) 6 ifF (α) + jfF (β)
for all roots α, β ∈ Φ and all positive integers i, j. When F and F ′ are two faces of the Coxeter
complex such that F ′ ⊆ F , we denote by Φaff

+ (F ′, F ) the set of all affine roots β ∈ Φ+ × Z

such that F ′ ⊆ Hβ and F 6⊆ H−
β ; in other words, (α, n) ∈ Φaff

+ (F ′, F ) if and only if α ∈ Φ+,

n = fF ′(α) and n + 1 = ⌈fF (α)⌉. We denote by Stab+(F ′, F ) the subgroup of U+(K )
generated by the elements of the form xβ(a) with β ∈ Φaff

+ (F ′, F ) and a ∈ C.

Proposition 21 (i) The stabilizer Stab+(F ) of a face F of the Coxeter complex is generated
by the elements xα(p), where α ∈ Φ+ and p ∈ O satisfy val(p) > fF (α).
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(ii) Let F and F ′ be two faces of the Coxeter complex such that F ′ ⊆ F . Then Stab+(F ′, F )
is a set of representatives for the right cosets of Stab+(F ) in Stab+(F ′). For any total order
on the set Φaff

+ (F ′, F ), the map

(aβ)β∈Φaff
+

(F ′,F ) 7→
∏

β∈Φaff
+

(F ′,F )

xβ(aβ)

is a bijection from CΦaff
+ (F ′,F ) onto Stab+(F ′, F ).

Proof. Item (i) is proved in Bruhat and Tits’s paper [10], see in particular Sections (7.4.4)
and Equation (1) in Section (7.1.8). We note here that this fact implies that for any total
order on Φ+, the map

(pα)α∈Φ+
7→

∏

α∈Φ+

xα

(
pαt

⌈fF (α)⌉
)

is a bijection from OΦ+ onto Stab+(F ).
We now turn to Item (ii). We first observe the following property of Φaff

+ (F ′, F ): for each
pair i, j of positive integers and each pair (α,m), (β, n) of affine roots in Φaff

+ (F ′, F ) such that
iα+jβ ∈ Φ, the affine root (iα+jβ, im+jn) belongs to Φaff

+ (F ′, F ). Indeed F ′ ⊆ Hα,m∩Hβ,n

implies F ′ ⊆ Hiα+jβ,im+jn, and the inequality

fF (iα + jβ) > ifF (α) − jfF (−β) = ifF (α) + jn > im + jn

shows that F 6⊆ H−
iα+jβ,im+jn. Standard arguments based on Chevalley’s commutator for-

mula (5) show then the second assertion in Item (ii).
Now the map (α,m) 7→ α from Φaff to Φ restricts to a bijection from Φaff

+ (F ′, F ) onto a
subset Φ′

+ of Φ+. We set Φ′′
+ = Φ+ \ Φ′

+. We endow Φ+ with a total order, chosen so that
each element in Φ′

+ is smaller than all elements in Φ′′
+, and we transport the order induced

on Φ′
+ to Φaff

+ (F ′, F ). By Item (i), each element in Stab+(F ′) may be uniquely written as a
product ∏

α∈Φ+

xα

(
pαt

⌈fF ′(α)⌉
)

(17)

with (pα)α∈Φ+
in OΦ+ . We write pα = aα + tqα for each α ∈ Φ′

+, with aα ∈ C and qα ∈ O.
Thus for each (α,m) ∈ Φaff

+ (F ′, F ), we have pαt
⌈fF ′(α)⌉ = aαt

m + qαt
⌈fF (α)⌉. On the other

hand, ⌈fF ′(α)⌉ = ⌈fF (α)⌉ for each α ∈ Φ′′
+. We may therefore rewrite the product in (17) as




∏

(α,m)∈Φaff
+

(F ′,F )

xα

(
aαt

m
)
xα

(
qαt

⌈fF (α)⌉
)







∏

α∈Φ′′
+

xα

(
pαt

⌈fF (α)⌉
)


 .

We rearrange the first product above using again Chevalley’s commutator formula: there
exists a family (rα)α∈Φ′

+
of power series such that this product is




∏

(α,m)∈Φaff
+ (F ′,F )

xα

(
aαt

m
)







∏

α∈Φ′
+

xα

(
rαt

⌈fF (α)⌉
)


 ,
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and for fixed numbers aα, the map (qα) 7→ (rα) is a bijection from OΦ′
+ onto itself. We

conclude that the map

((aβ), (pα)) 7→




∏

β∈Φaff
+

(F ′,F )

xβ

(
aβ

)







∏

α∈Φ+

xα

(
pαt

⌈fF (α)⌉
)




is a bijection from CΦaff
+

(F ′,F ) × OΦ+ onto Stab+(F ′). This means exactly that the map
(g, h) 7→ gh is a bijection from Stab+(F ′, F ) × Stab+(F ) onto Stab+(F ′). The proof of
Item (ii) is now complete. �

Things are more easy to grasp when F is an alcove and F ′ is a facet of F , because then
Φaff

+ (F ′, F ) has at most one element. In this particular case, certain commutators involving
elements of Stab+(F ′) and Stab+(F ) automatically belong to Stab+(F ).

Lemma 22 Let F be an alcove of the Coxeter complex and let F ′ be a facet of F . Let
(α,m) ∈ Φ+ × Z be the affine root such that F ′ lies in the wall Hα,m and let (β, n) ∈ Φaff

be such that F ⊆ H−
β,n. We assume that β is either positive or is the opposite of a simple

root, and that β 6= −α. Then for each q ∈ O and each v ∈ Stab+(F ′, F ), the commutator
xβ,n(q) v xβ,n(q)−1 v−1 belongs to Stab+(F ).

Proof. There is nothing to show if F ⊆ H−
α,m since v = 1 in this case. We may thus assume

that Stab+(F ′, F ) =
{

(α,m)
}

; then there is an a ∈ C such that v = xα,m(a).
Suppose first that β = α. Then

xβ,n(q) v xβ,n(q)−1 v−1 = xβ,n(q)xα,m(a)xβ,n(−q)xα,m(−a) = xα(qtn + atm− qtn− atm) = 1.

Therefore the assertion holds in this case.
Suppose now that β 6= α. The facet F ′ is contained in the closure of exactly two alcoves,

F and say F ∗, the latter lying in H−
α,m. Then fF ∗(α) = m. We observe that no wall other

than Hα,m separates F ∗ and F . In particular, Hβ,n does not separate F ∗ and F , because
β 6= ±α. Since F lies in H−

β,n, so does F ∗, and thus fF ∗(β) 6 n. Therefore for any pair of
positive integers i, j such that iα + jβ is a root, fF ∗(iα + jβ) 6 im + jn. This means that
F ∗ lies in the half-space H−

iα+jβ,im+jn. Again, the wall Hiα+jβ,im+jn does not separate F ∗

and F , and we conclude that F lies in the half-space H−
iα+jβ,im+jn. Chevalley’s commutator

formula (5) implies that

xβ,n(q) v xβ,n(q)−1 v−1 = xβ,n(q)xα,m(a)xβ,n(−q)xα,m(−a)

=
∏

i,j>0

xiα+jβ,im+jn

(
Ci,j,α,β a

i(−q)j
)
.

Here the product is taken over all pairs of positive integers i, j such that iα + jβ is a root.
The assumption about β in the statement of the lemma implies that such a root iα + jβ is
necessarily positive. By Proposition 21 (i), each factor xiα+jβ,im+jn

(
Ci,j,α,βa

i(−q)j
)

belongs
to Stab+(F ). Thus the commutator xβ,n(q) v xβ,n(q)−1 v−1 belongs to Stab+(F ). �

Remark. The first assertion in Proposition 21 (ii) means that Stab+(F ′) has the structure of
a bicrossed product Stab+(F ′, F ) ⋊⋉ Stab+(F ) (see [31]) whenever F and F ′ are two faces in
the Coxeter complex such that F ′ ⊆ F . Suppose now that F is an alcove and that F ′ is a
facet of F . Then Proposition 21 (i) and Lemma 22 imply that each element v ∈ Stab+(F ′, F )
normalizes the group Stab+(F ). Thus Stab+(F ) is a normal subgroup of Stab+(F ′) and
Stab+(F ′) is the semidirect product Stab+(F ′, F ) ⋉ Stab+(F ).
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5.2 Galleries, cells and MV cycles

We fix a dominant coweight λ ∈ Λ++. As usual, we denote by Pλ the standard parabolic
subgroup PJ of G, where J = {j ∈ I | 〈αj , λ〉 = 0}. Besides, we denote by {λfund} the
vertex in Afund with the same type as {λ}. Finally, there is a unique element wλ in W aff

with minimal length such that λ = wλ(λfund). Thus among all alcoves in A aff having {λ} as
vertex, wλ(Afund) is the one closest to Afund.

We denote the length of wλ by p and we choose a reduced decomposition si1 · · · sip of
it, with (i1, . . . , ip) ∈ (Iaff)p. The geometric translation of this choice is the datum of the
sequence

γλ =
(
{0} ⊂ Γ0 ⊃ Γ′

1 ⊂ Γ1 ⊃ · · · ⊃ Γ′
p ⊂ Γp ⊃ {λ}

)

of alcoves and facets (also known as a gallery) in A aff , where

Γj = si1 · · · sij (Afund) and Γ′
j = si1 · · · sij−1

(φ{ij}).

By Proposition 2.19 (iv) in [32], these alcoves and facets are all contained in the dominant Weyl
chamber Cdom. The choice of the reduced decomposition si1 · · · sip of wλ and the notations
Pλ, λfund, γλ will be kept for the rest of Section 5.

We define the Bott-Samelson variety as the smooth projective variety

Σ̂(γλ) = G(O) ×
B̂

P̂i1 ×
B̂

· · · ×
B̂

P̂ip/B̂.

We will denote the image in Σ̂(γλ) of an element (g0, g1, . . . , gp) ∈ G(O) × P̂i1 × · · · × P̂ip by

the usual notation [g0, g1, . . . , gp]. The group G(O) acts on Σ̂(γλ) by left multiplication on
the first factor. There is a G(O)-equivariant map π : [g0, g1, . . . , gp] 7→ g0g1 · · · gp

[
tλfund

]
from

Σ̂(γλ) onto Gλ.
The geometric language of buildings is of great convenience in the study of the Bott-

Samelson variety. Indeed each element d = [g0, g1, . . . , gp] in Σ̂(γλ) may be viewed as a
gallery

δ =
(
{0} = ∆′

0 ⊂ ∆0 ⊃ ∆′
1 ⊂ ∆1 ⊃ · · · ⊃ ∆′

p ⊂ ∆p ⊃ ∆′
p+1

)
(18)

in I aff , where

∆j = g0 · · · gj(Afund) for 0 6 j 6 p,

∆′
j = g0 · · · gj−1(φ{ij}) for 1 6 j 6 p,

and ∆p+1 = g0 · · · gp{λfund}.

(This gallery has the same type as γλ, that is, each facet ∆′
j of δ has the same type as the

corresponding element Γ′
j in γλ. We also observe that the vertex ∆′

p+1 of the affine building
corresponds to the element π(d) of the affine Grassmannian.) Thus for instance the point[
1, si1 , si2 , . . . , sip

]
in Σ̂(γλ) is viewed as the gallery γλ. With this picture in mind, one proves

easily the following proposition.

Proposition 23 The restriction of π to π−1(Gλ) is a fiber bundle with fiber isomorphic
to Pλ/B

+.
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Proof. Let J = {j ∈ I | 〈αj , λ〉 = 0}. The set S of alcoves whose closure contains φJ is in
canonical bijection with the set of all Iwahori subgroups of G(K ) contained in P̂J , hence
with P̂J/B̂ ∼= PJ/B

+. In particular, PJ acts transitively on S.
Now let F = π−1

([
tλ
])

and let H be the stabilizer of [tλ] in G(O); thus H ⊇ Pλ = PJ .
Since π is G(O)-equivariant, H acts on F and there is a commutative diagram

π−1(Gλ)
≃ //

π

��

G(O) ×H F

��

Gλ
≃

// G(O)/H.

It thus suffices to prove that F is isomorphic to S.
Each element d ∈ F can be viewed as a gallery δ in I aff stretching from {0} to {λ}, as

in (18). We claim that ∆0 always contains φJ . When all faces of δ belong to A aff , this claim
follows from the proof of Proposition 2.29 in [32] (with proj{0}{λ} = φJ); the general case is

obtained by retracting δ onto A aff from the fundamental alcove, see Lemma 3.6 in [32].
We finally consider the map f : d 7→ ∆0 from F to S. Corollary 3.4 in [32] implies that f

is injective, because in any apartment, there is only one non-stammering gallery of the same
type as γλ that starts from a given chamber ∆0. On the other side, f is Pλ-equivariant;
it is thus surjective, for Pλ acts transitively on the codomain. We conclude that f is an
isomorphism from F onto S. �

This proposition implies the following equality, which we record for later use:

∣∣Φ+

∣∣+ p = dim Σ̂(γλ) = dim Gλ + dim(Pλ/B
+) = ht(λ− w0λ) + dim(Pλ/B

+). (19)

Our next task is to obtain a Bia lynicki-Birula decomposition of the Bott-Samelson variety.
The torus T acts on the latter by left multiplication on the first factor. If we represent an
element d ∈ Σ̂(γλ) by a gallery δ as in (18), then d is fixed by T if and only if all the faces
∆j and ∆′

j are in the Coxeter complex A aff ∼= (I aff)T . We devote a word to this situation:

a gallery δ as in (18), of the same type as γλ, all of whose faces are in A aff , is called a
combinatorial gallery. The weight ν such that ∆′

p+1 = {ν} is called the weight of δ; it belongs
to λ+ ZΦ∨, because {ν} has the same type as {λ}.

We denote the set of all combinatorial galleries by Γ(γλ). This set is in bijection with
W×Wi1×· · ·×Wip; indeed the map (δ0, δ1, . . . , δp) 7→

[
δ0, δ1, . . . , δp

]
from W×Wi1×· · ·×Wip

to Σ̂(γλ) is injective and its image is the set of T -fixed points in the codomain. Concretely
this correspondence maps (δ0, δ1, . . . , δp) ∈W ×Wi1 × · · · ×Wip to the combinatorial gallery
whose faces are

∆j = δ0 · · · δj(Afund) and ∆′
j = δ0 · · · δj−1(φ{ij}) (20)

and whose weight is
ν = δ0δ1 · · · δpλfund. (21)

The retraction r∅ from G onto G T ∼= Λ can be extended to a map of polysimplicial
complexes from I aff onto (I aff)T ∼= A aff . Following Section 7 in [12], we further extend
this retraction to a map from Σ̂(γλ) onto Σ̂(γλ)T ∼= Γ(γλ) by applying it componentwise to
galleries. The preimage by this map of a combinatorial gallery δ will be denoted by C(δ).
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Our aim now is to describe precisely the cell C(δ) associated to a combinatorial gallery δ.
Representing the latter as in (18), we introduce the notation

Stab+(δ) = Stab+(∆′
0,∆0)× Stab+(∆′

1,∆1)× · · · × Stab+(∆′
p,∆p).

Proposition 24 Let δ be a combinatorial gallery and let (δ0, δ1, . . . , δp) be the sequence in
W ×Wi1 × · · · ×Wip associated to δ by Equations (20). Then the map

(v0, v1, . . . , vp) 7→
[
v0 δ0 , δ0

−1
v1 δ0δ1 , δ0δ1

−1
v2 δ0δ1δ2 , . . . , δ0 · · · δp−1

−1
vp δ0 · · · δp

]

from Stab+(δ) to Σ̂(γλ) is injective and its image is C(δ).

Proof. Set

˜Stab+(δ) = Stab+(∆′
0) ×

Stab+(∆
0
)
Stab+(∆′

1) ×
Stab+(∆

1
)
· · · ×

Stab+(∆p−1
)
Stab+(∆′

p)/Stab+(∆p).

From the inclusions

Stab+(∆j) ⊆ δ0 · · · δj B̂ δ0 · · · δj
−1

(for 0 6 j 6 p),

Stab+(∆′
0) ⊆ G(O)δ0

−1
,

Stab+(∆′
j) ⊆ δ0 · · · δj−1 P̂ij δ0 · · · δj

−1
(for 1 6 j 6 p),

standard arguments imply that the map

f : [v0, v1, . . . , vp] 7→
[
v0 δ0 , δ0

−1
v1 δ0δ1 , δ0δ1

−1
v2 δ0δ1δ2 , . . . , δ0 · · · δp−1

−1
vp δ0 · · · δp

]

from ˜Stab+(δ) to Σ̂(γλ) is well-defined.
The proof of Proposition 6 in [12] says that an element d = [g0, g1, . . . , gp] in the Bott-

Samelson variety belongs to the cell C(δ) if and only if there exists u0, u1, . . . , up ∈ U
+(K )

such that
g0g1 · · · gjAfund = uj∆j and uj−1∆′

j = uj∆
′
j

for each j. Setting v0 = u0 and vj = u−1
j−1uj for 1 6 j 6 p, the conditions above can be

rewritten
g0g1 · · · gjB̂ = v0v1 · · · vj δ0δ1 · · · δj B̂ and vj ∈ Stab+(∆′

j),

which shows that f([v0, v1, . . . , vp]) = d. Therefore the image of f contains the cell C(δ). The
reverse inclusion can be established similarly.

The map f is injective. Indeed suppose that two elements v = [v0, v1, . . . , vp] and v′ =

[v′0, v
′
1, . . . , v

′
p] in ˜Stab+(δ) have the same image. Then

v0v1 · · · vj δ0δ1 · · · δj B̂ = v′0v
′
1 · · · v

′
j δ0δ1 · · · δj B̂

for each j ∈ {0, . . . , p}. This means geometrically that

v0v1 · · · vj δ0δ1 · · · δj Afund = v′0v
′
1 · · · v

′
j δ0δ1 · · · δj Afund;
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in other words, v0v1 · · · vj and v′0v
′
1 · · · v

′
j are equal in U+(K )/Stab+(∆j). Since this holds

for each j, the two elements v and v′ are equal in ˜Stab+(δ).

We conclude that f induces a bijection from ˜Stab+(δ) onto C(δ). It then remains to

observe that the map (v0, v1, . . . , vp) 7→ [v0, v1, . . . , vp] from Stab+(δ) to ˜Stab+(δ) is bijective.

This follows from Proposition 21 (ii): indeed for each [a0, a1, . . . , ap] ∈ ˜Stab+(δ), the element
(v0, v1, . . . , vp) ∈ Stab+(δ) such that [v0, v1, . . . , vp] = [a0, a1, . . . , ap] is uniquely determined
by the condition that for all j ∈ {0, 1, . . . , p},

vj ∈
(
(v0 · · · vj−1)−1(a0 · · · aj) Stab+(∆j)

)
∩ Stab+(∆′

j ,∆j).

�

The definition of the map π, Equation (21), Proposition 21 (ii) and Proposition 24 yield
the following explicit description of the image of the cell C(δ) by the map π.

Corollary 25 Let δ be a combinatorial gallery of weight ν, as in (18), and equip the set
Φaff

+ (∆′
0,∆0) with a total order. Then π(C(δ)) is the image of the map

(aj,β) 7→

p∏

j=0




∏

β∈Φaff
+

(∆′
j ,∆j)

xβ(aj,β)



 [tν ]

from
∏p

j=0 CΦaff
+ (∆′

j ,∆j) to G .

Certainly the notation used in Corollary 25 is more complicated than really needed. Indeed
except perhaps for j = 0, each set Φaff

+ (∆′
j,∆j) has at most one element. Each inner product

is therefore almost always empty or reduced to one factor. Keeping this fact in mind may
help understand the proofs of Lemma 29 and Proposition 30 in Section 5.3.

We now endow Γ(γλ) with the structure of a crystal. To do that, we introduce “root
operators” eα and fα for each simple root α of the root system Φ. These operators act on
Γ(γλ) and are defined by the following recipe (see Section 6 in [12]).

Let δ be a combinatorial gallery, as in Equation (18). We call m ∈ Z the smallest integer
such that the hyperplane Hα,m contains a face ∆′

j, where 0 6 j 6 p+ 1.

• If m = 0, then eαδ is not defined. Otherwise we find k ∈ {1, . . . , p+ 1} minimal such that
∆′

k ⊆ Hα,m, we find j ∈ {0, . . . , k − 1} maximal such that ∆′
j ⊆ Hα,m+1, and we define the

combinatorial gallery eαδ as

(
{0} = ∆′

0 ⊂ ∆0 ⊃ ∆′
1 ⊂ ∆1 ⊃ · · · ⊃ ∆′

j ⊂

sα,m+1(∆j) ⊃ sα,m+1(∆′
j+1) ⊂ · · · ⊃ sα,m+1(∆′

k−1) ⊂ sα,m+1(∆k−1)

⊃ τα∨(∆′
k) ⊂ τα∨(∆k) ⊃ · · · ⊂ τα∨(∆p) ⊃ τα∨(∆′

p+1) = {ν + α∨}
)
.

Thus we reflect all faces between ∆′
j and ∆′

k across the hyperplane Hα,m+1 and we translate
all faces after ∆′

k by α∨. (Note here that sα,m+1(∆′
j) = ∆′

j and that sα,m+1(∆′
k) = τα∨(∆′

k).)
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• If m = 〈α, ν〉, then fαδ is not defined. Otherwise we find j ∈ {0, . . . , p} maximal such that
∆′

j ⊆ Hα,m, we find k ∈ {j + 1, . . . , p + 1} minimal such that ∆′
k ⊆ Hα,m+1, and we define

the combinatorial gallery fαδ as

(
{0} = ∆′

0 ⊂ ∆0 ⊃ ∆′
1 ⊂ ∆1 ⊃ · · · ⊃ ∆′

j ⊂

sα,m(∆j) ⊃ sα,m(∆′
j+1) ⊂ · · · ⊃ sα,m(∆′

k−1) ⊂ sα,m(∆k−1)

⊃ τ−α∨(∆′
k) ⊂ τ−α∨(∆k) ⊃ · · · ⊂ τ−α∨(∆p) ⊃ τ−α∨(∆′

p+1) = {ν − α∨}
)
.

Thus we reflect all faces between ∆′
j and ∆′

k across the hyperplane Hα,m and we translate all
faces after ∆′

k by −α∨. (Note here that sα,m(∆′
j) = ∆′

j and that sα,m(∆′
k) = τ−α∨(∆′

k).)

With the notations above, the maximal integer n such that (eα)nδ is defined is equal to −m,
and the maximal integer n such that (fα)nδ is defined is equal to 〈α, ν〉 −m.

The crystal structure on Γ(γλ) is then defined as follows. Given δ ∈ Γ(γλ), written as
in (18), and i ∈ I, we set

wt(δ) = ν, εi(δ) = −m and ϕi(δ) = 〈αi, ν〉 −m,

where ν is the weight of δ and m ∈ Z is the smallest integer such that the hyperplane Hαi,m

contains a face ∆′
j, with 0 6 j 6 p+ 1. Finally ẽi and f̃i are given by the root operators eαi

and fαi
.

Let δ be a combinatorial gallery, written as in (18). We say that δ is positively folded if

∀j ∈ {1, . . . , p}, ∆j−1 = ∆j =⇒ Φaff
+ (∆′

j ,∆j) 6= ∅.

We define the dimension of δ as

dim δ =

p∑

j=0

∣∣Φaff
+ (∆′

j ,∆j)
∣∣.

(These are Definitions 16 and 17 in [12].) Thus for instance the gallery γλ is positively folded
of dimension

dim γλ =
∣∣Φ+

∣∣+ p = ht(λ− w0λ) + dim(Pλ/B
+), (22)

by Equation (19). We denote the set of positively folded combinatorial gallery by Γ+(γλ).
Arguing as in the proof of Proposition 4 in [12], one shows that for each δ ∈ Γ+(γλ) of weight
ν,

dim γλ − dim δ > ht(λ− ν).

We say that a positively folded combinatorial gallery δ is an LS gallery if this inequality
is in fact an equality. The set of LS galleries is denoted by Γ+

LS(γλ). Then Corollary 2 in [12]
says that Γ+

LS(γλ) is a subcrystal of Γ(γλ) and that for any gallery δ ∈ Γ+
LS(γλ), there is a

sequence (α1, . . . , αt) of simple roots such that δ = fα1
· · · fαtγλ. The following proposition

makes the link between LS galleries and MV cycles; it is equivalent to Corollary 5 in [12]
when λ is regular.

Proposition 26 The map Z : δ 7→ π(C(δ)) is a bijection from Γ+
LS(γλ) onto Z (λ); it maps

a combinatorial gallery of weight ν to a MV cycle in Z (λ)ν .
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Proof. We fix ν ∈ Λ. We denote the set of combinatorial galleries of weight ν by Γ(γλ, ν) and
we set Γ+(γλ, ν) = Γ+(γλ) ∩ Γ(γλ, ν). By construction,

π−1(S+
ν ) =

⊔

δ∈Γ(γλ ,ν)

C(δ).

We set Σ̊ = π−1
(
Gλ

)
and X = π−1

(
S+

ν ∩ Gλ

)
. Since S+

ν ∩ Gλ is of pure dimension
ht(ν −w0λ), Proposition 23 and Equation (22) imply that X is of pure dimension

ht(ν − w0λ) + dim(Pλ/B
+) = dim γλ − ht(λ− ν).

Proposition 23 implies also that the map Z 7→ π−1(Z) is a bijection from the set of irreducible
components of S+

ν ∩ Gλ onto the set of irreducible components of X.
By Lemma 11 in [12], a cell C(δ) meets Σ̊ if and only if δ is positively folded. Therefore

X = π−1
(
S+

ν

)
∩ Σ̊ =

⊔

δ∈Γ+(γλ,ν)

(
C(δ) ∩ Σ̊

)
.

Now let δ ∈ Γ+(γλ, ν). Proposition 24 says that the cell C(δ) is isomorphic to Stab+(δ), hence
is an affine space of dimension dim δ. Thus the intersection C(δ) ∩ Σ̊, which is a non-empty
open subset of C(δ), is irreducible of dimension dim δ 6 dim γλ − ht(λ − ν). It follows that
the irreducible components of X are the closures in X of the subsets C(δ) ∩ Σ̊, for δ running
over the set of LS galleries of weight ν.

To conclude the proof, it remains to observe that

π
(
C(δ) ∩ Σ̊

)
= π

(
C(δ)

)

for each δ ∈ Γ+(γλ, ν), since C(δ) ∩ Σ̊ is dense in C(δ). �

5.3 Root operators and the comparison theorem

The aim of this section is to show the following result.

Theorem 27 The bijection Z : Γ+
LS(γλ)→ Z (λ) is an isomorphism of crystals.

The existence of an isomorphism of crystals from B(λ) onto Γ+
LS(γλ) was already known;

see for instance Theorem 2 in [12] for the case λ regular. The theorem above says that the
map Z−1 ◦Ξ(λ) is actually such an isomorphism. For its proof, we need two propositions and
a lemma.

Proposition 28 Let δ be a combinatorial gallery of weight ν, as in (18), and let i ∈ I. Call
m the smallest integer such that the hyperplane Hαi,m contains a face ∆′

j of the gallery, where
0 6 j 6 p+ 1.

(i) The image of π(C(δ)) by the retraction r{i} is
{
xαi

(ptm)[tν ]
∣∣ p ∈ O

}
.

(ii) The following equality holds:

siµ+

(
si

−1 π(C(δ))
)

= ν −
(
〈αi, ν〉 −m

)
α∨

i .
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Proof. We collect in a set J the indices j ∈ {0, . . . , p} such that Φaff
+ (∆′

j ,∆j) contains an
affine root of the form (αi, n) with n ∈ Z. For each j ∈ J , there is a unique integer, say nj,
so that (αi, nj) ∈ Φaff

+ (∆′
j,∆j). (Thus nj = f∆′

j
(αi) in the notation of Section 5.1.)

All these integers nj are larger or equal than m. We claim that

{m,m + 1,m + 2, . . .} ⊇ {nj | j ∈ J} ⊇ {m,m+ 1, . . . , 〈αi, ν〉 − 1}. (23)

Consider indeed an integer n in the right-hand side above. Since the gallery δ must go from
the wall Hαi,m to the point ν, it must cross the wall Hαi,n. More exactly, there is an index
j ∈ {0, . . . , p} such that ∆′

j ⊆ Hαi,n and ∆j 6⊆ H
−
αi,n; this implies that (αi, n) ∈ Φaff

+ (∆′
j ,∆j),

and thus that j ∈ J and n = nj .
We apply now the parabolic retraction r{i} to the expression given in Corollary 25. Equa-

tion (10) allows us to remove all factors in the product that belong to the unipotent radical
of P{i}(K ). We deduce that r{i}(π(C(δ))) is the image of the map

(aj) 7→
∏

j∈J

xαi,nj
(aj)[t

ν ]

from CJ to M{i}. Assertion (i) follows now from (23) and from the fact that [tν ] is fixed by
all subgroups xαi,n(C) with n > 〈αi, ν〉.

From there, one deduces easily Assertion (ii) using Lemma 10 and Example 8. �

For a combinatorial gallery δ, written as in Equation (18), and an integer k ∈ {0, . . . , p+1},
we set

Stab+(δ)>k = Stab+(∆′
k,∆k)× Stab+(∆′

k+1,∆k+1)× · · · × Stab+(∆′
p,∆p),

π(C(δ))>k =
{
vkvk+1 · · · vp[tν ]

∣∣ (vk, vk+1, . . . , vp) ∈ Stab+(δ)>k

}
.

Lemma 29 Let δ be a combinatorial gallery, as in Equation (18), and let k ∈ {1, . . . , p+ 1}.

(i) Let u ∈ Stab+(∆′
k). Then the left action of u on G leaves π(C(δ))>k stable. More

precisely, for each (vk, . . . , vp) ∈ Stab+(δ)>k, there exists (v′k, . . . , v
′
p) ∈ Stab+(δ)>k such that

v′k · · · v
′
p[tν ] = uvk · · · vp[tν ] and

(
∀j ∈ {k + 1, . . . , p}, ∆j−1 = ∆j =⇒ vj = v′j

)
;

moreover the equality vk = v′k holds as soon as u ∈ Stab+(∆k).

(ii) Let p ∈ O× and let µ ∈ Λ. Then the left action of pµ on G leaves π(C(δ))>k stable.
Suppose moreover that p ∈ 1 + tO and let (vk, . . . , vp) ∈ Stab+(δ)>k. Then there exists
(v′k, . . . , v

′
p) ∈ Stab+(δ)>k such that

v′k · · · v
′
p[tν ] = pµvk · · · vp[tν ] and

(
∀j ∈ {k, . . . , p}, ∆j−1 = ∆j =⇒ vj = v′j

)
.

(iii) Let (vk, . . . , vp) ∈ Stab+(δ)>k, let α be a simple root of the root system Φ, and let
c ∈ C×. Call m the smallest integer such that the hyperplane Hα,m contains a face ∆′

j , where
0 6 j 6 p + 1, form the list (k1, k2, . . . , kr) in increasing order of indices l ∈ {k, . . . , p}
such that Φaff

+ (∆′
l,∆l) = {(α,m)}, and find the complex numbers c1, c2, . . . , cr such that

vks
= xα,m(cs). Assume that c + c1 + c2 + · · · + cs 6= 0 for each s ∈ {1, . . . , r}. Then

x−α,−m(1/c)vk · · · vp[tν ] belongs to π(C(δ))>k.
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Proof. The proof of these three assertions proceeds by decreasing induction on k. For k =
p+ 1, all of them hold: indeed the element u in Assertion (i), the element pµ in Assertion (ii)
and the element x−α,−m(c) in Assertion (iii) fix the point [tν ].

Now assume that k 6 p and that the result holds for k+ 1. If Φaff
+ (∆′

k,∆k) is empty, then
Stab+(∆′

k,∆k) = {1}. Assertions (i), (ii) and (iii) follow then immediately from the inductive
assumption, after one has observed that the element u in Assertion (i) belongs by assumption
to Stab+(∆′

k) and that Stab+(∆′
k) = Stab+(∆k) ⊆ Stab+(∆′

k+1). In the rest of the proof,

we assume that Φaff
+ (∆′

k,∆k) is not empty; it has then a unique element, say (ζ, n), with of
course ζ ∈ Φ+. Let (vk, . . . , vp) ∈ Stab+(δ)>k and write vk = xζ,n(b).

Consider first Assertion (i). The element uvk belongs to Stab+(∆′
k). By Proposition 21 (ii),

there exists v′k ∈ Stab+(∆′
k,∆k) and u′ ∈ Stab+(∆k) such that uvk = v′ku

′. The induc-
tive assumption applied to u′ and (vk+1, . . . , vp) ∈ Stab+(δ)>k+1 asserts the existence of
(v′k+1, . . . , v

′
p) ∈ Stab+(δ)>k+1 such that u′vk+1 · · · vp[tν ] = v′k+1 · · · v

′
p[tν ], with the further

property that vj = v′j for all j > k verifying ∆j−1 = ∆j . Certainly then uvkvk+1 · · · vp[tν ] =
v′kv

′
k+1 · · · v

′
p[tν ]. Now assume that u ∈ Stab+(∆k). By Proposition 21 (i), we may write u

as a product of elements of the form xβ,n(q) with q ∈ O and (β, n) ∈ Φ+ × Z such that
∆k ⊆ H

−
β,n. Lemma 22 now implies that uvk ∈ vk Stab+(∆k), which establishes v′k = vk. This

shows that Assertion (i) holds at k.
Consider now Assertion (ii). Let a ∈ C× be the constant term coefficient of p and set

q =
(
p〈ζ,µ〉 − a〈ζ,µ〉

)
/t. Then

pµvk = xζ,n

(
bp〈ζ,µ〉)pµ = xζ,n(b′)u′pµ = v′ku

′pµ,

where b′ = ba〈ζ,µ〉, u′ = xζ,n+1(q) and v′k = xζ,n(b′). Observing that u′ ∈ Stab+(∆k) and
using the inductive assumption and Assertion (i), we find (v′k+1, . . . , v

′
p) ∈ Stab+(δ)>k+1 such

that u′pµvk+1 · · · vp[tν ] = v′k+1 · · · v
′
p[tν ]; in the case a = 1, we may even demand that vj = v′j

for all j > k verifying ∆j−1 = ∆j. Then pµvkvk+1 · · · vp[tν ] = v′kv
′
k+1 · · · v

′
p[tν ], which shows

that Assertion (ii) holds at k.
It remains to prove Assertion (iii). We distinguish several cases.
Suppose first that ζ 6= α. By Lemma 22, the element

u = x−α,−m(−1/c) (vk)−1 x−α,−m(1/c) vk

belongs to Stab+(∆k). Using Assertion (i), we find (v′k+1, . . . , v
′
p) ∈ Stab+(δ)>k+1 such that

uvk+1 · · · vp[tν ] = v′k+1 · · · v
′
p[tν ]. Moreover v′ks

= vks
= xα,m(cs) for each s ∈ {1, . . . , r}, for

∆ks−1 = ∆ks
. Applying the inductive assumption, we find (v′′k+1, . . . , v

′′
p) ∈ Stab+(δ)>k+1

such that x−α,−m(1/c) v′k+1 · · · v
′
p[tν ] = v′′k+1 · · · v

′′
p [tν ]. Then

x−α,−m(1/c) vkvk+1 · · · vp[tν ] = vkv
′′
k+1 · · · v

′′
p [tν ],

which establishes that Assertion (iii) holds at k in this first case.
The second case is when ζ = α but n 6= m. Then n > m, by the minimality of m. Let p

be the square root in 1 + tO of 1 + tn−mb/c. Equation (3) implies that

x−α,−m(1/c)vk = x−α(1/ctm)xα(btn)

= p−α∨

xα(btn)x−α(1/ctm)p−α∨

= p−α∨

vkx−α,−m(1/c)p−α∨

.
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Assertion (i) allows us to find (v′k+1, . . . , v
′
p) ∈ Stab+(δ)>k+1 such that p−α∨

vk+1 · · · vp[tν ] =
v′k+1 · · · v

′
p[tν ], with the further property that v′ks

= vks
= xα,m(cs) for each s ∈ {1, . . . , r}.

We apply then the inductive assumption and find (v′′k+1, . . . , v
′′
p) ∈ Stab+(δ)>k+1 such that

x−α,−m(1/c) v′k+1 · · · v
′
p[tν ] = v′′k+1 · · · v

′′
p [tν ]. Then

x−α,−m(1/c) vkvk+1 · · · vp[tν ] = p−α∨

vkv
′′
k+1 · · · v

′′
p [tν ],

and a final application of Assertion (ii) concludes the proof of Assertion (iii) at k in this
second case.

The last case is (ζ, n) = (α,m). In this case, k1 = k and b = ck1
. The assumptions of the

lemma imply that b+ c 6= 0. Equation (3) says then that

x−α,−m(1/c)vk = xα,m(bc/(b + c))(1 + b/c)−α∨

x−α,−m(1/(b + c)).

Applying the inductive assumption, we find (v′k+1, . . . , v
′
p) ∈ Stab+(δ)>k+1 such that

x−α,−m(1/(b + c)) vk+1 · · · vp[tν ] = v′k+1 · · · v
′
p[tν ].

Using now Assertion (ii), we see that

x−α,−m(1/c) vkvk+1 · · · vp[tν ] = xα,m(bc/(b + c)) (1 + b/c)−α∨

v′k+1 · · · v
′
p[tν ]

belongs to π(C(δ))>k . This concludes the proof of Assertion (iii) at k. �

At the end of their paper [12], Gaussent and Littelmann describe several cases where
one can read on the LS galleries that the MV cycles associated to them are included one in
another. This question is further investigated by Ehrig, who computes an extensive list of
examples in [11]. The next proposition proposes a sufficient condition.

Proposition 30 Let δ be an LS gallery and let α be a simple root of the system Φ. If the
gallery eαδ is defined, then Z(δ) ⊆ Z(eαδ).

Proof. We represent δ as in (18). We assume that eαδ is defined and we let m ∈ Z and
0 6 j < k 6 p + 1 be as in the definition of eαδ. We call (k = k0, k1, . . . , kr) the list in
increasing order of indices l ∈ {1, . . . , p} such that Φaff

+ (∆′
l,∆l) =

{
(α,m)

}
. Finally we equip

Φaff
+ (∆′

0,∆0) with a total order.

Let (al,β) ∈
∏p

l=0 CΦaff
+ (∆′

l
,∆

l
) be a family of complex numbers such that ak0,(α,m) +

ak1,(α,m) + · · · + aks,(α,m) 6= 0 for each s ∈ {0, 1, . . . , r} and set

vl =
∏

β∈Φaff
+

(∆′
l
,∆

l
)

xβ(al,β) for each l ∈ {0, 1, . . . , p}, A =

j−1∏

l=0

vl and B =

p∏

l=j

vl.

By Corollary 25, the element AB[tν ] describes a dense subset of Z(δ) when the parameters
al,β vary. To establish the proposition, it therefore suffices to show that AB[tν ] belongs to
Z(eαδ). What we will now show is more precise:

For any non-zero complex number h, the element Ax−α,−m−1(h)B[tν ] belongs to π(C(eαδ)).

We first observe that xα,m+1(1/h) ∈ Stab+(∆′
j), for ∆′

j ⊆ Hα,m+1. Using Lemma 29 (i),
we find (v′j , v

′
j+1, . . . , v

′
p) ∈ Stab+(δ)>j such that

xα,m+1(1/h)B[tν ] = v′jv
′
j+1 · · · v

′
p[tν ].
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We may moreover demand that v′ks
= vks

= xα,m(aks,(α,m)) for each s ∈ {0, 1, . . . , r}, for
∆′

ks−1 = ∆′
ks

. We set

C =

k−1∏

l=j

v′l and D =

p∏

l=k+1

v′l,

and then B[tν ] = xα,m+1(−1/h)Cv′kD[tν ]. Using Lemma 29 (iii), we now find (v′′k+1, v
′′
k+2,

. . . , v′′p) ∈ Stab+(δ)>k+1 such that

x−α,−m

(
1/ak,(α,m)

)
D[tν ] = v′′k+1v

′′
k+2 · · · v

′′
p [tν ].

We finally set

E = xα,m

(
ak,(α,m)

)
x−α,−m

(
−1/ak,(α,m)

)
xα,m

(
ak,(α,m)

)
,

F = xα,m

(
−ak,(α,m)

) p∏

l=k+1

v′′l ,

K = x−α,−m−1(h)xα,m+1(−1/h).

Then Ax−α,−m−1(h)B[tν ] = AKCEF [tν ].
We now observe that

Φaff
+

(
sα,m+1(∆′

l), sα,m+1(∆l)
)

=






{
(α,m + 1)

}
⊔ sα,m+1

(
Φaff

+ (∆′
j,∆j)

)
if l = j,

sα,m+1

(
Φaff

+ (∆′
l,∆l)

)
if j < l < k,

and that
Φaff

+

(
τα∨(∆′

l), τα∨(∆l)
)

= τα∨

(
Φaff

+ (∆′
l,∆l)

)
if l > k.

These equalities, the definition of eαδ, Equation (16) and Proposition 21 (ii) imply that the
sequence

(
v0, . . . , vj−1, xα,m+1(h)

(
t(m+1)α∨

sα

)
v′j
(
t(m+1)α∨

sα

)−1
,

(
t(m+1)α∨

sα

)
v′j+1

(
t(m+1)α∨

sα

)−1
, . . . ,

(
t(m+1)α∨

sα

)
v′k−1

(
t(m+1)α∨

sα

)−1
,

tα
∨

xα,m

(
−ak,(α,m)

)
t−α∨

, tα
∨

v′′k+1t
−α∨

, . . . , tα
∨

v′′p t
−α∨

)

belongs to Stab+(eαδ). Proposition 24, Equation (21) and the definition of the map π then
says that

A xα,m+1(h)
(
t(m+1)α∨

sα

)
C
(
t(m+1)α∨

sα

)−1
tα

∨

F [tν ]

belongs to π(C(eαδ)). An appropriate application of Lemma 29 (ii) shows that the element

obtained by inserting extra factors (−h)−α∨

and
(
−ak,(α,m)

)−α∨

in this expression, respec-

tively after A and before tα
∨

, also belongs to π(C(eαδ)). Now Equation (4) allows to rewrite

K = (−h)−α∨

xα,m+1(h)
(
t(m+1)α∨

sα

)
and E =

(
t(m+1)α∨

sα

)−1 (
−ak,(α,m)

)−α∨

tα
∨

,

and we conclude that AKCEF [tν ] = Ax−α,−m−1(h)B[tν ] belongs to π(C(eαδ)), as announced.
�
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Proof of Theorem 27. Obviously Z preserves the weight. Comparing Proposition 28 (ii) with
Equation (13), we see that Z is compatible with the structure maps ϕi. The axioms of a
crystal imply then that Z is compatible with the structure maps εi. Now let δ be an LS
gallery of weight ν, as in (18), let i ∈ I, and assume that the LS gallery eαi

δ is defined. Then
the two MV cycles Z(δ) and Z(eαi

δ) satisfy the four conditions of Proposition 12. Indeed
the first and the third conditions follows immediately from the fact that Z(δ) ∈ Z (λ)ν and
Z(eαi

δ) ∈ Z (λ)ν+α∨
i
; the second condition comes from Proposition 28 (ii) and from the

second assertion of Lemma 6 (iii) in [12]; the fourth condition comes from Proposition 30.
Therefore Z(eαi

δ) = ẽiZ(δ); in other words, Z intertwines the action of the root operators
on Γ+

LS(γλ) with the action of Braverman and Gaitsgory’s crystal operators on Z (λ). This
concludes the proof that Z is a morphism of crystals. Since Z is bijective and both crystals
Γ+

LS(γλ) and Z (λ) are normal, Z is an isomorphism. �
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Avancée
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