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Abstract

This article is concerned with the long time behavior of neutral genetic population
models, with fixed population size. We design an explicit, finite, exact, genealogical
tree based representation of stationary populations that holds both for finite and infi-
nite types (or alleles) models. We then analyze the decays to the equilibrium of finite
populations in terms of the convergence to stationarity of their first common ancestor.
We estimate the Lyapunov exponent of the distribution flows with respect to the total
variation norm. We give bounds on these exponents only depending on the stability
with respect to mutation of a single individual; they are inversely proportional to the
population size parameter.

Keywords : Wright-Fisher model, neutral genetic models, coalescent trees, Lyapunov
exponent, stationary distribution.

Mathematics Subject Classification : 60J80, 60F17, 65C35, 92D10, 92D15.

1 Introduction

Stochastic models for population dynamics provide a mathematical framework for the anal-
ysis of genetic variations in biological populations that evolve under the influence of evo-
lutionary type forces such as selections and mutations. The common models, such as the
(generalized) Wright-Fisher models, allow for many variations in the fundamental assump-
tions. For example, one may consider a finite population, or a sample out of an infinite
population; there might be a finite or infinite number of types (or alleles) of individuals; the
genetics involved may refer to monoecious (i.e. where there is only one sex) or dioecious
phenomena, and so on.

Dealing with finite number of individuals without sampling in an infinite population is
usually difficult: although the problems are easily formulated, computations become soon
very involved. Here, we are interested in finite population models where the evolution is
driven by a selection/mutation process and derive explicit formulas for the stationary state of
the population or the decay to the equilibrium. We do not put any restriction on the number
of types or alleles, that may be finite or infinite. The main restriction to a full generality of
the model is neutrality of the selection process: that is, we assume that all individuals have
the same reproduction rate (we refer e.g. to the monograph of M. Kimura [6] for a detailed
account on the neutral theory of molecular evolution).
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At the molecular level, the evolutionary models we consider correspond therefore to
situations where the genetic drifts that govern the dynamics are the mutations combined
with a uniform reproduction rate. Genealogical tree evolution models arise then in a natural
way, when considering the complete past history of the individuals. These path space models
can be described forwards with respect to the time parameter. Conversely, we can also trace
back in time the complete ancestral line of all the individuals. This backward view of the
ancestral structures is then interpreted as a stochastic coalescent process.

The important questions that arise then are the precise description of the asymptotic
behavior of evolution processes, and the corresponding time to equilibrium analysis. They
are at the core of the modern development of mathematical biology. Let us also point out
that, apart from their importance in biology, they are also related to the convergence of a
class of genealogical tree algorithms used in advanced stochastic engineering, and in Bayesian
statistics. For example, a full understanding of the long time behavior of genetic type
branching models is essential in the designing of genealogical particle filters and smoothers,
as well as for the tuning of genetic algorithms for solving global optimization problems.
These features of evolutionary models are another strong motivation for the present work
and, although we emphasize mainly the applications to genetics, the interested reader should
keep in mind these other application areas (for further informations and references on the
subject, see for instance the pair of recent books [2, 3]).

During the last three decades, many efforts have been made to tackle these questions.
Although several natural Markov chain models of genetic processes have been developed,
their combinatorial complexity makes both the intuitive, and the rigorous understanding
of the long time behavior of evolution mechanisms difficult. Several reduced models have
been developed to obtain rigorous, but partial theoretical results. These simplified models
are usually based on large population approximations, and appropriate rescaling of the time
parameter in units of the total population size.

Let us review very briefly three main directions of research in the field. The first one
studies the diffusion limit model arising, through appropriate time rescaling techniques,
when considering gene type fractions decompositions on large population sizes models (see
for instance the seminal book of S. N. Ethier and T. Kurtz [8], and the references therein).
A second idea is to consider the backward ancestral lineage in infinitely many allele models.
This genealogical process is expressed in terms of rescaled Poisson coalescence epochs, and
superimposed Poisson mutation events. Running back in time this population model, the
coalescent of Kingman describes the ancestral genealogy of the individuals in terms of a
simplified binary ancestral lineage tree. The Ewens’ sampling formula describes the limiting
distribution of the type spectrum in finite samples of the infinitely many allele models (see
for instance the Saint Flour’s lecture notes of S. Tavaré [11], and references therein). A third,
more recent, idea is essentially based on the mean field interpretation of genetic models. In
this context, the occupation measures of simple genetic populations converge, as the size of
the systems tends to infinity, to a non linear Feynman-Kac semigroup in the distribution
space. For a rather detailed account of these mean field limits, we refer the reader to the
first author monograph [2]. In this interpretation, and in the case of reversible mutations,
the long time behavior of an infinite population model corresponds to the ground state of
Schrödinger type operators.

In the present article we depart from these techniques and tackle directly the combina-
torial complexity of finite population dynamics. This leads to a fine asymptotic analysis of a
general class of neutral genetic models on arbitrary state spaces, with fixed population size.
In contrast to the existing literature on the asymptotic behavior of neutral genetic models,
our approach is not based on some had-oc rescaling of the time parameter, and it applies
to evolutionary models with fixed population size.

Firstly, we provide an explicit functional representation of their invariant measures in
terms of planar genealogical trees. We then use this representation to analyze the decays to
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stationary populations in terms of the convergence to the equilibrium of the first common
ancestor and show, for example, that the Lyapunov exponent of the genetic distribution
flow is inversely proportional to the population size of the model. This estimate is of course
sharper than the one we would obtain using crude minorization techniques of the transitions
probabilities of the genetic model, such as those presented in [4]. We refer to Section 2.3,
Theorems 2.1 and 2.2 for a precise statement of the main results of the article.

Unfortunately, these rather natural genealogical techniques are restricted to neutral ge-
netic population models, but it leads to conjecture that the same type of decays holds true
for more general models. Besides, some of the ideas and techniques developed in the article
can certainly be adapted to cover inhomogeneous selection rates -this is a point we leave
deliberately out of the scope of the present work.

We finally mention that the genealogical invariant measure derived in the present article
belongs to the same class of tree based measures as the ones studied in [1] to derive coales-
cent tree based functional representations of genetic type particle models. The symmetry
properties of the invariant measure can be combined with the combinatorial analysis pre-
sented in [1] to simplify notably the formula for the distributions of stationary populations.
We briefly present these constructions in the last section.

To the best of our knowledge, these genealogical tree based representations of stationary
populations, as well as of the corresponding convergence decays to the equilibrium, are the
first of this kind, for this class of evolutionary models.

2 Neutral Genetic Models

2.1 Conventions

Let us introduce some notation. We denote respectively by M(E), P(E), and B(E), the
set of all finite signed measures on some measurable space (E, E), the convex subset of all
probability measures, and the Banach space of all bounded and measurable functions f on
E, equipped with the uniform norm ‖f‖ = supx∈E |f(x)|. The space E will stand for the
set of types or alleles of the genetic model.

We let µ(f) =
∫

µ(dx) f(x), be the Lebesgue integral of a function f ∈ B(E), with
respect to a measure µ ∈M(E), and we equipM(E) with the total variation norm ‖µ‖tv =
supf∈B(E):‖f‖≤1 |µ(f)|.

We recall that a Markov transition M from E into itself, is an integral probability
operator such that the functions

M(f) : x ∈ E 7→M(f)(x) =

∫

E
M(x, dy) f(y) ∈ R

are E-measurable and bounded, for any f ∈ B(E). It generates a dual operator µ 7→ µM
fromM(E) into itself defined by (µM)(f) := µ(M(f)). For a pair of Markov transitions M1,
and M2, we denote by M1M2 the composition integral operator from E into itself, defined
for any f ∈ Bb(E) by (M1M2)(f) := M1(M2(f)). The tensor power M⊗N represents the
bounded integral operator on EN , defined for any F ∈ B(EN ) by

M⊗N (F )(xN , . . . , xN ) =

∫

EN

[
M(x1, dy1) . . . M(xN , dyN )

]
F (y1, . . . , yN )

We let N be a fixed integer parameter, and we set [N ] = {1, . . . , N}. The integer N will
stand for the number of individuals in the population. We denote by m(x) = 1

N

∑N
i=1 δxi

the empirical measure associated with an N -uple x = (xi)1≤i≤N ∈ EN . The notation δx

stands in general for the Dirac measure at the point x.
We let A = [N ][N ], be the set of mappings from [N ] into itself. We associate with a

mapping a ∈ A, the Markov transition Da on EN defined by Da(x, dy) = δxa(dy), with
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xa = (xa(i))i∈[N ]. The transition Da can be interpreted as a coalescent, or a selection

type transition on the set EN . In this interpretation, the population of individuals xa =
(xa(i))i∈[N ] results from a selection in x = (xi)i∈[N ] of the individuals with labels (a(i))i∈[N ].
Also notice that the N -tensor product of an empirical measure can be expressed in terms
of these selection type transitions :

m(x)⊗N (dy) =
1

|A|
∑

a∈A

Da(x, dy) =: D(x, dy)

We consider now a Markov transition M , and a probability measure η on E. The Markov
transition M will represent the mutation transition process, whereas η will stand for the
initial distribution of the population. An N -neutral genetic model, with these parameters,
can be represented by a pair of EN -valued Markov chains (ξn)n∈N = ((ξi

n)i∈[N ])n∈N and

(ξ̂n)n∈N = ((ξ̂i
n)i∈[N ])n∈N, together with transitions

ξn

selection
−−−−−−−−−→ ξ̂n

mutation
−−−−−−−−−→ ξn+1 (2.1)

The initial configuration ξ0 consists of N independent and identically distributed random
variables with common distribution η.

The selection transition ξn  ξ̂n corresponds to a simple Wright-Fisher selection model:
it consists in sampling N conditionally independent random variables (ξ̂i

n)i∈[N ], with com-

mon distribution m(ξn). Equivalently, the selected population ξ̂n is a random variable with
distribution D(ξn, dx); in other words, we chose randomly a mapping An in A, and we set

ξ̂n = ξAn
n

(
= (ξ

An(i)
n )i∈[N ]

)
. In the literature on branching processes, this random selection

mapping An is often expressed in terms of a multinomial branching rules. Assume, for in-
stance that all the ξi

n are different, if we let Ln = (Li
n)i∈[N ] be the number of offsprings of

the individuals ξn

∀i ∈ [N ] Li
n :=

∣∣∣
{

j ∈ [N ] : ξ̂j
n = ξi

n

}∣∣∣
then, we find that Ln has a symmetric multinomial distribution

P
(
L1

n = l1, . . . , LN
n = lN | ξn

)
=

N !

l1! . . . lN !

1

NN

for any l = (li)i∈[N ] ∈ N
N , with

∑
i∈[N ] l

i = N .

During the mutation, each of the selected particles ξ̂i
n evolves to a new location ξi

n+1,
randomly chosen with distribution δ

ξ̂i
n
M , with i ∈ [N ]. Equivalently, the population ξn+1

after mutation is a random variable with distributionM(ξ̂n, dx), with M := M⊗N .
The distribution laws of the populations before and after the selection step are defined

by the values, for any function F ∈ Bb(E
N ), of

Γη,n(F ) := E (F (ξn)) and Γ̂η,n(F ) := E

(
F (ξ̂n)

)

Notice that Γη,0 = η⊗N , and Γ̂η,0 = Γη,0D. By construction, we also have that Γ̂η,n = Γη,nD,

and Γη,n+1 = Γ̂η,nM. This clearly gives the dynamical structure of the pair of distributions

Γη,n+1 = Γη,n (DM) and Γ̂η,n+1 = Γ̂η,n (MD)

In particular, we have:

Γη,n(F ) = Γη,0 (DM)n (F ) = E
(
Γη,0DA0MDA1 . . . DAn−1M(F )

)

and
Γ̂η,n(F ) = Γ̂η,0 (MD)n (F ) = E (Γη,0DA0MDA1 . . .MDAn(F ))

with a sequence of independent random variables (Ap)0≤n, uniformly chosen in the set A.
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2.2 Genealogic trees representations

In neutral reproduction models, the pair of mutation-selection processes can be separated
in order to describe the mutation scenarios and the neutral selection reproductions on two
different levels. Traditionally, these neutral genetic models are sampled in the following way.
The genealogical structure of the individuals is first modelized. Then, the genetic mutations
are superimposed on the sampled genealogy.

In the present section, we design a representation of this pair of genetic processes in terms
of random trees. The neutral selections are encoded by random mappings; their composition
gives rise to random coalescent trees. The representation of the process is complete when
mutation scenarios are taken into account. In contrast to traditional mutation-selection de-
coupling models, non necessarily neutral selection processes could also be described forward
in terms of these random trees. In this situation, the random selection type mappings would
depend on the configuration of the genes.

We let Xin
n , with in = (i0, . . . , in) ∈ [N ]n+1, and n ≥ 0, be the collection of E-valued

random variables defined inductively as follows: at rank n = 0, Xi0
0 , with i0 = i0 ∈ [N ],

represents a collection of N independent, and identically distributed random variables with
common distribution η. Given the random variable X

in−1

n−1 , for some multi index in−1 ∈ [N ]n,
the sequence of random variables Xin

n , with in = (in−1, in), and in ∈ [N ] consists in N
conditionally independent random variables, with common distribution δ

X
in−1
n−1

M .

Following the convention of [5], the collection of random variables X
ip
p , with ip ∈ [N ]p+1,

and 0 ≤ p ≤ n, can be associated to the vertices of a planar forest of height n. The sequence
of integers in represents the complete genealogy of an individual at level n. For instance,
an individual Xi2

2 in the second generation is associated with the triplet i2 = (i0, i1, i2) of
integers that indicates that he his the i2-th child of the i1-th child of the i0-th root ancestor
individual. Running back in time, we can trace back the complete ancestral line of a given
current individual Xin

n at the n-th generation

Xi0
0 ←− Xi1

1 ←− . . .←− X
in−1

n−1 ←− Xin
n

The neutral selection, and the mutation transition introduced in (2.1) have a natural inter-
pretation in terms of these random forests. Roughly speaking, the random forests introduced
above represent all the transitions of a selection-mutation genetic algorithm.

To be more precise, it is convenient to introduce some additional algebraic structures.
We equip A = [N ][N ] with the unital semigroup structure associated with the composition
operation ab := a◦b, and the identity element Id. We equip the set A with the partial order
relation defined for any pair of mappings a, c ∈ A by the following formula

a ≤ c⇐⇒ ∃b ∈ A a = bc

For any collection of mappings (ap)0≤p≤n, we notice that

a0,n ≤ a1,n ≤ . . . ≤ an−1,n ≤ an ≤ Id

with the composition semigroup ap,n = apap+1,n, 0 ≤ p < n; and the convention an,n = an.
For any weakly decreasing sequence of mappings (b0, . . . , bn) ∈ An+1 (that is, any sequence
s.t. bi ≥ bi+1, we set

X (bn,...,b0)
n :=

(
Xbn(i),...,b1(i),b0(i)

n

)
1≤i≤N

In this notation, it is now easy to prove that the neutral genetic model can be seen as a
particular way to explore the random forest introduced above

X Id
0

selection
−−−−−−−−−→ XA0

0

mutation
−−−−−−−−−→ XA0,Id

1

selection
−−−−−−−−−→ XA0A1,A1

1

mutation
−−−−−−−−−→ XA0A1,A1,Id

2 −→ . . .
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with a sequence of independent random variables (Ap)0≤n, randomly chosen in the set A.
More generally, the distribution laws of the neutral genetic model are given by the formulae

Γ̂η,n(F ) = Eη

(
F
(
XA0,n,A1,n,...,An−1,n,An

n

))

with the semigroup Ap,n := ApAp+1,n, with 0 ≤ p < n, and the convention An,n = Id. In
much the same way, we also have that

Γη,n+1(F ) = Γ̂η,nM(F ) = Eη

(
F
(
XA0,n,A1,n,...,An−1,n,An,Id

n+1

))

2.3 Asymptotic behavior

The permutation mappings σ ∈ GN are the largest elements ofA, while the smallest elements
of A are given by the constants elementary mappings ei(j) = i, for any j ∈ [N ], with
1 ≤ i ≤ N . The set of these lower bounds is denoted by

∂A = {a ∈ A : |a| = 1} = {ei : i ∈ [N ]},

where |a| stands for the number of elements in the image of a. We also let (Bp)0≤p≤n be
the weakly decreasing Markov chain on A defined by

∀n ≥ 1 Bn := AnBn−1 (2.2)

with the initial condition B0 = A0, where (Ap)0≤p≤n stands for a sequence of independent
and uniformly distributed random variables on the set of mappings A. We let T be the first
time the chain Bn enters in the set ∂A.

T := inf {n ≥ 0 : Bn ∈ ∂A} (2.3)

In terms of genealogy, the Markov chain (2.2) represent the ancestral branching process from
the present generation at time 0 back into the past. In this interpretation, the mapping An in
formula (2.2) represents the way the individuals choose their parents in the previous ancestral
generation. The range of An represents successful parents with direct descendants, whereas
the range of Bn represents successful ancestors with descendants in all the generations till
time 0. The random variable T represents the time to most recent common ancestor of an
initial population with |B0| individuals.

We are now in position to state the two main results of this article.

Theorem 2.1 The Markov chain Bn is absorbed by the boundary ∂A in finite time, and
BT is uniformly distributed in ∂A. In addition, for any time horizon n ≥ 0, we have

P(T > n) ≤ K
( n

N
∨ 1
)

exp

(
−
( n

N
− 1
)

+

)
with K := e

∏

l∈N∗

(
1− 2

(l + 1)(l + 2)

)−1

The Theorem follows from (4.1).

We further assume that the Markov transition M has an invariant probability measure
µ on E, and we denote by Γ̂µ the probability measure on EN defined by

∀F ∈ Bb(E
N ) Γ̂µ(F ) := Eµ

(
F
(
XBT ,...,B1,B0

T

))
(2.4)
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Theorem 2.2 The measure Γ̂µ is an invariant measure of the N -neutral genetic model ξ̂n.
In addition, if the mutation transition M satisfies the following regularity condition :

(H) There exists some λ > 0, and some finite constant δ <∞ such that for any n ≥ 0

β(Mn) := sup
(x,y)∈E2

‖Mn(x, .)−Mn(y, .)‖tv ≤ δ e−λn (2.5)

then, there exists K ′ ≥ 0 (a universal constant) such that for n ≥ N + 1
λ , we have the

estimate

∥∥∥Γ̂η,n − Γ̂µ

∥∥∥
tv
≤ δK ′ n

N
exp

(
− n

N + 1
λ

)

This Theorem follows from Theorem 2.1, Equation (3.5) and Corollary 4.2. Notice that the
regularity condition is a weak condition, most often satisfied in selection-mutation genetic
models -degenerate cases should be avoided such as, for example, in the finite state case,
the splitting of the matrix representation of M into a direct sum, or the existence of several
fixed points of the Markov transition. The regularity hypothesis is satisfied for example if
M(x, dy) = αδx(dy) + (1− α)µ(dy) with 0 < α < 1 and µ a Lebesgue-type density on E.

We end this section with some consequence of these two theorems. Firstly, we notice
that the first assertion of the theorem can alternatively be expressed in terms of the measure
Γµ defined by

∀F ∈ Bb(E
N ) Γµ(F ) := Eµ

(
F
(
XBT ,...,B1,B0,Id

T

))

More precisely we notice that, by construction, Γµ(F ) = Γ̂µ(MF ). This readily implies
that Γµ is an invariant measure of the neutral genetic model ξn. Indeed, we have

Γµ(DM(F )) = Γ̂µ(MD(MF )) = Γ̂µM(F ) = Γµ(F )

The reverse assertion follows the same line of arguments.
Notice also that the second assertion of the theorem can be used to estimate the Lya-

punov exponent of the distribution semigroup of the neutral genetic particle model; that is
we have that

lim inf
n→∞

− 1

n
log
∥∥∥Γ̂η,n − Γ̂µ

∥∥∥
tv
≥ λ

λN + 1
∧ 1

N

3 Random mappings and coalescent tree based measures

Recall that we denote by |a| we denote the cardinality of the set a([N ]). Notice that
a ≤ c⇒ |a| ≤ |c|, and the cardinality of the set

Ac := {a ∈ A : a ≤ c}

coincides with the number of ways N |c| of mappings the range c([N ]) of the mapping c into
the set [N ]. Also observe that |∂A| = N , and Aei

= ∂A, for any i ∈ [N ], where |δA| stands
for the cardinality of δA. In this notation, the transitions probabilities of the chain Bn

introduced in (2.2) are given by

P(Bn = b | Bn−1 = a) =
1

N |a|
1Aa(b) (3.1)

It is also readily checked that the uniform distribution ν0(a) := 1
|A| on A is such that

ν0(a) = K(Id, a), and we also have that K(ei, b
′) = 1

N 1∂A(b′), where K stands for the
Markov transition on A defined by

K(φ) : a ∈ A 7−→ K(φ)(a) :=
1

|A|
∑

b∈A

φ(ba)

7



for any function φ on A. This clearly implies that the uniform measure ν1(a) := 1
N 1∂A(a)

on the set ∂A is an invariant measure of K. That is we have that ν1 = ν1K.
For any weakly decreasing sequence of mappings b = (b0, . . . , bn) ∈ An+1, with a finite

length l(b) = n, we write

|b| :=
∑

0≤p≤n

|bp|

For any c = (c0, . . . , cn) ∈ An+1, any mapping a ∈ A, and any b ≥ c0, we also write

(b, c) = (b, c0, . . . , cn) ca := (c0a, . . . , cna) and c ⋆ a := (c0a, . . . , ctna)

where tn = inf {0 ≤ p ≤ n : cpa ∈ ∂A}; with the convention tn = n, if cpa 6∈ ∂A for any
0 ≤ p ≤ n.

The set of all weakly decreasing excursions from A into ∂A is given by

C := ∪n≥0Cn

with the sets Cn of all weakly decreasing excursions c, with length l(c) = n ≥ 0, and defined
by

Cn = {c = (c0, . . . , cn) ∈ (A− ∂A)n × ∂A : ∀0 ≤ p < n cp ≥ cp+1}
We use the convention C0 = ∂A, for n = 0. We associate with the random excursion

B = (B0, B1, . . . , BT ) ∈ C

the pair of random excursions

B′ = (Id,B) ∈ C and B′ ⋆ A ∈ C,

where A stands for a uniformly distributed A-valued random variable.

Lemma 3.1 The Markov chain Bn is absorbed by the boundary ∂A in finite time, and BT

is uniformly distributed in ∂A. Furthermore, the excursions B and B′ ⋆ A are distributed
on C according to the same distribution p : c ∈ C 7→ p(c) := 1/NN+(|c|−1).

Indeed, using the very crude upper bound

P(T > n) ≤ P (∀0 ≤ p ≤ n Ap 6∈ ∂A) =

(
1− 1

NN−1

)n+1

(3.2)

we readily check that the chain Bn is absorbed in the boundary subset ∂A in finite time:
P(T <∞) = 1. Furthermore, by symmetry arguments, the entrance point BT is uniformly
distributed in ∂A, that is we have that P(BT = a) = ν1(a).

From the computation of the conditional expectation in Eq. 3.1, it is easily checked that
p is the distribution of the excursion B. Notice that it is a well defined probability measure
on the set of excursions C since

p(Cn) = P(T = n)⇒ p(C) = P(T <∞) = 1

By construction, we have

B′ = (B′
0, . . . , B

′
T , B′

T+1) = (Id,B) = (Id,B0, . . . , BT ),

with T = {inf n ≥ 0 Bn ∈ ∂A}. This implies that

B′ ⋆ A := (B′
0A,B′

1A, . . . , B′
SA) = (A,B0A,B1A, . . . , BS−1A)

8



with the stopping time

S = inf
{
n ≥ 0 : B′

nA ∈ ∂A
}

= inf {n ≥ 0 : Bn−1A ∈ ∂A}

and the convention B−1 = Id. The lemma follows since, by the very definition of Bn, the
Markov chain Bn−1A, n ≥ 0 has the same distribution as the Markov chain Bn. In more
concrete terms, and for further use, we notice that, for any test function f we have:

E(f(B′ ⋆ A)) =
∑

n≥0

E (f(B−1A,B0A,B1A, . . . , Bn−1A) 1S=n)

=
∑

n≥0

∑

(c0,...,cn)∈Cn

f(c0, . . . , cn)ν(c0)K(c0, c1) . . . K(cn−1, cn)

=
∑

c∈C

f(c) p(c) = E(f(B)) (3.3)

(where ν stand for the uniform probability measure on A).

Definition 3.2 We associate with a probability measure η ∈ P(E), and a weakly decreasing
sequence of mappings b = (b0, . . . , bn) ∈ An+1, a probability measure η(b0,...,bn) ∈ P(EN )

defined for any F ∈ Bb(E
N ) by

η(b0,...,bn)(F ) := Eη

(
F
(
X bn,...,b0

n

))

By the definition of the neutral genetic model, for any weakly decreasing sequence of map-
pings b in A, and any mapping a ∈ A we have

ηbM = η(Id,b) and ηbDa = ηba (3.4)

In addition, for any excursion c ∈ C, any path a = (a1, . . . , am) ∈ ∂Am, and any a ∈ A we
have

η(c,a) = (ηMm)c µ(c,a) = µc and therefore µca = µc⋆a

Since (A0, . . . , An) has the same distribution as the reversed sequence (An, . . . , A0), we also
find that

Γ̂η,n(F ) = Eη

(
F
(
XA0,n,A1,n,...,An−1,n,An

n

))

= Eη

(
F
(
XAn...A0,An−1...A0,...,A1A0,A0

n

))

= Eη

(
F
(
XBn,Bn−1,...,B1,B0

n

))
= E

(
η(B0,...,Bn)(F )

)

Proposition 3.3 If the Markov transition M has an invariant probability measure µ on E,
then the probability measure

Γ̂µ(F ) :=
∑

c∈C

p(c) µc(F ) = E
(
µ(B0,...,BT )(F )

)

is an invariant measure of the neutral genetic model (ξ̂n)n≥0. Under the regularity condition

(H), the neutral genetic model has a unique invariant measure Γ̂µ, and we have the estimate

∀n ≥ 0
∥∥∥Γ̂η,n − Γ̂µ

∥∥∥
tv
≤ δ E(e−λ(n−T ) 1T≤n) + 2 P(T > n) (3.5)

with the pair of parameters (δ, λ) introduced in (2.5).
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Indeed, if we take the excursion B = (B0, B1, . . . , BT ), then by (3.3) we find that

E
(
µBM⊗NDA(F )

)
= E

(
µ(Id,B)DA(F )

)

= E
(
µ(Id,B)A(F )

)
= E

(
µ(Id,B)⋆A(F )

)
= E (µB(F ))

Since E (µB(F )) = Γ̂µ(F ), the end of the proof of the first assertion of the theorem is
completed. To prepare the proof of the second assertion, firstly we notice that

η(c,a)(F ) = Eη

(
F
(
X (a,cn,...,c0)

n+1

))
= EηM

(
F
(
X (cn,...,c0)

n

))
= (ηM)c(F )

for any excursion c = (c0, . . . , cn) ∈ C, with lenght l(c) = n, and any a ∈ ∂A. More
generally, for any path a = (a1, . . . , am) ∈ ∂Am, we have

η(c,a) = (ηMm)c

This clearly implies that

Γ̂η,n(F ) = E
(
η(B0,...,Bn)(F ) 1T≤n

)
+ E

(
η(B0,...,Bn)(F ) 1T>n

)

= E
(
(ηMn−T )(B0,...,BT )(F ) 1T≤n

)
+ E

(
η(B0,...,Bn)(F ) 1T>n

)

To take the final step, we consider the decomposition

Γ̂η,n(F )− Γ̂µ(F ) = E
([

(ηMn−T )(B0,...,BT ) − µ(B0,...,BT )

]
(F ) 1T≤n

)

+E
(
η(B0,...,Bn)(F )− µ(B0,...,Bn)(F )) 1T>n

)

For any excursion c = (c0, . . . , cn) ∈ C, with lenght l(c) = n, we notice that

[ηc − µc](F ) =

∫

E
[η − µ](dx)× Eδx

(
F
(
X (cn,...,c0)

n

))

Since µ = µMn−T , applying the majoration 2.5, we get
∣∣∣Γ̂η,n(F )− Γ̂µ(F )

∣∣∣ ≤ δ E(e−λ(n−T ) 1T≤n) + 2P(T > n)

for any ‖F‖ ≤ 1. This ends the proof of the proposition.

4 Absorption times behavior

We study here the renormalized time T/N for large integers N , where T is defined in (2.3),
when the mapping-valued Markov chain (Bn)n∈N has the identity as initial state. Let us
recall that T can be interpreted as the time a neutral genetic model with N particles has to
look backward to encounter its first common ancestor. The main result is the convergence
in law of T/N , which shows that T is of order N , but we will also be interested in more
quantitative bounds in this direction.

To begin with, we notice that T only depends on (|Bn|)n∈N and that this [N ]-valued
stochastic chain is Markovian, with transitions described by

∀ n ∈ N, ∀ 1 ≤ p ≤ q ≤ N, P(|Bn+1| = p | |Bn| = q) = S(q, p)
(N)p
N q

(where S(q, p) is the Stirling number of the second kind giving the number of ways of
partitioning the set [q] into p non empty blocks and where (N)p := N !/(N − p)!) and
starting from N if B0 = Id.
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This observation leads us to define for N ∈ N
∗, a triangular transition matrix M (N) by

∀ 1 ≤ p, q ≤ N, M (N)
q,p := S(q, p)

(N)p
N q

and to consider for any 1 ≤ i ≤ N , a Markov chain R(N,i) := (R
(N,i)
n )n∈N starting from i

and whose transitions are governed by M (N). Such a Markov chain is (a.s.) non-increasing
and 1 is an absorption state. We denote

S(N,i) := inf{n ∈ N : R(N,i)
n = 1}

so that T has the same law as S(N,N). The goal of this section is to prove the

Theorem 4.1 Let (iN )N∈N∗ be a sequence of integers satisfying 1 ≤ iN ≤ N for any N ∈ N
∗

and diverging to infinity. Then the following convergence in law takes place for large N

S(N,iN )

N

L−→
∑

l∈N

2

(l + 1)(l + 2)
El

where (El)l∈N is an independent family of exponential variables of parameter 1. Furthermore,
we have for any fixed 0 ≤ α < 1,

sup
N∈N∗

E[exp(αS(N,iN )/N)] ≤ exp(α)Π(α)

where

∀ 0 ≤ α < 1, Π(α) :=
∏

l∈N

1

1− 2α
(l+1)(l+2)

is the Laplace transform of the above limit law. Thus for any continuous function f : R+ →
R+ verifying limα→1− lim sups→+∞ exp(−αs)f(s) = 0, we are insured of

lim
N→∞

E[f(S(N,iN )/N)] = E

[
f

(
∑

l∈N

2

(l + 1)(l + 2)
El
)]

In particular, for any given 0 ≤ α < 1, via a Markov inequality, we deduce the exponential
upper bound

∀ N ∈ N
∗, ∀ 1 ≤ i ≤ N, ∀ n ∈ N, P[S(N,i) ≥ n] ≤ exp(α)Π(α) exp(−αn/N)

≤ K

1− α
exp(−αn/N)

with K = e
(∏

l∈N∗

(
1− 2

(l+1)(l+2)

))−1
. Optimizing this inequality with respect to 0 ≤ α <

1, we obtain that for any positive integers n and N ,

∀ 1 ≤ i ≤ N, P[S(N,i) ≥ n] ≤ K
( n

N
∨ 1
)

exp(−(n/N − 1)+) (4.1)

(of course this bound does not give any relevant information for n ≤ N , when the l.h.s.
probability is not small). As it was explained in the second section, such an inequality is
useful to estimate convergence to equilibrium for neutral genetic models and the results
presented in the introduction follow from it.
Indeed, in view of proposition 3.3, we still need another estimate, but it is an immediate
consequence of the above bound:
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Corollary 4.2 There exists a constant K ′ ≥ 0 such that for any λ > 0, any N ∈ N
∗, any

1 ≤ i ≤ N and any n ≥ N + 1/λ, we have

E

[
exp(−λ(n − S(N,i)))1{S(N,i)≤n}

]
≤ K ′ n

N
exp

(
−
(

1 +
1

λN

)−1 n

N

)

Indeed, let m ∈ [n] be given, we have

E

[
exp(−λ(n− S(N,i)))1{S(N,i)≤n}

]

= E

[
exp(−λ(n− S(N,i)))1{S(N,i)≤m}

]
+ E

[
exp(−λ(n− S(N,i)))1{m≤S(N,i)≤n}

]

≤ exp(−λ(n−m)) + P(S(N,i) > m)

≤ exp(−λ(n−m)) + K
(m

N
∨ 1
)

exp(−(m/N − 1)+)

≤ (1 + K)
n

N
max(exp(−λ(n−m)), exp(−(m/N − 1)+))

Where we have used that m ≤ n and that n ≥ N . Optimizing the last term, we are led to
consider

m =

⌊
n

1 + 1
λN

⌋

Note that this integer number is larger than N for n ≥ N +1/λ and the corollary’s inequality
follows easily from the obvious bounds

n

1 + 1
λN

− 1 ≤ m ≤ n

1 + 1
λN

�

Remark 4.3 The limit distribution appearing in Theorem 4.1 is the same as the law of
the coalescence time for the Kingman process (see for instance [7]). This could have been
expected, since it is known that, suitably “rearranged”, the mapping-valued Markov process
(B⌊Nt⌋)t∈R+ converges to the Kingman coalescent process for large N . Nevertheless, at
our best knowledge, this convergence takes place in a weak sense which does not permit to
deduce the results presented here. In fact, the latter could serve to strengthen the previous
convergence.

Before proving Theorem 4.1, we will investigate the simpler problem where only negative
jumps of unit length are permitted. More precisely, let M̃ (N) be the transition matrix
defined by

∀ 1 ≤ q, p ≤ N, M̃ (N)
q,p =





(N)q
N q

, if p = q

1− (N)q
N q

, if p = q − 1

0 , otherwise

Every corresponding notion will be overlined by a tilde. Then we have a result which is
similar to Theorem 4.1, with nevertheless some slight differences:

Proposition 4.4 Let (iN )N∈N∗ be a sequence of integers satisfying 1 ≤ iN ≤ N for any
N ∈ N

∗, diverging to infinity and such that a := limN→∞ iN/N exists in [0, 1]. Then the
following convergence in law takes place for large N

S̃(N,iN )

N

L−→ a +
∑

l∈N

2

(l + 1)(l + 2)
El
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where (El)l∈N is an independent family of exponential variables of parameter 1. Furthermore,
we have for any fixed 0 ≤ α < 1,

sup
N∈N∗

E

[
exp

(
α

S̃(N,iN ) − iN + 1

N

)]
= Π(α)

The case of a fixed initial condition, i.e. when there exists i ∈ N \ {0, 1} such that for any
N ≥ i, iN = i, is also instructive, despite the fact it is not included in the previous result:

Lemma 4.5 For given i ∈ N \ {0, 1}, the following convergence in law takes place for large
N ,

S̃(N,i)

N

L−→
∑

0≤l≤i−2

2

(l + 1)(l + 2)
El

where the El, for 0 ≤ l ≤ i − 2, are independent exponential variables of parameter 1.
Furthermore, we have for any fixed 0 ≤ α < 1,

sup
N∈N∗,N≥i

E

[
exp

(
α

S̃(N,i) − i + 1

N

)]
=

∏

0≤l≤i−2

1

1− 2α
(l+1)(l+2)

Let 2 ≤ i ≤ N be given. By a backward iteration and with the convention that T̃
(N)
i = 0,

we define for 1 ≤ j ≤ i− 1,

T̃
(N)
j := inf

{
n ∈ N : R̃

(N,i)

T̃
(N)
j+1+n

= j

}

In words, T̃
(N)
j is the time necessary for the Markov chain (R̃

(N,i)
n )n∈N to jump from j +1 to

j. For 1 ≤ j ≤ i−1, let us also denote T̂
(N)
j := T̃

(N)
j −1 and pN,j := M̃

(N)
j+1,j = (N)j+1/N

j+1.

It is clear that T̂
(N)
j is distributed as a geometric law of parameter pN,j, namely,

∀ m ∈ N, P[T̂
(N)
j = m] = (1− pN,j)p

m
N,j

Furthermore, the variables T̃
(N)
j , for 1 ≤ j ≤ i− 1, are independent and we can write

S̃(N,i) =
∑

1≤j≤i−1

T̃
(N)
j

= i− 1 +
∑

1≤j≤i−1

T̂
(N)
j (4.2)

This leads us to study the individual behavior of the summands:

Lemma 4.6 With the above notation and for a fixed j ∈ N
∗, we are insured of the following

convergence in law as N goes to infinity,

T̂
(N)
j

N

L−→ 2

j(j + 1)
E

where E is an exponential variable of parameter 1. Furthermore, we have for any fixed
0 ≤ α < j(j + 1)/2,

sup
N∈N∗,N≥j+1

E

[
exp

(
α

T̂
(N)
j

N

)]
= lim

N→∞
E

[
exp

(
α

T̂
(N)
j

N

)]

=
1

1− 2α
j(j+1)
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The simplest way to prove the Lemma seems to resort to Laplace’s transform. So we
compute that for any α ∈ R,

E[exp(αT̂
(N)
j /N)] =





1− pN,j

1− exp(α/N)pN,j
, if exp(α/N)pN,j < 1

+∞ , otherwise

The condition exp(α/N)pN,j < 1 is equivalent to

α < −N
∑

1≤k≤j

ln

(
1− k

N

)

and taking into account the convexity inequality − ln(1 − x) ≥ x, valid for any x < 1, we
get that it is in particular fulfilled for 0 ≤ α < j(j + 1)/2.
Furthermore, using an asymptotic expansion of pN,j in 1/N , we show without difficulty that
uniformly for α on any compact set of (−∞, j(j+1)/2) (in particular in some neighborhoods
of 0),

lim
N→∞

1− pN,j

1− exp(α/N)pN,j
=

1

1− 2α
j(j+1)

Since for α < j(j + 1)/2, the above r.h.s. coincides with the Laplace’s transform of 2
j(j+1)E ,

a well-known result (see for instance Theorem 0.5 of [12], indeed, as we are working with
nonnegative random variables, only a right neighborhood of 0 is required) enables us to
conclude to the announced convergence in law.
Concerning the upper bound, we begin by remarking that by a previously mentioned con-
vexity inequality, we have

∀ N ≥ j, pN,j ≤ exp

(
−j(j + 1)

2N

)

Next, we notice that for α ≥ 0, the mapping

[0, exp(−α/N)) ∋ t 7→ 1− t

1− exp(α/N)t

is increasing, so that

1− pN,j

1− exp(α/N)pN,j
≤

1− exp
(
− j(j+1)

2N

)

1− exp(α/N) exp
(
− j(j+1)

2N

)

Finally, we consider for fixed x > 0, the function

ϕ : [0, x] ∋ y 7→ x(1− exp(y − x)) + (y − x)(1 − exp(−x))

A variation study shows that it is increasing up to some point yx belonging to (0, x) and
decreasing after this point. Since ϕ(0) = ϕ(x) = 0, we get that ϕ is nonnegative on [0, x].
Thus we obtain that

∀ 0 ≤ y < x,
1− exp(−x)

1− exp(y − x)
≤ x

x− y

Applying this inequality with x = j(j + 1)/(2N) and y = α/N , it appears that for 0 ≤ α <
j(j + 1)/2 and N ≥ j + 1,

E

[
exp

(
α

T̂
(N)
j

N

)]
≤ 1

1− 2α
j(j+1)
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Since the l.h.s. was already seen to converge to the r.h.s. for large N , we can conclude that
the desired equalities hold.

�

The proof of Lemma 4.5 follows at once from the decomposition (4.2) and Lemma 4.6.
�

The proof of Proposition 4.4 is based on arguments that are close to the preceding ones.
More precisely, similarly to (4.2), we can write

S̃(N,iN ) − iN + 1 =
∑

1≤j≤iN−1

T̂
(N)
j

Thus we get for any α < 1,

E

[
exp

(
α

S̃(N,iN ) − iN + 1

N

)]
=

∏

1≤j≤iN−1

1− pN,j

1− exp(α/N)pN,j

≤
∏

1≤j≤iN−1

1

1− 2α
j(j+1)

≤ Π(α)

Let i ∈ N
∗ be fixed (at first). By assumption, for N large enough, we will have iN ≥ i and

quite obviously, S̃(N,iN ) − iN + 1 will stochastically dominate S̃(N,i) − i + 1, which implies,
for 0 ≤ α < 1,

E

[
exp

(
α

S̃(N,iN ) − iN + 1

N

)]
≥ E

[
exp

(
α

S̃(N,i) − i + 1

N

)]

and thus

lim inf
N→∞

E

[
exp

(
α

S̃(N,iN ) − iN + 1

N

)]
≥ lim

N→∞
E

[
exp

(
α

S̃(N,i) − i + 1

N

)]

=
∏

1≤j≤i−1

1

1− 2α
j(j+1)

Letting i go to infinity, it appears that

lim
N→∞

E

[
exp

(
α

S̃(N,iN ) − iN + 1

N

)]
= Π(α)

and the last part of Proposition 4.4 follows. We also obtain that for 0 ≤ α < 1,

lim
N→∞

E

[
exp

(
α

S̃(N,iN )

N

)]
= exp(αa)Π(α)

and to conclude to the announced convergence in law, it remains to check that above con-
vergence is uniform in some compact right neighborhood of 0. But this is a consequence
of Dini’s theorem, since the r.h.s. is continuous in α ∈ [0, 1) and for all fixed N ∈ N

∗, the
mapping [0, 1) ∋ α 7→ E[exp(αS̃(N,iN )/N)] is increasing.

We now proceed to the proof of Theorem 4.1. Its second part is the simplest one, since
S(N,iN ) is stochastically dominated by S̃(N,iN ):

∀ n ∈ N, P[S(N,iN ) ≥ n] ≤ P[S̃(N,iN ) ≥ n]
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This fact is based on two observations: on one hand, assuming that the Markov chain
R(N,iN ) is in state j ∈ [iN ] at some time n, it will wait the same time to jump out of it as
R̃(N,iN ), but R(N,iN ) will visit less states in [iN ] than R̃(N,iN ). Taking into account these two
facts, the above inequalities follow immediately. Details are left to the reader: one can e.g.
construct a coupling between R(N,iN ) and R̃(N,iN ) such that P[S̃(N,iN ) ≥ S(N,iN )] = 1 (for a
general reference on the subject, see for instance [9]).
In particular we get that for any α ≥ 0,

sup
N∈N∗

E[exp(αS(N,iN )/N)] ≤ sup
N∈N∗

E[exp(αS̃(N,iN )/N)]

so the wanted upper bound follows from that of Proposition 4.4.
We will need to work more to obtain the convergence in law. Heuristically the proof is

based on the fact

• that the Markov chain R(N,iN ) will rapidly reach some point negligible with respect
to N (but however going to infinity with N)

• and that from this point to 1, R(N,iN ) and R̃(N,iN ) are quite similar, which will enable
us to make use of Proposition 4.4.

We begin by showing the second assertion, namely that for not too large iN , R(N,iN ) and
R̃(N,iN ) are almost the same. The following lemma will enable us to quantify the “not too
large”.

Notation 4.7 In the following, we will sometimes drop the superscript (N, i) in R(N,i) and
τ (N,i) (to be defined below) when no confusion is possible, in order to make the proofs more
readable.

Lemma 4.8 There exists a constant χ1 > 0 such that for any 2 ≤ q ≤ N/2,

∀ n ∈ N,∀ i ∈ N
∗, P[R

(N,i)
n+1 ≤ R(N,i)

n − 2|R(N,i)
n = q] ≤ χ1

q4

N2

Indeed, by definition, we have for any 2 ≤ q ≤ N and n ∈ N,

P[Rn+1 ≤ Rn − 2|Rn = q] = 1− P[Rn+1 = Rn|Rn = q]− P[Rn+1 = Rn − 1|Rn = q]

= 1− 1

N q
(S(q, q)(N)q + S(q, q − 1)(N)q−1)

= 1− (N)q−1

N q

(
N − q + 1 +

q(q − 1)

2

)

= 1− exp


 ∑

1≤l≤q−2

ln(1− l/N)



(

1 +
(q − 1)(q − 2)

2N

)

But we note that there exists a constant χ > 0 such that

∀ 0 ≤ x ≤ 1/2, ln(1− x) ≥ −x− χx2

thus we get

∑

1≤l≤q−2

ln(1− l/N) ≥ −
∑

1≤l≤q−2

(
l

N
+ χ

l2

N2

)

= −(q − 2)(q − 1)

2N
− χ

6N2
(q − 2)(q − 1)(2q − 3)

≥ −(q − 2)(q − 1)

2N
− χ

3N2
q3
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Taking into account the convexity inequality exp(x) ≥ 1+x, valid for all x ∈ R, the wanted
probability is then bounded above by

1−
(

1− (q − 2)(q − 1)

2N
− χ

3N2
q3

)(
1 +

(q − 1)(q − 2)

2N

)

expression which is dominated by χ1
q4

N2 for an appropriate choice of the constant χ1.
�

Let us remark that the previous lemma enables us to get useful estimates on natural cou-
plings between R(N,iN ) and R̃(N,iN ), when iN is quite small in comparison with N . More
precisely, we begin by constructing R(N,iN ) and we define

τ̃ (N,iN ) := inf{n ≥ 0 : R
(N,iN )
n+1 ≤ R(N,iN )

n − 2}

Then we take R̃
(N,iN )
n = R

(N,iN )
n for n ≤ τ̃ (N,iN ) and R̃

(N,iN )

τ̃ (N,iN )+1
= R

(N,iN )

τ̃ (N,iN ) − 1. Next, we

use the transition matrix M̃ (N) to construct (R̃
(N,iN )
n )n>τ̃ (N,iN ) in a traditional way (and

independently from the above constructions). It is easy to check that this gives a coupling
between R(N,iN ) and R̃(N,iN ) and we have for any AN > 0, at least if iN ≤ N/2,

P[∃ n ∈ N : R(N,iN )
n 6= R̃(N,iN )

n ]

= P[τ̃ (N,iN ) < S(N, iN )]

≤ P[τ̃ (N,iN ) < S(N, iN ), S(N, iN ) ≤ ANN ] + P[S(N, iN ) > ANN ]

≤ ANN max
2≤q≤iN

χ1
q4

N2
+ P[S̃(N, iN ) > ANN ]

= χ1AN
i4N
N

+ P[S̃(N, iN ) > ANN ]

Thus it appears that if the sequence (iN )N∈N∗ of initial states diverging to infinity satisfies
furthermore

lim
N→∞

i4N
N

= 0 (4.3)

then we can choose a sequence (AN )N∈N∗ diverging to infinity and verifying

lim
N→∞

AN
i4N
N

= 0

so that

lim
N→∞

P[R(N,iN ) 6= R̃(N,iN )] = 0

In particular

lim
N→∞

P[S(N,iN ) 6= S̃(N,iN )] = 0

and we get from proposition 4.4 (applied with a = 0, because (4.3) implies that limN→∞ iN/N =
0) that

S(N,iN )

N

L−→
∑

l∈N

2

(l + 1)(l + 2)
El

To treat the general case, we now turn our attention toward the first assertion before
Lemma 4.8 (that the Markov chain R(N,iN ) will rapidly reach some point negligible with
respect to N). So for 1 ≤ j ≤ i ≤ N , we consider the reaching time

τ
(N,i)
j := inf{n ∈ N : R(N,i)

n < j}

It will be very useful to know that when R(N,i) is jumping through j, it is not going too far
away from j. The next lemma gives an estimate in this direction:
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Lemma 4.9 There exists a constant χ2 > 0, such that for all 4 ≤ j ≤
√

N and all j ≤ i ≤
N , we have

P

[
R

(N,i)

τ
(N,i)
j

≤ j/2

]
≤ χ2

j4

N2

Let us prove the Lemma. For simplicity, we write k := ⌊j/2⌋, and for 1 ≤ l ≤ k, j ≤ m ≤ N
and n ∈ N, we consider the quantity

P[Rn+1 = l|Rn = m]

P[Rn+1 = l + k|Rn = m]
=

S(m, l)

S(m, l + k)

(N)l
(N)k+l

We remark that S(m, l) ≤ S(m, l+k)S(l+k, l), because if we have a partitioning of [m] into
l+k blocks (that we can order through their respective smaller elements) and a partitioning
of [l + k] into l blocks, we can naturally construct a partitioning of [m] into l blocks by
composing them and this mapping is clearly onto. Thus, since S(l + k, l + k) = 1, we have

P[Rn+1 = l|Rn = m]

P[Rn+1 = l + k|Rn = m]
≤ P[Rn+1 = l|Rn = l + k]

P[Rn+1 = l + k|Rn = l + k]

But the last denominator is

(N)l+k

Nl+k
= exp


 ∑

1≤q≤l+k−1

ln
(
1− q

N

)



expression which is bounded below by a positive constant, uniformly in N ∈ N and l + k ≤
j ≤
√

N (as it was seen in the proof of lemma 4.8). Since k ≥ 2, we have

P[Rn+1 = l|Rn = l + k] ≤ P[Rn+1 ≤ l + k − 2|Rn = l + k]

and we have seen in lemma 4.5 that this quantity is bounded above by j4/N2 up to an
universal constant, for l + k ≤ j. Thus there exists a constant χ > 0 such that for any
N, k, l,m, n as above, we have (since for 4 ≤ j ≤

√
N , we have

√
N ≤ N/2),

P[Rn+1 = l|Rn = m] ≤ χ
j4

N2
P[Rn+1 = l + k|Rn = m]

and summing these inequalities for 1 ≤ l ≤ k, we get

P[Rn+1 ≤ k|Rn = m] ≤ χ
j4

N2
P[k < Rn+1 ≤ 2k|Rn = m]

≤ χ
j4

N2
P[Rn+1 ≤ 2k|Rn = m]

This bound can also be rewriten

P[Rn+1 ≤ k,Rn = m, τj = n] ≤ χ
j4

N2
P[Rn = m, τj = n]

and summing over all n ∈ N and j ≤ m ≤ N , we obtain finally the wanted inequality.
�

With this estimate at hand, we will be able to take advantage of an approach inspired by
section 1.4 of the book [10] of Motwani and Raghavan, to investigate the expectation of

τ
(N,i)
j .

Lemma 4.10 There exists a constant χ3 > 0 such that for all 4 ≤ j ≤ i ≤ N with j ≤ N2/5,
we have

E[τ
(N,i)
j ] ≤ χ3

N

j

18



Thus the Markov chain R(N,N) goes relatively fast from N to ⌊N2/5⌋.
To prove the Lemma, notice first that, by definition of the chain R, we find that for any

n ∈ N and any 1 ≤ q ≤ N ,

E [N −Rn+1 | Rn = q] =
1

N q

∑

1≤p≤q

S(q, p) (N)p (N − p)

Using the fact that (N)p (N − p) = N (N − 1)p, we find that

E [N −Rn+1 | Rn = q] =
1

N q−1

∑

1≤p≤q

S(q, p) (N − 1)p

=
(N − 1)q

N q−1

= N

(
1− 1

N

)q

This implies that for any 1 ≤ q ≤ N ,

E [Rn −Rn+1 | Rn = q] = E [q −N + N −Rn+1 | Rn = q]

= q −N + N

(
1− 1

N

)q

We are thus led to study the function defined by

∀ s ≥ 1, g(s) := s−N + N

(
1− 1

N

)s

and will show that there exists a constant χ such that

∀ N ≥ 2, ∀ 1 ≤ s ≤ N, g(s) ≥ (s− 1)2

χN
(4.4)

Indeed, we compute that

∀ s ≥ 1, g′′(s) = N ln2

(
1− 1

N

)(
1− 1

N

)s

and we see without difficulty that there exists a universal positive constant such that the
r.h.s. is bounded below by 1/(χN) for N ≥ 2 and 1 ≤ s ≤ N . Furthermore, we have

g′(1) = 1 + (N − 1) ln

(
1− 1

N

)

and as a function of N ∈ [2,+∞[, this quantity is decreasing, so that it is positive since its
limit in +∞ is 0.
Now, the lower bound (4.4) follows from a second order Taylor-Lagrange formula. As a
by-product of the above facts, we deduce that g is increasing on [1,+∞), since g′(1) > 0
and g′′ > 0. Furthermore, we note that a reverse bound is valid:

∀ N ≥ 2, ∀ s ≥ 0, g(s) ≤ s2

2N
(4.5)

Indeed, we have for any N ≥ 2 and r > 0,

g(rN) = N

(
r − 1 +

(
1− 1

N

)rN
)

≤ N (r − 1 + exp(−r))
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but for r > 0, it is easily seen that the expression between parentheses is less than r2/2, so
we get (4.5) by replacing s by rN . It also follows from (4.4) and (4.5) that there exists a
constant χ̃ > 0 such that g(l + 1) ≤ χ̃g(l) holds for any l ≥ 2.
Next we consider the stochastic chain M defined iteratively by

∀ n ∈ N, Mn := n +
∑

1≤l≤Rn

1

g(l)

Let us check that it is a supermartingale with respect to the filtration (Fn)n∈N naturally
generated by the Markov chain R. It is clearly adapted, so for n ∈ N, we compute, via the
Markov property and the fact that g is increasing, that

E[Mn+1 −Mn|Fn]

= E


1−

∑

Rn+1<l≤Rn

1

g(l)

∣∣∣∣∣Fn




≤ E

[
1− Rn −Rn+1

g(Rn)

∣∣∣∣∣Fn

]

But the last rhs is zero by definition of g, since it can also be written

1−
E

[
Rn −Rn+1

∣∣∣∣∣Rn

]

g(Rn)
= 0

Next we apply Doob’s stopping theorem to the nonnegative surmartingale M with re-
spect to the stopping time τj, to get

E[Mτj
] ≤ E[M0]

But we note that on one hand,

E[M0] =
∑

1≤l≤i

1

g(l)

and on the other hand, by definition,

Mτj
= τj +

∑

1≤l≤Rτj

1

g(l)

so it appears that

E(τj) ≤ E


 ∑

Rτj
<l≤i

1

g(l)




≤ χ̃ E


 ∑

Rτj
<l≤i

1

g(l + 1)




≤ χ̃ E

(∫ i

Rτj

1

g(s + 1)
ds

)

≤ χ̃ E

(
χ

∫ i

Rτj

N

s2
ds

)

≤ χ̃χNE

(
1

Rτj

)
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Thus it remains to evaluate the last expectation. To do that, we decompose it into two
parts:

E

(
1

Rτj

)
= E

(
1

Rτj

1Rτj
≤j/2

)
+ E

(
1

Rτj

1Rτj
>j/2

)

The last term is bounded above by 2/j, while by lemma 4.10, the first term is of order
j4/N2, up to an universal constant. Since by our assumption we have j4/N2 ≤ 1/j, the
annouced estimate follows at once.

�

Now we can continue the proof of Theorem 4.1. let us consider

∀ N ∈ N
∗, jN := iN ∧ ⌊N1/5⌋

and to simplify notations, let us write τN := τ
(N,iN )
jN

if jN < iN and τN = 0 if jN = iN .

Then we can decompose S(N,iN ) into τN + τ̃N , where

τ̃N := inf{n ∈ N : R
(N,iN )
τN+n = 1}

From lemma 4.10, we see that τN/N converges in probability to zero for large N . Thus we
are led to study the behavior of τ̃N/N for large N , and we begin by noting that conditionally

to R
(N,iN )
τN

, τ̃N has the same law as S(N,R
(N,iN )
τN

). So we have to check that R
(N,iN )
τN

is not too
small and this is insured by lemma 4.9.
To conclude, we remark that by previous estimates, we already know that the family of
the distributions of the S(N,iN )/N (or equivalently of the τ̃N/N), for N ∈ N

∗, is relatively
compact for the weak convergence. So we just have to verify that for any converging sub-
sequence, the limit coincides with the law of

∑
l∈N

2
(l+1)(l+2)El. For this purpose, we can

furthermore assume, up to taking again a subsequence, that the subsequence at hand is
indiced by an increasing sequence (Np)p∈N of integers verifying jNp < iNp and such that

∑

p∈N

N−6/5
p < +∞

Then by Borel-Cantelli Lemma and Lemma 4.9, we have that a.s., R
(Np,iNp)
τNp

is diverging to
infinity for large p. But conditionally on that, we are brought back to the situation where

(4.3) is satisfied (replacing iN by R
(Np,iNp )
τNp

), so Theorem 4.1 follows.

Remark 4.11 To avoid the above a.s. argument, we can re-examine the proof of propo-
sition 4.4, and see that instead of deterministic initial conditions (iN )N∈N, we could have
considered random initial conditions (iN )N∈N (such that for each N ∈ N

∗, iN is independent
from the randomness necessary to the evolution of the Markov chain R(N,iN )) diverging to
infinity in probability. Thus, via lemma 4.5, to obtain the wanted convergence in law, it

is sufficient to show that R
(N,iN )
τN

is diverging to infinity in probability. But this is an easy
consequence of lemma 4.9.

5 Planar genealogical tree based representations

As we promised in the end of the introduction, this last section is concerned with designing
a description of the invariant measure Γ̂µ in terms of planar genealogical trees. Most of the
arguments are only sketched, since they follow the same lines as the ones developed in [1].

We start by recalling that for any pair of mappings a ≤ b, we have a = cb for some non
unique c ∈ A. The mapping b induces the following equivalence relation ∼b on A

c ∼b c′ ⇐⇒ cb = c′b
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Equivalently, c ∼b c′ if and only if the restriction of c and c′ to the image of a are equal,
so that the equivalence class c ∈ A/∼b

can be seen as the corresponding map c from b([N ])
into [N ]; and we therefore have ∣∣A/∼b

∣∣ = N |b|

In terms of backward genealogies, for a given fixed pair of mappings a ≤ b, the mapping c
represents the way the individuals b([N ]) choose their parents, and the composition mapping
a = cb represents the way the individuals [N ] choose their grand parents in a([N ]). Notice
that in this interpretation, not all the individuals in the previous generations are ancestors,
the individuals that do not leave descendants are not counted.

We further suppose that we are given a function

θ : (a, b) ∈ {(a′, b′) ∈ A2 : a′ ≤ b′} 7→ θ(a, b) ∈ R

such that θ(a, b) = θ(a′, b′), as soon as the pair of mappings (a, a′), and resp. (b, b′), only
differs in the way the sets a([N ]) and a′([N ]), and resp. b([N ]) and b′([N ]), are labeled.
That is, θ(a, b) = θ(a′, b′) whenever there exist increasing bijections α resp. β from a([N ])
to a′([N ]) resp. b([N ]) to b′([N ]) s.t. a′ = αa and b′ = βb. We write (a′, b′) ≡ (a, b) when
this property is satisfied. The relation ≡ is an equivalence relation. We also mention that,
for a given pair (a, b), there are

(
N
|a|

)
×
(

N
|b|

)
=

(N)|a|

|a|! ×
(N)|b|

|b|!

pairs of mappings s.t. (a′, b′) ≡ (a, b). Moreover, there is a unique pair (a′, b′) with the
property a′([N ]) = [|a|] and b′([N ]) = [|b|]. We use the familiar combinatorial terminology
and refer to this process (the replacement of the set a([N ]) by [|a|], of a by a′, and so on),
as the standardization process (of subsets of N, of maps between these subsets...) Therefore,
to evaluate θ(a, b), up to a change of indexes we can replace the pair of sets (a([N ]), b([N ])),
by the pair ([|a|], [|b|]), and the pair of mappings (a, c), by a unique pair of surjections
(a′, c′) ∈

(
[|a|][N ] × [|b|][|a|]

)
. In other terms, the pair of mappings b ≤ a is canonically

associated to a pair of surjections

[|b|] c′←− [|a|] a′

←− [N ]

To describe precisely the planar tree representations of the stationary population of the
neutral genetic model (2.1), it is convenient to introduce a series of multi index notation.

Definition 5.1 We let Gq be the symmetric group of all permutations of the set [q], and for
any weakly decreasing sequence of integers

q ∈ Qn :=
{
(q0, . . . , qn) ∈ [N ]n+1 : q0 = N ≥ q1 ≥ . . . ≥ qn > 1

}

we use the multi index notation

q! :=
∏

0≤k≤n

qk! (N)q =
∏

0≤k≤n

(N)qk
and |q| :=

∑

0≤k≤n

qk

We also introduce the sets

Cn(q) := {c = (c0, . . . , cn) ∈ Cn : ∀0 ≤ p ≤ n |cp| = qp+1} and Gn(q) :=
∏

0≤p≤n

Gqp

with the convention qn+1 = 1. Finally, we denote by Sn(q) the set of all sequences of
sujections a = (a0, . . . , an) ∈

(
[q1]

[N ] × . . .× [qn][qn−1] × [1][qn]
)
.

22



Running back in time the arguments given above, any coalescent sequence of mappings
c = (c0, . . . , cn) ∈ Cn(q) is associated in a canonical way to a unique sequence of surjective
mappings

a = (a0, . . . , an) ∈ Sn(q)

so that, up to standardization, we have that

c = π(a) := (a0, a1a0, a2a1a0, . . . , anan−1 . . . a0)

To put this again in another way, the coalescence sequence c has, up to standardization, the
following backward representation

{1} an←− [qn]
an−1←− [qn−1]←− . . .←− [q2]

a1←− [q1]
a0←− [N ] (5.1)

In terms of genealogical trees, the mapping a0 describes the way the N individuals in the
present generation choose their parents among q1 ancestors; the mapping a1 describes the
way these q1 individuals again choose their parents among q2 ancestors, and so on.

From these considerations, by symmetry arguments, the invariant measure Γ̂µ of Prop.
3.3 can be expressed in the following way

Γ̂µ(F ) =
∑

n≥0

∑

q∈Qn

1

N |q|

(N)q
q!

∑

a∈Sn(q)

µπ(a)(F )

We also have the more synthetic representation formula

Γ̂µ(F ) =
∑

a∈S

1

ρ(a)!

(N)ρ(a)

N |ρ(a)|
µπ(a)(F ) with S := ∪n≥0 ∪q∈Qn Sn(q)

and the multi index mapping ρ(a) := q, for any a = (a0, . . . , an) ∈ Sn(q).
Although this parametrization by sequences of surjective maps of the expansion of the

invariant measure is already much better than the one in Prop. 3.3, it does not take into
account the full symmetry properties of Γ̂µ. To take fully advantage of it, notice first of all
that the labelling of individuals in a genetic population is arbitrary. From the algebraic point
of view, the invariant probability measure constructed in Prop. 3.3 inherits this property in
the sense that

Γ̂µ(F ) = Γ̂µ(F σ)

for any σ ∈ Gn, where F σ(x1, ..., xn) := F (xσ(1), ..., xσ(n)). In particular, when computing

Γ̂µ(F ) we will always assume from now on that F is symmetry invariant, that is, that
F σ = F for all σ ∈ Gn -a property that we write F ∈ Bsym

b (EN ). If F does not have this
property, its symmetrization F has it, where

F :=
1

n!

∑

σ∈Gn

F σ,

and the invariance properties of Γ̂µ insure that Γ̂µ(F ) = Γ̂µ(F )
We then consider the following natural action of the permutation group Gq on the set

Sn(q), defined for any s = (sp)0≤p≤n ∈ Gn(q), and a ∈ Sn(q) by

s(a) := (s1a0s
−1
0 , . . . , ans−1

n )

We let Z(a) := {s : s(a) = a} be the stabilizer of a.
This group action induces a partition of the set Sn(q) into orbit sets or equivalent

classes, where a and a′ are equivalent if, and only if, there exists s ∈ Gn(q) such that
a′ = s(a). The set of equivalence classes is written In(q). In terms of ancestral lines, the
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genealogical trees associated with the sequences of mappings s(a) and a only differ by a
change of labels of the ancestors, at each level set. By induction on n, it can be shown
that each orbit, or equivalence class, contains an element in the subset S ′n(q) ⊂ Sn(q) of
all sequences of weakly increasing surjections. This observation can be used, together with
standard techniques such as lexicographical ordering of sequences of sequences of integers
to construct a canonical representative in S ′n(q) for each equivalence class. Also notice the
mappings a 7→ ρ(a), and a 7→ µπ(a) are invariant; that is we have that ρ(a) = ρ(a′), and

µπ(a′)(F ) = µπ(a)(F ) for any F ∈ Bsym
b (EN ), as soon as a′ = s(a), for some relabeling

permutation sequence s. Thus, applying the class formula, we find the following formula.

Proposition 5.2 For any function F ∈ Bsym
b (EN ), we have

Γ̂µ(F ) =
∑

a∈S′

1

|Z(a)|
(N)ρ(a)

N |ρ(a)|
µπ(a)(F )

with the set S ′ := ∪n≥0 ∪q∈Qn In(q).

This functional representation formula can be interpreted in terms of genealogical trees.
The precise description of this alternative interpretation is notationally consuming, so that
it will be only sketched. The reader is refered to [1] for details on the subject.

Recall that a rooted tree t is an acyclic, connected, directed graph in which any vertex
has at most an outgoing edge. The paths are oriented from the vertices to the root, and
a leaf in a tree is a vertex without any incoming edge. Notice first that any sequence of
mappings a = (a0, ..., an) in Sn(q) gives rise to a directed graph -defined as usual: that
is, to any element k in [qi] we associate a vertex of the graph and a directed arrow to the
vertex associated to the element ai(k) in [qi+1]. Two sequences in Sn(q) are equivalent
under the action of Gn(q) if and only if they have the same underlying abstract graph -see
[1]. It follows that In(q) is isomorphic to the set Tn(q) of all rooted trees t, with height
ht(t) = (n + 1), with qn−(p−1) vertices at each level p = 1, . . . , (n + 1), and with leaves
only at level (n + 1). The set of all planar trees is denoted by T := ∪n≥0 ∪q∈Qn Tn(q).
Next, with a slight abuse of notation, for any choice a ∈ S ′n(q) of a representative of a tree
t ∈ T := ∪n≥0 ∪q∈Qn Tn(q) we set

µt = µπ(a) Z(t) = Z(a) and ρ(t) = ρ(a)

In terms of genealogical trees, we finally have that

Γ̂µ(F ) =
∑

t∈T

1

|Z(t)|
(N)ρ(t)

N |ρ(t)|
µt(F )

A closed formula of the cardinal of the stabilizer Z(t) can be easily derived using the
combinatorial techniques developed in the article [1]. Firstly, we recall some notions.

Definition 5.3 A forest f is a multiset of trees, that is an element of the commutative
monoid on the set of trees. We denote by B(t) the forest obtained by cutting the root of tree
t; that is, removing its root vertex, and all its incoming edges. Conversely, we denote by
B−1(f) the tree deduced from the forest f by adding a common root to its rooted tree. We
write

f := tm1
1 . . . tmk

k (5.2)

for the forest with the trees ti appearing with multiplicity mi, with 1 ≤ i ≤ k. When the
trees (ti)i=1...k are pairwise distinct, we say that the forest is written in normal form.
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Definition 5.4 The symmetry multiset of a tree is defined as follows

t = B−1(tm1
1 . . . tmk

k ) =⇒ S(t) := (m1, . . . ,mk)

The symmetry multiset of a forest is the disjoint union of the symmetry multisets of its trees

S(tm1
1 . . . tmk

k ) :=


S(t1), . . . ,S(t1)︸ ︷︷ ︸

m1−terms

, . . . ,S(tk), . . . ,S(tk)︸ ︷︷ ︸
mk−terms




Following the proof of theorem 3.8 in [1], we find the following closed formula

|Z(t)| =
∏

0≤i<ht(t)

S(Bi(t))!,

where we use the multiset notation S(t)! :=
k∏

i=1
mi! if S(t) = (m1, ...,mk). The above

discussion is summarized in the following proposition.

Proposition 5.5

Γ̂µ(F ) =
∑

t∈T

(N)ρ(t)

N |ρ(t)|
∏

0≤i<ht(t) S(Bi(t))!
µt(F )
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