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Abstract: We consider operators defined on a Riemannian manifold Mm by LT (u) = −div(T∇u) where
T is a positive definite (1, 1)-tensor such that div(T ) = 0. We give an upper bound for the first nonzero
eigenvalue λ1,T of LT in terms of the second fundamental form of an immersion φ of Mm into a Riemannian
manifold of bounded sectional curvature. We apply these results to a particular family of operators defined
on hypersurfaces of space forms and we prove a stability result.
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1 Introduction

Let (Mm, g) be a compact, connected m-dimensional Riemannian manifold. In this
paper, we are interested in extrinsic upper bounds for the first nonzero eigenvalue of
elliptic operators defined on (Mm, g) (i.e. in terms of the second fundamental form of
an isometric immersion of (Mm, g) into an n-dimensional Riemannian manifold (Nn, h)).
The elliptic second order differential operators LT , which we are interested in, are of the
form

LT u = −divM(T∇Mu)

where u ∈ C∞(M), T is a (1, 1)-tensor on M (which will be divergence-free and symmet-
ric), and divM and ∇M denote respectively the divergence and the gradient of the metric
g. In the sequel, we will denote by λ1,T , the first nonzero eigenvalue of such operator LT .

When T is the identity, LT = LId is nothing but the Laplace operator of (Mm, g). In
this case, it is well known that if (Mm, g) is isometrically immersed in a simply connected
space form Nn(c) (c = 0, 1,−1 respectively for the Euclidean space IRn, the sphere ISn or
the hyperbolic space IHn), then we have the following estimate of λ1 = λ1,Id in terms of
the square of the length of the mean curvature

λ1V (M) ≤ m

∫
M

(
|H|2 + c

)
dvg (1)

where dvg and V (M) denote respectively the Riemannian volume element and the volume
of (Mm, g) and where H denotes the mean curvature of the immersion of (Mm, g) into
Nn(c). Furthermore, the equality in (1) occurs if and only if (Mm, g) is immersed as a
minimal submanifold of some geodesic hypersphere of Nn(c). For c = 0, this inequality
was proved by Reilly ([17]) and can easily be extended to the spherical case c = 1 by
considering the canonical embedding of ISn in IRn+1 and by applying the inequality (1) for
c = 0 to the obtained immersion of (Mm, g) in IRn+1. For immersions of (Mm, g) in the
hyperbolic space IHn, Heintze ([14]) first proved an L∞ equivalent of (1) and conjectured
(1) which was finally obtained by El Soufi and Ilias ([9]). Note that, the estimates shown
in [14] and [9] are given for immersions of (Mm, g) in a space which is not necessarly of
constant sectional curvature.

Later, these estimates were extended to more general operators called Lr (0 ≤ r ≤ n)
defined on hypersurfaces (Mm, g) of Nm+1(c). Let us first define these operators. Let
φ be an isometric immersion of (Mm, g) into Nm+1(c) and denote by A its shape (or
Weingarten) operator. For any integer r ∈ {0, ..., n}, the (1, 1)-tensors Tr of Newton are
defined inductively by: T0 = Id and Tr = SrId− ATr−1, where Sr is the r-th elementary
symmetric function of the eigenvalues of A (i.e. the principal curvatures). Note that Tr

is a free divergence tensor because the ambient space is of constant curvature (see for
instance [19]). The r-th mean curvature of φ is Hr =

(
1/

(
m
r

))
Sr. Now, the operator Lr
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is defined by Lr = LTr which is the linearized operator of the first variation of Sr+1 ([18]).
It is important for our paper to know when Lr is elliptic. Walter proved in [21] that if
Hr+1 > 0 and if the immersion φ is convex (i.e. the second fundamental form is semi-
definite), then Tr is positively definite (i.e. Lr is elliptic). This result was strengthened
by Barbosa and Colares ([6]). They proved without any convexity assumption that if
Hr+1 > 0 and if, in the case c = 1, φ(M) is contained in a hemisphere, then Lr is elliptic.
For simplicity the first nonzero eigenvalue of Lr will be denoted λ1,r (which is λ1,Tr). The
first extension of the Reilly inequality (1) to such operators Lr was obtained by Alencar,
do Carmo and Rosenberg ([4] and [5]). They proved that if (Mm, g) is an m-dimensional
compact immersed hypersurface of the Euclidean space IRm+1 and if Hr+1 > 0 then

λ1,r

∫
M

Hrdvg ≤ (m− r)

(
m

r

) ∫
M

H2
r+1dvg

and equality holds if and only if (Mm, g) is a geodesic sphere of IRm+1. In our paper
[12] (theorem 1.1, see also [11]), we obtained a similar optimal upper bound for λ1,r of
hypersurfaces of any space form Nm+1(c). We proved for all 0 ≤ r ≤ m − 2, that if
Hr+1 > 0 and if φ is convex (i.e. the second fundamental form is semi-definite) then

λ1,rV (M) ≤ (m− r)

(
m

r

) ∫
M

H2
r+1 + cH2

r

Hr

dvg (2)

and equality holds if and only if φ immerses M as a geodesic sphere of Nm+1(c).
Our approach to obtain such estimates was a generalization of the conformal technic

used by El Soufi and Ilias and in this approach the convexity assumption was essential
to obtain the estimate (2). Nevertheless, it is natural to ask if such estimates still valid
without the convexity assumption. In this paper, to answer this purpose, we use a different
approach inspired by the method of Heintze ([14]). In fact, an L∞ estimate similar to (2)
will be a consequence of an estimate (theorem 1.1) obtained in a more general setting:
for the operators LT defined above and for ambient spaces not necessarly of constant
sectional curvature.

Before stating the results, we need to define the following normal vector field HT . If
φ is an isometric immersion of (Mm, g) in (Nn, h) and B is its second fundamental form
then we define HT at a point x ∈ M , by

HT (x) =
∑
i≤m

B(Tei, ei)

where (ei)1≤i≤m is an orthonormal basis of the tangent space of M at x.
The main result of our paper is the

Theorem 1.1 Let (Mm, g) be a compact, connected, m-dimensional Riemannian ma-
nifold (m ≥ 2) and let φ be an isometric immersion of
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(Mm, g) in an n-dimensional Riemannian manifold (Nn, h) of sectional curvature
bounded above by δ. If δ ≤ 0 we assume that (Nn, h) is simply connected and if δ > 0 we
assume that φ(M) is contained in a convex ball of radius less or equal to π/4

√
δ. Let LT

be an elliptic operator defined on (Mm, g) as above. Then, we have

λ1,T ≤
supM |HT |2 + supM δ(tr(T ))2

infM tr(T )

and if equality holds then φ(M) is contained in a geodesic sphere.

When (Nn, h) is a simply connected space form and T = Tr, we deduce from this
theorem an estimate of λ1,r without the convexity assumption. In fact, we have

Corollary 1.1 Let (Mm, g) be a compact, connected and orientable m-dimensional Rie-
mannian manifold (m ≥ 2), immersed in a space form (Nm+1(c), h) (c = 0,−1, +1).
Assume, if c = 1, that φ(M) is contained in a ball of radius π/4. If Hr+1 > 0 for

r ∈ {0, ...,m− 1}, then we have

λ1,r ≤ (m− r)

(
m

r

)
supM H2

r+1 + supM(cH2
r )

infM Hr

and equality holds if and only if φ(M) is a geodesic sphere.

This last corollary has just been obtained independently by Alencar, do Carmo and
Marques ([3]).

When |HT | is constant, we show a different estimate which is usefull in the proof of
stability results; indeed, we have the

Theorem 1.2 Let (Mm, g) be a compact, connected, m-dimensional Riemannian ma-
nifold (m ≥ 2) and let φ be an isometric immersion of

(Mm, g) in an n-dimensional Riemannian manifold (Nn, h) of sectional curvature
bounded above by δ. If δ ≤ 0 we assume that (Nn, h) is simply connected and if δ > 0 we
assume that φ(M) is contained in a convex ball of radius less or equal to π/4

√
δ. Let LT

be an elliptic operator defined on (Mm, g) as above. Then, we have

λ1,T ≤ sup
M

(|HT ||H|+ δtr(T ))

and if equality holds then φ(M) is contained in a geodesic sphere.

As a consequence, we have the
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Corollary 1.2 Let (Mm, g) be a compact, connected and orientable n-dimensional Rie-
mannian manifold (n ≥ 2), immersed in a space form (spfmnpi, h) (c = 0,−1, +1).
Assume, if c = 1 that φ(M) is contained in a ball of radius π/4. If for r ∈ {0, ...,m− 1},
Hr+1 is a positive constant, then we have

λ1,r ≤ sup
M

(
(m− r)

(
m

r

)
(Hr+1H1 + cHr)

)
and equality holds if and only if φ(M) is a geodesic sphere.

This paper is structured as follows: the first part deals with the proofs of these theo-
rems and corollaries and in a second part we give an application of our results to the
stability problem of hypersurfaces of constant r-th mean curvature in a space form. The
results of this paper were announced in the note [13].

2 Proofs of the results

Let (Mm, g) be a compact, connected m-dimensional Riemannian manifold isome-
trically immersed by φ in an n-dimensional Riemannian manifold (Nn, h) which sec-
tional curvature is bounded by δ. The manifold M is endowed with a symmetric de-
finite positive (1, 1)-tensor T of free divergence. The associated operator LT defined by
LT (u) = −div(T∇Mu) is self adjoint and elliptic and we denote by λ1,T its first nonzero
eigenvalue.

Let p0 ∈ N and expp0
the exponential map at this point. We consider (xi)1≤i≤n the

normal coordinates of N centered at p0 and for all x ∈ N , we denote by r(x) = d(p0, x),
the geodesic distance between p0 and x on (Nn, h). If δ > 0 we assume that φ(M) lies in
a convex ball around p0 of radius less or equal to π/2

√
δ.

Let sδ and cδ be functions defined by

sδ(r) =


1√
δ
sin

√
δr if δ > 0

r if δ = 0
1√
|δ|

sinh
√
|δ|r if δ < 0

and

cδ(r) =


cos

√
δr if δ > 0

1 if δ = 0

cosh
√
|δ|r if δ < 0

We remark that c2
δ + δs2

δ = 1, s′δ = cδ and c′δ = −δsδ.
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In the sequel, we denote respectively by ∇M and ∇N the gradients associated to
(Mm, g) and (Nn, h). It is easy to see that the coordinates of Z = sδ(r)∇Nr in the normal

local frame are
(

sδ(r)
r

xi

)
1≤i≤n

. Furthermore, the tangential and normal projection of a

vector field X respectively on the tangent bundle and the normal bundle to φ(M) will be
denoted respectively by X t and Xn.

We recall now some facts and properties of the exponential map. Let U, V ∈ Tp0N
and x ∈ N . If we set X = exp−1

p0
(x). Then, we have∑

i≤n

hx(∇Nxi,
(
d expp0

)
X

(U))hx(∇Nxi,
(
d expp0

)
X

(V )) = hp0(U, V ) (3)

On the other hand, expp0
is a radial isometry (Gauss lemma), that is for each x of N , we

have

hx(
(
d expp0

)
X

(X),
(
d expp0

)
X

(U)) = hp0(X, U) (4)

First, we begin by proving some lemmas

Lemma 2.1 For each x of M , we have

∑
1≤i≤n

gx

(
T∇M

(
sδ(r)

r
xi

)
,∇M

(
sδ(r)

r
xi

))
≤ tr(T )− δgx(TZt, Zt) (5)

and equality holds if (Nn, h) has a constant sectional curvature equal to δ.

Proof: We compute the left hand side of (5)

∇M

(
sδ(r)

r
xi

)
=

rcδ(r)− sδ(r)

r2
(∇Mr)xi +

sδ(r)

r
∇Mxi

thus

∑
1≤i≤n

gx

(
T∇M

(
sδ(r)

r
xi

)
,∇M

(
sδ(r)

r
xi

))
=

∑
1≤i≤n

(
rcδ(r)− sδ(r)

r2
xi

)2

gx(T∇Mr,∇Mr)

+ 2
∑

1≤i≤n

rcδ(r)− sδ(r)
r2

sδ(r)
r

xigx(T∇Mr,∇Mxi)

+
∑

1≤i≤n

s2
δ(r)
r2

gx(T∇Mxi,∇Mxi)

and using the fact that
∑

1≤i≤n xi∇Mxi = r∇Mr, we deduce
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∑
1≤i≤n

gx

(
T∇M

(
sδ(r)

r
xi

)
,∇M

(
sδ(r)

r
xi

))
=

s2
δ(r)

r2

∑
1≤i≤n

gx(T∇Mxi,∇Mxi)

+

[
(rcδ(r)− sδ(r))

2

r2
+ 2

rcδ(r)− sδ(r)

r2
sδ(r)

]
gx(T∇Mr,∇Mr)

After an easy computation and noting that Zt = sδ(r)∇Mr, we obtain

∑
1≤i≤n

gx

(
T∇M

(
sδ(r)

r
xi

)
,∇M

(
sδ(r)

r
xi

))
=

s2
δ(r)

r2

∑
1≤i≤n

gx(T∇Mxi,∇Mxi)

+

(
1− s2

δ(r)

r2

)
gx(T∇Mr,∇Mr)− δgx(TZt, Zt) (6)

Since T is a positive symmetric (1, 1)-tensor, we can define a
natural positive symmetric (1, 1)-tensor

√
T . Indeed, if

(ei)1≤i≤m is an orthonormal basis at x which diagonalizes T
such that T = diag(µ1, ..., µm), then

√
T is defined at x by

√
T = diag(

√
µ

1
, ...,

√
µ

m
).

Now let (ei)1≤i≤m be an orthonormal frame in x, such that
√

Tem lies in the
direction of ∇Mr and let e∗m be a unit vector orthogonal to
∇Nr in order to have:

√
Tem = λ∇Nr + µe∗m.

Then (6) becomes

∑
1≤i≤n

gx

(
T∇M

(
sδ(r)

r
xi

)
,∇M

(
sδ(r)

r
xi

))
=

s2
δ(r)

r2

∑
i ≤ n
j ≤ m

hx(∇Nxi,
√

Tej)
2 +

(
1− s2

δ(r)

r2

)
gx(T∇Mr,∇Mr)− δgx(TZt, Zt) =

s2
δ(r)

r2

∑
i ≤ n

j ≤ m− 1

hx(∇Nxi,
√

Tej)
2 +

s2
δ(r)

r2

∑
1≤i≤n

(
hx(∇Nxi, λ∇Nr) + hx(∇Nxi, µe∗m)

)2

+

(
1− s2

δ(r)

r2

)
|
√

T∇Mr|2x − δgx(TZt, Zt) (7)

Now, setting vj =
√

Tej −h(
√

Tej,∇Mr)∇Nr, for all j ≤ m− 1, we rewrite the first term
of the right hand side of (7)
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s2
δ(r)

r2

∑
i ≤ n

j ≤ m− 1

hx(∇Nxi,
√

Tej)
2

=
s2

δ(r)

r2

∑
i ≤ n

j ≤ m− 1

(
hx(∇Nxi, vj) + hx(

√
Tej,∇Mr)hx(∇Nxi,∇Nr)

)2

=
s2

δ(r)

r2

∑
i ≤ n

j ≤ m− 1

hx(∇Nxi, vj)
2 +

s2
δ(r)

r2

∑
i ≤ n

j ≤ m− 1

hx(
√

Tej,∇Mr)2hx(∇Nxi,∇Nr)2

+2
s2

δ(r)

r2

∑
i ≤ n

j ≤ m− 1

hx(
√

Tej,∇Mr)hx(∇Nxi, vj)hx(∇Nxi,∇Nr) (8)

We compute each term of the right hand side of (8). Using the standard Jacobi field
estimates (cf for instance corollary 2.8, p 153 of [20]), we have for all v orthogonal to ∇Nr

s2
δ(r)

r2

∣∣∣(d(exp−1
p0

)
)

x
(v)

∣∣∣2
p0

≤ |v|2x (9)

with equality if N has a constant sectional curvature equal to δ. Now vj is orthogonal to
∇Nr and then applying successively (3) and (9), we obtain

s2
δ(r)

r2

∑
i ≤ n

j ≤ m− 1

hx(∇Nxi, vj)
2 =

s2
δ(r)

r2

∑
j≤m−1

∣∣∣(d exp−1
p0

)
x
(vj)

∣∣∣2
p0

≤
∑

j≤m−1

|vj|2x

=
∑

1≤j≤m−1

|
√

Tej|2x −
∑

1≤j≤m−1

hx(
√

Tej,∇Mr)2 (10)

Moreover, from (3) and (4), we have for all v orthogonal to ∇Nr

∑
1≤i≤n

hx(∇Nxi, v)hx(∇Nxi,∇Nr) = hp0

((
d(exp−1

p0

)
x
(v),

(
d exp−1

p0

)
x
(∇Nr)

)
= hp0

((
d exp−1

p0

)
x
(v), X/r

)
= hx(v,∇N(r)) = 0 (11)

Hence, the last term of the right hand side of (8) vanishes identically. Now, reporting
(10) in (8), and noting that

∑
1≤i≤n hx(∇Nxi,∇Nr)2 = 1 by (3), we find
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s2
δ(r)

r2

∑
i ≤ n

j ≤ m− 1

hx(∇Nxi,
√

Tej)
2

≤
∑

1≤j≤m−1

|
√

Tej|2x +

(
s2

δ(r)

r2
− 1

) ∑
1≤j≤m−1

hx(
√

Tej,∇Mr)2

= tr(T )− |
√

Tem|2x +

(
s2

δ(r)

r2
− 1

) ∑
1≤j≤m−1

hx(
√

Tej,∇Mr)2 (12)

Furthermore, from (9) and (11), we deduce that

s2
δ(r)

r2

∑
1≤i≤n

(
hx(∇Nxi, λ∇Nr) + hx(∇Nxi, µe∗m)

)2

=
s2

δ(r)

r2
λ2

∑
1≤i≤n

hx(∇Nxi,∇Nr)2 +
s2

δ(r)

r2
µ2

∑
1≤i≤n

hx(∇Nxi, e
∗
m)2

≤ λ2 s2
δ(r)

r2
+ µ2 (13)

Finally, by reporting (12) and (13) in (7), we get

∑
1≤i≤n

gx

(
T∇M

(
sδ(r)

r
xi

)
,∇M

(
sδ(r)

r
xi

))
≤ tr(T )− |

√
Tem|2x

+

(
s2

δ(r)

r2
− 1

) ∑
j≤m−1

hx(
√

Tej,∇Mr)2 + λ2 s2
δ(r)

r2
+ µ2

+

(
1− s2

δ(r)

r2

)
gx(
√

T∇Mr, em)2 +

(
1− s2

δ(r)

r2

) ∑
1≤i≤m−1

gx(
√

T∇Mr, ei)
2 − δgx(TZt, Zt)

= tr(T )− |
√

Tem|2x + λ2 s2
δ(r)

r2
+ µ2 +

(
1− s2

δ(r)

r2

)
gx(
√

T∇Mr, em)2 − δgx(TZt, Zt)

now

gx(
√

T∇Mr, em) = hx(
√

Tem,∇Nr) = λ

and

λ2 + µ2 = |
√

Tem|2x

9



And after simplification, this gives the desired inequality and if (Nn, h) is of constant
sectional curvature all the inequalities above are in fact equalities. 2

Now, we will prove the

Lemma 2.2 For all symmetric divergence-free positive definite (1, 1)-tensors T on M ,
we have

divM(TZt) ≥ (tr(T ))cδ + h(Z,HT )

and if T is the identity and (Nn, h) has a constant sectional curvature equal to δ, then
equality holds.

Proof: We use the same local frame as in the proof of lemma
(2.1) and we compute divM(TZt) in this frame by using the fact that T is a free

divergence tensor (i.e.
∑

1≤i≤m

(
∇M

ei
T

)
ei = 0)

divM(TZt) =
∑

1≤i≤m

gx(∇M
ei

(TZt), ei) =
∑

1≤i≤m

gx(
(
∇M

ei
T

)
Zt, ei)

=
∑

1≤i≤m

gx(∇M
ei

Zt, T ei) =
∑

1≤i≤m

hx(∇N
ei

Zt, T ei)

=
∑

1≤i≤m

hx(∇N
ei

Z, Tei)−
∑

1≤i≤m

hx(∇N
ei

Zn, T ei)

=
∑

1≤i≤m

hx(∇N
ei

Z, Tei) +
∑

1≤i≤m

hx(Z,B(Tei, ei))

=
∑

1≤i≤m

hx(∇N
ei

Z, Tei) + hx(Z,HT ) (14)

Now, we want to estimate
∑

1≤i≤m hx(∇N
ei

Z, Tei). We first have

∑
1≤i≤m

hx(∇N
ei

Z, Tei) =
∑

1≤i≤m

hx(∇N
ei

(sδ∇Nr), T ei)

= cδhx(∇Nr, T (∇Nr)t) + sδ

∑
1≤i≤m

hx(∇N
ei
∇Nr, Tei)

= cδhx(T (∇Nr)t, (∇Nr)t) + sδ

∑
1≤i≤m

hx(∇N√
Tei
∇Nr,

√
Tei)(15)

And using the standard Jacobi field estimates (see lemma 2.9 p 153 of [20]) we can find a
lower bound of the last term of (15). Indeed, we have for all vector ξ orthogonal to ∇Nr
at x, the inequality
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hx(∇N
ξ ∇Nr, ξ) ≥ cδ

sδ

|ξ|2x

and equality holds if N has a constant sectional curvature equal to δ. Thus,

∑
1≤i≤m

hx(∇N√
Tei
∇Nr,

√
Tei) =

∑
1≤i≤m−1

hx(∇N√
Tei
∇Nr,

√
Tei) + hx(∇N√

Tem
∇Nr,

√
Tem)

≥ cδ

sδ

∑
1≤i≤m−1

|
√

Tei|2x + µ2hx(∇N
e∗m
∇Nr, e∗m)

≥ cδ

sδ

∑
1≤i≤m−1

|
√

Tei|2x + µ2 cδ

sδ

and reporting this inequality in (15), we obtain

∑
1≤i≤m

hx(∇N
ei

Z, Tei) ≥ cδ|
√

T (∇Nr)t|2x + cδ

∑
1≤i≤m−1

|
√

Tei|2x + µ2cδ (16)

now

λ2 = hx(
√

Tem,∇Nr)2 = hx(
√

Tem, (∇Nr)t)2

= hx(em,
√

T (∇Nr)t)2 ≤ |
√

T (∇Nr)t|2x

and if T is the identity, this last inequality is an equality. Furthermore, it is easy to verify
that

λ2 + µ2 = |
√

Tem|2x
thus, inequality (15) becomes

∑
1≤i≤m

hx(∇N
ei

Z, Tei) ≥ cδλ
2 + cδ

∑
1≤i≤m−1

|
√

Tei|2x + µ2cδ

= tr(T )cδ

and inserting this last inequality in (16) we complete the proof of lemma 2.2. 2

Lemma 2.3 We have

δ

∫
M

gx(TZt, Zt)dvg ≥
∫

M

tr(T )c2
δdvg −

∫
M

|HT |sδcδdvg

11



Proof: If δ 6= 0, then

δ

∫
M

g(TZt, Zt)dvg =
1

δ

∫
M

g(T∇Mcδ(r),∇Mcδ(r))dvg

= −1

δ

∫
M

divM(T∇Mcδ(r))cδ(r)dvg

=

∫
M

divM(TZt)cδdvg

≥
∫

M

c2
δtr(T )dvg −

∫
M

|HT |sδcδdvg

where the last inequality is proceeding from the previous lemma 2.2. Moreover, if δ = 0,
then cδ(r) = 1 and we have

0 =

∫
M

divM(TZt)cδdvg ≥
∫

M

c2
δtr(T )dvg −

∫
M

|HT |sδcδdvg

This concludes the proof. 2

We can now give the proof of our results.

Proof of theorem 1.1: Let p0 ∈ N and r(x) = d(p0, x), where r(x) is the geodesic

distance between p0 and x. We will use sδ(r)
r

xi as test functions in the variational cha-
racterization of λ1,T but the mean of these functions must be zero. For this purpose, we
use a standard argument used by Chavel and Heintze before ([14] and [8]). Indeed, let Y
be a vector field defined by

Yq =

∫
M

sδ(d(q, p))

d(q, p)
exp−1

q (p)dvg(p) ∈ TqN

From the theorem of fixed point of Brouwer, there exists a point p0 ∈ N such that Yp0 = 0

and consequently, for a such p0, the mean of sδ(r)
r

xi will be zero. But for δ > 0, we must

assume φ(M) is contained in a ball of radius π/4
√

δ. Indeed, in this case φ(M) lies in a
ball of center p0 (the point p0 such that Yp0 = 0) with a radius less or equal to π/2

√
δ

(this hypothesis is necessary in the proof of the preceding lemmas). It follows from above
and the variational characterization of λ1,T , that

λ1,T

∫
M

s2
δ(r)dvg = λ1,T

∫
M

|Z|2dvg = λ1,T

∫
M

∑
1≤i≤n

(
sδ(r)

r
xi

)2

dvg

≤
∫

M

∑
1≤i≤n

LT

(
sδ(r)

r
xi

)
sδ(r)

r
xidvg

12



=

∫
M

∑
1≤i≤n

g

(
T∇M

(
sδ(r)

r
xi

)
,∇M

(
sδ(r)

r
xi

))
dvg

and using lemmas 2.1 and 2.3, we obtain

λ1,T

∫
M

s2
δdvg ≤

∫
M

tr(T )dvg − δ

∫
M

g(TZt, Zt)dvg

≤
∫

M

tr(T )dvg −
∫

M

tr(T )c2
δdvg +

∫
M

|HT |sδcδdvg

≤ δ

∫
M

tr(T )s2
δdvg + sup

M
|HT |

∫
M

sδcδdvg

≤ δ

∫
M

tr(T )s2
δdvg + sup

M
|HT | sup

M

(
1

tr(T )

) ∫
M

tr(T )sδcδdvg

Furthermore, from lemma 2.2, we deduce

∫
M

tr(T )sδcδdvg ≤
∫

M

s2
δ|HT |dvg +

∫
M

sδdivM(TZt)dvg

=

∫
M

s2
δ|HT |dvg +

∫
M

divM(sδTZt)dvg −
∫

M

g(∇Msδ, TZt)dvg

=

∫
M

s2
δ|HT |dvg −

∫
M

cδsδg(∇Mr, T∇Mr)dvg

Since cδ and sδ are positive functions (because for δ > 0, φ(M) ⊂ B(p0, π/2
√

δ)), we
deduce that ∫

M

tr(T )sδcδdvg ≤
∫

M

s2
δ|HT |dvg

and if equality holds, then φ(M) lies in a geodesic sphere. Finally, we have

λ1,T

∫
M

s2
δdvg ≤ δ

∫
M

tr(T )s2
δdvg +

supM |HT |
infM tr(T )

∫
M

|HT |s2
δdvg

≤
(

sup
M

(δtr(T )) +
supM |HT |2

infM tr(T )

) ∫
M

s2
δdvg

and this completes the proof of the theorem 1.1. 2

Proof of theorem 1.2: We assume now that |HT | is constant. Then from the first step
of the preceding proof, it follows that

13



λ1,T

∫
M

s2
δdvg ≤

∫
M

(δtr(T ))s2
δdvg + |HT |

∫
M

sδcδdvg

Now applying lemma 2.2 to the identity, we get∫
M

div(Zt)sδdvg ≥ m

∫
M

(
cδsδ + h(∇Nr, H)s2

δ

)
dvg

and an easy computation gives∫
M

div(Zt)sδdvg = −
∫

M

sδcδ|∇Mr|2dvg ≤ 0

From this, we deduce ∫
M

sδcδdvg ≤
∫

M

|H|s2
δdvg

thus

λ1,T

∫
M

s2
δdvg ≤

∫
M

(|HT ||H|+ δtr(T ))s2
δdvg

which completes the proof. 2

Proof of corollaries 1.1 and 1.2: (Mm, g) is a compact, connected and orientable
n-dimensional Riemannian manifold (n ≥ 2) isometrically immersed by φ in a simply
connected space form Nm+1(c) (c = 0, 1 or −1 respectively for IRn+1, ISn+1 or IHn+1) and
A is the Weingarten operator associated to the second fundamental form of the immersion.
When c ≤ 0, assumptions of theorems 1.1 and 1.2 are trivially verified. For c = 1, we
assume that φ(M) lies in a ball of radius π/4. Since Hr+1 > 0 with φ(M) contained
in a hemisphere when c = 1, then Lr is elliptic ([6]). Finally, under these hypotheses,
the corollaries follow from the theorems by applying them to the special (1, 1)-tensors Tr

defined in the introduction and by using the following relations: tr(Tr) = (n − r)
(

m
r

)
Hr

and tr(ATr) = (n− r)
(

m
r

)
Hr+1 ([17]).

Furthermore, from theorems, if inequalities expressed in corollaries are equalities, then
φ(M) is a geodesic sphere. Conversely, if φ(M) is a geodesic sphere, then M is totally
umbilical and we have: Hr = Hr

1 and Lr =
(

m
r

)
Hr

1∆, where ∆ is the usual Laplacian, and
we have equality. 2

Remark 2.1: A generalization of these results to Schrödinger type operators L = LT +q,
where q ∈ C∞(M) can be easily obtained. Denoting by λ2(LT + q) the second eigenvalue
of L, and by u a first positive eigenfunction of L, we consider the vector field Y defined
by
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Yp0 =

∫
M

sδ(d(p0, p))

d(p0, p)
exp−1

p0
(p)u(p)dvg(p) ∈ Tp0N

Since u is positive, we can apply again the argument of fixed point used in the proof of
theorem 1.1. Then, there exists a point p0 such that Yp0 = 0 and the functions sδ(r)

r
xi are

L2-orthogonal to u. Now, from the variational characterization of λ2(LT + q), we have

λ2(LT + q)

∫
M

s2
δ(r)dvg ≤

∫
M

∑
1≤i≤n

g

(
T∇M

(
sδ(r)

r
xi

)
,∇M

(
sδ(r)

r
xi

))
dvg +

∫
M

qs2
δdvg

this gives us the inequality

λ2(LT + q) ≤ supM |HT |2

infM tr(T )
+ sup

M
(δtr(T ) + q)

and when |HT | is constant, we have

λ2(LT + q)

∫
M

s2
δdvg ≤

∫
M

(|HT ||H|+ δtr(T ) + q)s2
δdvg (17)

and finally,

λ2(LT + q) ≤ sup
M

(|HT ||H|+ δ tr(T ) + q)

This last relation (17) will be very useful for the proof of stability results.

3 Applications to stability

Consider an m-dimensional hypersurface with constant r + 1-th mean
curvature immersed in a space form Nm+1(c) whose sectional curvature is constant

equal to c
(c = 0,−1, 1). First, recall briefly the variational problem associated to these
hypersurfaces (for more details see for instance [4] and [6])
Let φ : (Mm, g) → (Nm+1(c), h) be an orientable compact
hypersurface oriented by the global normal field η, and let us define the functionals

A0 =

∫
M

dvg , A1 =

∫
M

S1dvg

and for each r, 2 ≤ r ≤ m,

Ar =

(∫
M

Srdvg

)
+

k(m− r + 1)

r − 1
Ar−2

15



Where we put k(s) = (m− s)
(

m
s

)
. Now, let F :]− ε, ε[×M → (Nm+1(c), h) be a variation

of the immersion φ for all t ∈]−ε, ε[. The immersion F (t, .), its r-th elementary symmetric
function and the associated functional Ar will be denoted respectively by Ft, Sr(t) and
Ar(t). Moreover, we set f = 〈dF

dt
|t=0, η〉.

To formulate the variational problem we need to determine the derivative
of Sr(t) with respect to t ( cf [18])

d

dt

∣∣∣∣
t=0

(∫
M

Sr+1(t)dvF ∗
t h

)
=

∫
M

(c(m− r)Sr − (r + 2)Sr+2)fdvg

and an easy calculation shows that

A′
r(0) =

∫
M

(−(r + 1)Sr+1 + κ)fdvg (18)

where κ is a constant. On the other hand, the balance volume is the function V :]−ε, ε[→
IR defined by

V (t) =

∫
[0,t[×M

F ∗dvh

for which, we have

d

dt

∣∣∣∣
t=0

V (t) =

∫
M

fdvg (19)

The isometric immersion φ is a critical point of the functional Ar, with constant balance
volume (i.e. A′

r(0) = 0 for all variations such that V (t) ≡ 0) if and only if for all variations,
we have

A′
r(0) + λV ′(0) = 0

where λ is a Lagrange’s multiplier. It follows from (18) and (19) that for all variations
and for a constant κ ∫

M

(−Hr+1 + κ)fdvg = 0

Thus, M is a constant r + 1-th mean curvature hypersurface if and only if, φ is a critical
point of Ar, with constant balance volume and in this case

A′′
r(0) =

∫
M

(Lr(f) + qf) fdvg (20)

where we put q = k(r + 1)Hr+2 −mk(r)
r+1

H1Hr+1 − ck(r)Hr. We give now a definition for
the stability of hypersurfaces with constant r-th mean curvature Hr+1 following [4] and
[6].
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Definition 3.1 Let (Mm, g) be an orientable compacte hypersurface of
(Nm+1(c), h) with Hr+1 constant. Then (Mm, g) is Hr+1-stable if
A′′

r(0) ≥ 0 for all variations such that V (t) = 0.

From theorem 1.2, we deduce the following theorem

Theorem 3.1 Let (Mm, g) be an orientable compact riemannian manifold
of dimension m ≥ 2 and φ an isometric immersion of (Mm, g) in
IHm+1. Then if (Mm, g) is a nonegative constant, M is Hr+1-stable if and only if

φ(M) is a geodesic sphere.

Remark 3.1: Note that Alencar, do Carmo and Rosenberg have proved this stability
result for hypersurfaces of IRm+1 ([4] and [5]). Barbosa and Colares extend it to hyper-
surfaces of IHm+1 and of an open hemisphere of ISm+1, but without using estimates of the
eigenvalues of the second variation operator ([6]). In [11] and [12], we proved indepen-
dently a stability result for convex hypersurfaces of IHm+1 and ISm+1, by using an upper
bound of the second eigenvalue of the second variation operator (of Ar).

Proof of theorem 3.1: A straightforward computation shows that geodesic spheres are
Hr+1-stable. In fact such spheres are totally umbilical. This implies that Hr = Hr

1 and

Lr =

(
m− 1

r − 1

)
Hr

1∆.

Variations (Ft)t for which V (t) ≡ 0 are variations such that
∫

M
fdvg = 0 ([6]). For such

variations we have from (20):

A′′
r(0) = Hr

1

∫
M

(
f∆f −m(H2

1 + c)f 2
)
dvg

≥ Hr
1

∫
M

(
λ1 −m(H2

1 + c)
)
f 2dvg = 0

where λ1 denotes the first nonzero eigenvalue of the Laplacian. This proves the stability
of the geodesic spheres. Conversely,

suppose that φ is Hr+1-stable. This implies that A′′
r(0) ≥ 0 for all variations (Ft) such

that V (t) ≡ 0, and from (20), we have∫
M

(Lr + q)(f)fdvg ≥ 0

for any function f such that
∫

M
fdvg = 0. Hence, by the min-max principle, we deduce

that
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λ2(Lr + q) ≥ 0

and from the inequality (17) of the remark 2.1, we have

λ2(Lr + q)

∫
M

s2
δdvg ≤

∫
M

(
k(r)Hr+1H1 + k(r + 1)Hr+2 −m

k(r)

r + 1
H1Hr+1

)
s2

δdvg

and consequently

0 ≤
∫

M

(
k(r)Hr+1H1 + k(r + 1)Hr+2 −m

k(r)

r + 1
H1Hr+1

)
s2

δdvg

now, using the fact that Hr+2 ≤ H1Hr+1, with equality at umbilical points ([4]), we obtain

k(r)Hr+1H1 + k(r + 1)Hr+2 −m
k(r)

r + 1
H1Hr+1 ≤(

k(r) + k(r + 1)−m
k(r)

r + 1

)
H1Hr+1

and it is easy to verify that

k(r) + k(r + 1)−m
k(r)

r + 1
= 0

thus finally, we get ∫
M

(Hr+2 −Hr+1H1)s
2
δdvg = 0

hence M is totally umbilical and then it is a geodesic sphere. 2
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