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Abstract: We propose an efficient broadcast algorithm for wireless networks, based on
network coding: we introduce a simple rate selection and analyze its performance (through
computation of min-cut). By broadcast, we mean sending data from one source to all the
other nodes in the network, and our metric for efficiency is the number of transmissions
necessary to transmit one packet from the source to every destination.

We address this problem, in some special cases of wireless “homogeneous” networks
contained of the plane: wireless lattice networks, and dense unit disk networks. Our results
are based on the simple principle of “Increased Rate for Exceptional Nodes, Identical Rate for
Other Nodes” (IREN/IRON), for setting rates on the nodes (wireless links) of the network.
With this rate selection, we give a value of the maximum broadcast rate of the source: our
central result is a proof of the value of the min-cut for such networks.

In particular, we show that for our scenarios, network coding is outperforming any
method without network coding.

Key-words: wireless networks, network coding, broadcasting, multi-hop, min-cut, hyper-
graph



Performance de la diffusion par codage de réseau dans
les réseaux sans fil larges et homogènes

Résumé : Nous présentons un protocole efficace pour la diffusion dans les réseaux sans
fil, utilisant le codage de réseaux: nous introduison une sélection de débit simple, et nous
analysons sa perfromance (par le calcul de la coupe minimale). Par diffusion, nous entendons
l’envoi de paquets de données d’une source unique à tous les autres noeuds du réseau, et
notre métrique d’efficacité est le nombre de transmissions necessaires pour transmettre un
packet de la source vers chacune des destinations.

Nous traitons ce problème pour certain cas spéciaux de réseaux homogènes du plan
euclidien: les réseaux sans fils organisés en treillis, et les graphes disque-unité denses. Nos
résultats sont basés sur le principe simple de: “Débit supérieur pour les noeuds exceptionels,
Débit identique pour les autres noeuds” (Increased Rate for Exceptional Nodes, Identical
Rate for Other Nodes: IREN/IRON). Avec ce choix de débit, nous donnons la valeur du
débit maximal de diffusion dans le réseau: notre résultat central est la preuve de la valeur
de de la capacité de la coupe minimale pour de tels réseaux.

En particulier, nous demontrons que, pour nos scénarios, le codage de réseau a une
performance qui dépasse celle qui puisse être obtenue sans codage de réseau.

Mots-clés : réseaux sans fil, codage de réseau, diffusion, multi-sauts, coupe minimale,
hypergraphe
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1 Introduction

Seminal work from Ahlswede, Cai, Li and Yeung [1] has introduced the idea of network
coding, where intermediate nodes are mixing information from different flows (different bits
or different packets): one result was that, in the general case, network coding may achieve
the maximum information-theoretic capacity for multicast. It is higher, in some cases, than
what classical store-and-forward routing could achieve.

One logical domain of application is wireless sensor networks, and indeed network coding
has been used in wireless networks. In particular, some results include a generalization of
the results in [1]: when the loss rates and the capacity of the links are known and fixed, the
maximal multicast capacity of the wireless network, can be computed, as shown in [2, 3].
Essentially, for one source, it is the min-cut of the network (see section 3.1) from the source to
the destinations, as for wired networks [1], but considering hypergraphs rather than graphs.

However in wireless sensor networks, a primary constraint is not necessarily the capacity
of the wireless links: because of the limited battery of each node, the limiting factor is the
cost of wireless transmissions. Hence a different focus is energy-efficiency, rather than the
maximum achievable broadcast rate:

• given one source, minimize the total number of transmissions to achieve the
broadcast to destination nodes.

With network coding, the problem turns out to be solvable in polynomial time: for
the stated problem, [4, 5] describe methods to find the optimal transmission rate of each
node with a linear program. Once the optimal rates are computed,the performance can be
asymptotically achieved with distributed random linear coding for instance [6, 7]. However,
this does not necessarily provide direct insight about the optimal rates, or the optimal cost:
those may be obtained by solving the linear program on instances of networks.

Another angle to tackle this problem, would be to explicitly specify the network coding
protocol, based on some intuitive foresight, and be able to compute the performance ; for
instance [13] starts with exhibiting an optimal algorithm for some simple regular networks.

In general specifying the network coding protocol reduces to specifying the transmission
rates for each node [12]. Then the cost is known, and the central element for computing
the performance is the estimation of the min-cut of the network. Some results exist about
the expected value of the min-cut on some classes of networks: for instance [8] explored the
multicast capacity networks where a source which is two hop from the destinations, through
a one network of relay nodes ; [9] studied the some classes of unit disk graphs in the plane.

Our approach in a similar spirit. For large-scale sensor networks, one assumption could
be that the nodes are distributed in an homogeneous way, and a question would be: “Is
there a simple near-optimal rate selection ?” Considering the results of min-cut estimates
for random graphs [8,9,10], one intuition is that most nodes have similar neighborhood, hence
the performance, when setting an identical rate for each node, deserves to be explored. This
is the starting point of this paper, and we will focus on homogeneous networks, such as
lattice graphs, or random geometric graphs:

RR n° 6188



6 Cédric Adjih, Song Yean Cho, Philippe Jacquet

1. We introduce a simple principle where most nodes have the same transmission rate:
IREN/IRON principle (Increased Rate for Exceptional Nodes, Identical Rate for Other
Nodes).

2. We give a proof the min-cut for some lattice graphs (modelled as hypergraphs).

3. We deduce an estimate of the min-cut for unit disk hypergraphs.

4. We show that this simple rate selection achieves “near optimal performance”, in some
classes of homogeneous networks, based on min-cut computation.

5. We illustrate the results obtained by simulations.

The rest of this paper is organized as follows: section 2 details the network model and
related work; section 4 describes the main results (min-cut and near optimality) ; section 5
gives proofs of min-cut and section 7 concludes.

2 Network Model

In this article, we study the problem of broadcasting from one source to all nodes. We will
assume an ideal wireless model, infinite capacity: lossless wireless transmissions without
collisions or interferences. We also assume that every node has an infinite queue.

Our focus is on large-scale wireless sensor networks. Such networks have been modeled
as unit disk graphs [11] of the plane, where two nodes are neighbors whenever their distance
is lower than a fixed radio range ; see figure 1(a) the principle of unit disk graphs.

An important assumption is that the wireless broadcast advantage is used: each trans-
mission is overheard by several nodes. As a result the graph is in reality a (unit disk)
hypergraph1 : (it is slightly different from random geometric graphs [29] where links are
independent). Precisely, the sensor networks considered will be:� Random unit disk graphs with nodes uniformly distributed (Fig. 1(a))� Unit disk graphs with nodes organized on a lattice (Fig. 1(b)), special case of the

following:� Lattice sensor networks where the neighborhood of one node is not necessarily the set
of nodes within disk like on Fig. 2(a), but may any arbitrary set R such as the one
on Fig. 2(b).

Hence for lattice sensor networks, the set R is fixed for one origin node, and all the nodes
of the lattice have a similar neighborhood by translation. For simplicity in later proofs, R
must include the node itself ((0, 0) ∈ R). The following requirement should also be met:

Requirement 1 {(−1, 0), (1, 0), (0,−1), (0, 1)} ⊂ R

1by abuse of language, the term “unit disk graph” will be used in this article

INRIA
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(a) Unit disk
graph - neighbors
of A are B and
C since they are
within range ρ

(b) Lattice

Figure 1: Network Models
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8 Cédric Adjih, Song Yean Cho, Philippe Jacquet

3 Network Coding Fundamentals

3.1 Performance of (Wireless) Network Coding : Min-cut

The starting point of network coding is the celebrated work from [1], showing that coding
in networks could achieve maximum broadcast capacity (given by the min-cut), while in the
general case, it is out of reach of traditional transmission methods (i.e. without network
coding).

It is possible to model the wireless network as an hypergraph, as done in this section.
The benefits of using an hypergraph model, is that it models closely the wireless broadcast
feature of wireless network, and that there exists a powerful generalization of the results
of [1] for network coding for normal graphs. It expresses the maximum broadcast capacity
of the graph, when the rates Cv are fixed:

The maximum broadcast (multicast) rate for a source s to all destinations, is
given by the minimum of the maximum flow capacity from the source to every
individual destination of the network, of the hypergraph [2, 19, 3]2. This is the
max-flow which is also to be the min-cut.

Of course, this requires the definition of an hypergraph, in section 3.1.1, and of the
max-flow/min-cut, in section 3.1.2.

3.1.1 Hypergraph Notation

Given any set of nodes in a network where the same transmission can reach several neighbors
simultaneously, such as with wireless networks, it is possible to describe the connectivity
graph as an (oriented) hypergraph, following the formalization used in [2, 3] and [19].

An hypergraph is a graph where edges are replaced by hyperedges : instead of having one
edge linking one head node to one tail node, an hyperedge links one head node to several
tail nodes. Precisely,

Following the formalization of [2,3] and [19], the hypergraph and its min-cut with respect
to source s are defined as follows:
• Hypergraph: G = (V ,H), with V and H defined as follows:
• Nodes: V = {vi, i = 1, . . . n}, set of vertices (nodes) of the graph (source is s ∈ V)
• Hyperedge: hv = (v, Hv) where Hv ⊂ V is the subset of nodes which are reached by one
transmission of node v Hence Hv is the set of neighbors of node v.
• Set of hyperedges: H = {hv : v ∈ V}
• Rate: Each node v emits on the hyperedge (v, Hv) with a fixed rate Cv.

3.1.2 Min-cut of an Hypergraph

Let us consider the source s, and one of the multicast (broadcast) destinations t ∈ V .

2actually their results are more general

INRIA



Near Optimal Broadcast with Network Coding in Large Homogeneous Wireless Networks 9

A cut is a defined by a partition of the set of vertices V in two sets S, T such as s ∈ S
and t ∈ T . Precisely, because it depends on s and t, it is an s-t cut.

Let Q(s, t) the set of the all the s-t cuts (S, T ).
We denote ∆S, the set of nodes of S for which there is at least one node of T within

range. Formally, ∆S is:
∆S , {v ∈ S : Hv ∩ T 6= ∅} (1)

The capacity of the cut is defined as the maximum rate from the nodes in S to the nodes
in T . That is, the capacity of the cut is:

C(S) ,
∑

v∈∆S

Cv (2)

It is the maximum rate that nodes in the set T taken as a whole, can receive from the nodes
in the set S (also taken as a whole). Note that this expression differs from the capacity of
a cut when the topology is not an hypergraph, but a graph with simple edges: here, if a
node v ∈ ∆S can transmit to several nodes of T , its contribution to the capacity is counted
only “once”, because it is the same transmission (hyperedge), hence same information, that
reaches the different nodes.

With this definition of an s − t cut, the s − t min-cut is the following:
The min-cut between the source s and the destination t is denoted Cmin(s, t), and is the

minimum of the capacity of all the s − t cuts:

Cmin(s, t) , min
(S,T )∈Q(s,t)

C(S) (3)

When multicasting, there are several destinations t for the same source s, hence the
min-cut is the minimum of the s− t min-cuts for all t. When broadcasting to all nodes, the
min-cut is the minimum for all nodes other than s, and we denote the broadcast min-cut
Cmin(s):

Cmin(s) , min
t∈V\{s}

Cmin(s, t) (4)

As indicated in section 3.1, Cmin(s) is the maximum broadcast rate with which the
source s can transmit to all the nodes in the network.

3.2 Related Work

In general specifying the network coding protocol reduces to specifying the transmission rates
for each node [12].For minimum-cost multicast, [5] contains several methods (centralized or
distributed), to compute the optimal rate selection.However This article is in the spirit of [13]
which starts with exhibiting an energy-efficient algorithm for simple networks. The central
element for computing the performance is the estimation of the min-cut of the network. We
are inspired by the existing techniques and results about the expected value of the min-cut
on some classes of networks: for instance [8] explored the multicast capacity networks where
a source is two hop from the destinations, through a network of relay nodes ; [9] studied

RR n° 6188



10 Cédric Adjih, Song Yean Cho, Philippe Jacquet

some classes of random geometric graphs. Recently, [10] gave bounds of the min-cut of dual
radio networks.

3.3 Practical Implementation of Wireless Network Coding

It has been shown that a simple form of coding, linear coding [17], (using linear combinations
of data symbols belonging to Galois fields Fp - see also [18]), is sufficient to achieve the
bounds of [1]. Furthermore, [6] presented one method which does not require coordination
of (the coding at) the nodes, by introducing random linear coding and by showing that
sufficient field size results in high probability of success. With random linear coding, the
coding inside the network is no longer predetermined, since it uses random coefficients for
the linear combinations.

These works set the path to practical foundations, which are described for instance
in [16, 7], and that are used for the simulations given in this article, in section 6.

Vectors: second, the packets are equally sized and are divided into blocks of sym-
bols over a field Fp: content = (s1, s2, ..., sh). As in [16], the packets include a header
which is the list of coefficients. Hence the packet format is actually a vector of the format:
(g1, g2, . . . , gD; s1, s2, . . . , sh).

Transmission: at any point of time, a node of the network has a list of vectors, linear
combinations of initial source packets. When the node transmits, it generates a random
linear combination of the vectors v0, v1, ..., vk it currently has:

∑

i αivi (where the (αi) are
random coefficients of Fp), and transmit it by wireless broadcasting.

Decoding: once a node has received D linearly independent vectors, it is able to decode
the D packets of the generation.

The performance of wireless network coding, when the topology is fixed, and when each
node as a fixed rate is know. As shown in [2], it turns out to be the min-cut of the wireless
network, exactly like for wired networks, except that in this case the wireless network is
modelled as an hypergraph.

Similarly the random distributed network coding (see algorithm 1) introduced in [6], can
be used, and achieve the maximum given by the min-cut.

Moreover, although the algorithm 1 assumes exponential interarrival for the packets, it
has been shown that any transmission process with an average rate also achieve optimal
rate [19, 12].

Algorithm 1: Random Distributed Network Coding

Nodes’ scheduling: Poisson retransmission; the nodes retransmit linear1.1

combinations of the vectors that they have, with an exponential interarrival

INRIA
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4 Our approach: IREN/IRON

4.1 Overview

As described in the introduction, our approach is to choose an intuitive transmission rate
for the each node: essentially, the same rate for most nodes. The rate selection is described
in section 4.3. Then, we determine the maximum broadcast rate that can be achieved to
transmit from the source to every node in the network as the min-cut of the hypergraph, for
both lattice graphs in section 4.4. And finally, from the expression of the cost in section 4.5,
we deduce asymptotic optimality (section 4.6).

4.2 Further Definitions

Consider a network inside a square area such as the one on figure 4.2. We denote L the edge

Figure 3: Sample of network inside a square

length of square G containing the network. We define the border area as the area of fixed
width W near the edge of that square, and border nodes as the nodes lying in that area.
The area L × L of G is partitioned into:� ∆G, the border, with area A∆G = 4W (L − W ) on figure 4.2, the hatched area ∆G� Gi, the “interior” Gi , G \ ∆G, with area AGi

= (L − 2W )2

Let M be the “expected” number of neighbors of one node. For a lattice network, it
is exactly the number of points in the neighborhood R minus one (see Fig. 2(a) and 2(b)):
M = |R| − 1. For a random disk unit graph with N nodes, the radio range for disk unit
graph is denoted ρ. M is related to the density µ = N

L2 and range as follows: we will take

M as the expected number of neighbors M = πρ2µ = πρ2 N
L2 of a node which is not in the

border area.
One requirement on W is that all nodes in the interior of the square Gi, are out of range

of the outside of the network. This is achieved by making W sufficiently large ; for unit disk
graph for instance, if the radio range is ρ, then W = ρ satisfies this requirement ; for lattice
disk, if R is included in the disk of radius ρ, W = ρ is also a good choice.

RR n° 6188



12 Cédric Adjih, Song Yean Cho, Philippe Jacquet

4.3 Rate Selection with IREN/IRON

The principle IREN/IRON amounts to setting the following transmission rates:� IREN (Increased Rate for Exceptional Nodes): the rate of transmission is set to M , for
the following nodes: the source, and all the border nodes (the “exceptional” nodes).� IRON (Identical Rate for Other Nodes): every other node, except the source and all
the border nodes, transmits with rate 1.

Notice that these rates can be globally scaled by the same amount: the cost and the
achieved broadcast rate would linearly increase, and the efficiency would be identical.

4.3.1 Rationale for IREN/IRON

.
There are some reasons for the above rate selection. The rationale is the following: we

start by imagining an average transmission rate of 1 for mode nodes, the “IRON” part.
Then most nodes will receive an average rate of M transmission from their neighbors. With
or without network coding, this implies that the maximum achievable broadcast reception
rate with this setting is upper-bounded by M .

Now there are two additional issues: the source and the border nodes. For the first, in
order to achieve a broadcast reception rate equal to M in the network, the source need to
transmit at least with that rate, otherwise it would be a bottleneck.

For the second issue, nodes near the border, one can notice that they have smaller
neighborhoods (less than M neighbors). Nevertheless, if they are connected to the network
they have at least one neighbor: by setting a rate of M for that neighbor, they are guarantee
to received a sufficient rate. Since, in large networks, border nodes represent a minority of
nodes, this could have (and does have) limited impact on the efficiency.

After following the steps of the rationale, the main issue is determine whether this insights
are sufficient for achieving broadcast rate of M . In this article, we prove that it is the case
(see section 4.4) for lattice network, and asymptotically the case for dense unit disk graphs.

However note that this property is not true for general graphs, and that the rate selection
hinted here is not absolutely optimal.

4.4 Performance: Min-Cut (Achievable Broadcast Rate)

The essence of our main result is the following:

Property 1 The min-cut of a lattice graph with the rate selection IREN/IRON is exactly
equal to Cmin = M (with M = |R| − 1).

See section 5.1 for the proof of this property in Th. 2.
For random unit disk graphs, by mapping the points to an imaginary lattice graph

(embedded lattice), as an intermediary step, we are able to find bounds of the capacity of
random unit disk graphs. This turns out to be much in the spirit of [10].

INRIA
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Precisely we prove the following property:

Property 2 The min-cut Cmin(s) of the source s of a random unit disk graph V, is bounded

with the min-cut C
(L)
min(sL) of some point of the embedded lattice sL as follows:

Cmin(s) ≥ mminC
(L)
min(sL)

where mmin is a random variable related to the number of nodes of the graph mapped to one
point of the lattice.

Refer to section 5.2.3, Th. 3 for details, the property is only quoted here to give this general

implication: under some assumptions and definitions, is mminC
(L)
min(sL) actually “close” to

M . This is used to deduce an asymptotic result for unit disk graphs:

Property 3 Assume a fixed range. For a sequence of random unit disk graphs (Vi), with
sources si, with size L → ∞ and with a density M → ∞ such as M = Ω(Lθ), for any fixed

θ > 0, we have the following convergence in probability: Cmin(s)
M

p
→ 1

This property is proved in section 5.2, Th. 5.

4.5 Performance: Transmission Cost Per Broadcast

Recall from section 1, that the metric for cost is the “number of (packet) transmissions per
a (packet) broadcast from the source to the entire network”.

The energy cost of broadcasting with IREN/IRON rate selection, can equivalently com-
puted from the rates as the ratio of the number of transmissions per unit time to the number
of packets broadcast into the network per unit time. Let us denote Ecost this cost per broad-
cast. Notice that the number of packets broadcast per unit time with (adequate) network
coding is the min-cut Cmin(s). Then Ecost is deduced from the min-cut Cmin, from the bor-
der and interior the areas A∆G, AGi

, the associated node rates (along with the rates of the
nodes of in the border and in the interior) and the node density µ. For fixed W , M, L → ∞:

Ecost =
1

Cmin
µL2

(

(1 + O(
1

L
) +

4MW

L
(1 + O(

1

L
))

)

For random unit disk graphsV , Ecost is an expected valueEcost = E(Ecost(V)), and
µ = N

L2 . For a lattice, µ = 1.

4.6 Near Optimal Performance for Large Networks

The sections 4.4 and 4.5 gave the performance and cost with the IREN/IRON principle. As
indicated previously, for a given (hyper)graph, the optimal rate selection, and the optimal
(minimum-cost) total rate of the network may be computed with a linear program [5]. The
optimal cost is not immediately computed and in this section an indirect route is chosen,
by using a bound.
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14 Cédric Adjih, Song Yean Cho, Philippe Jacquet

Assume that every node has at most Mmax neighbors: one single transmission can provide
information to Mmax nodes at most. Hence in order to broadcast 1 packet to all N nodes,
at least Ebound = N

Mmax
transmissions are necessary.

This is compared to the Ecost transmissions per packet broadcast. W.r.t. this bound,
let the relative cost be: Erel−cost = Ecost

Ebound
≥ 1,

We will prove that Erel−cost → 1 for some (sequences of) networks:

4.6.1 Lattice Graphs.

For lattice graphs, we will assume a constant range, hence a constant neighborhood definition
set R, and a constant M , number of neighbors for any node which is not in the border.

The width of the border W is such as, the border includes all nodes that are at distance
lower than 2 from the border. Since the size of the neighborhood is kept constant, the width
of the border stays also constant. For lattice graphs, W and the neighborhood R are kept
fixed (hence also M = |R| − 1), whether it is a unit disk lattice graph or not), and only the
size L of the network increases to infinity. The number of nodes is N = L2, and µ = 1. The
maximum number of neighbors Mmax is exactly Mmax = M .

From section 4.5, and from property 1, we have:

Erel−cost = Ecost
Mmax

N
=

=

(

(1 + O(
1

L
) +

4MW

L
(1 + O(

1

L
))

)

= 1 + O(
1

L
)

4.6.2 Random Unit Disk Graphs.

For random unit disk graphs, first notice that an increase of the density M does not improve
the relative cost Erel−cost(due to the cost of border nodes). Now consider a sequence of
random graphs, as in property 3, with fixed radio range ρ, fixed border width W , size
L → ∞ and with a density M → ∞ such as M = Ω(Lθ), for some arbitrary fixed θ > 0,
with the additional constraint that θ < 1. We have:

Erel−cost = Ecost
Mmax

N
=

=
M

Cmin

Mmax

M

µL2

N

(

1 + O(
1

L
) +

4MW

L
(1 + O(

1

L
))

)

Each of part of the product converges towards 1, either surely, or in probability: using

property 3, we have the convergence of Cmin

M

p
→ 1, when L → ∞ and similarly with Th. 5

we have Mmax

M

p
→ 1. By definition N = µL2. Finally, M = Ω(Lθ) for θ < 1 implies that

4MW
L

→ 0.
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As a result we have:
Erel−cost

p
→ 1

in probability, when L → ∞

4.6.3 Near Optimality.

The asymptotic optimality is a consequence of the convergence of the cost bound Erel−cost

towards 1. Since it is not possible to have a relative cost Erel−cost lower than 1, the rate
selection IREN/IRON is asymptotically optimal for the two cases presented when L → ∞.
Note that, this indirect proof is in fact a stronger statement than optimality of the rate
selection in terms of energy-efficiency: it exhibits the fact that asymptotically (nearly) all
the transmissions will be innovative for the receivers. Note that it is not the case in general,
for a given instance of an hypergraph. It evidences the following remarkable fact for the
large homogeneous networks considered: network coding may be achieving not only optimal
efficiency, but also, asymptotically, perfect efficiency - achieving the information-theoretic
bound for each transmission.

5 Proofs of the Achievable Capacity with Network Cod-
ing

In this section, we provide a formal proof for both property 1 and property 3 of section 4.4.

5.1 Proof for Lattice Graphs

5.1.1 Overview of the Proof

We first start with a proof for a lattice graph (such as the one Fig. 1(b)). Our objective is
to compute prove Th. 2 (section 5.1.4), which indicates that for one source s, the min-cut
Cmin of the lattice graph is M (with IREN/IRON).

In order to compute the global min-cut Cmin(s), we start with considering one destination
node t in the network, and we will provide a bound the min-cut of the (hyper)-graph between
s and t, that is, Cmin(s, t).

The proof proceeds as follows: we first link the capacity of the cut between nodes in
S and nodes in T with the number of nodes in S which are neighbors of nodes in T . The
number of these nodes decide the the capacity of the cut. Then we use the fact that the
neighbors are obtained with a Minkowski sum. As a result, the inequality on on Minkowski
sums could be applied to compute that number of neighbors. However with the effect of
the border ∆L there are several special cases for applying the inequality, and each time, we
prove that the capacity of the cut has the desired bound. The theorem will follow.
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5.1.2 Preliminaries.

Let Γ be full, unbounded, integer lattice in n-dimensional space; it is the set Z
n, where the

lattice points are n-tuples of integers.
For lattice graphs, only points on the full lattice are relevant; therefore in this section,

the notations L,Li, ∆L will be used, for the parts of the full lattice Γ that are in G, Gi, ∆G
respectively.Formally: L = Γ ∩ G,Li = Γ ∩ Gi, and∆L = Γ ∩ ∆G

The proof is based on the use of the Minkowski addition, and a specific property of
discrete geometry (5) below. The Minkowski addition is a classical way to express the
neighborhood of one area (for instance, see [14] and the figure 3(a), and figure 4 of that
reference).

Given two sets A and B of R
n, the Minkowski sum of the two sets A ⊕ B is defined as

the set of all vector sums generated by all pairs of points in A and B, respectively:

A ⊕ B , {a + b : a ∈ A, b ∈ B}

Consider a subset R of Γ, defining neighborhood, such as the ones on Fig. 2(a) and Fig. 2(b),
with origin at the point (0, 0). We denote this set R as the lattice neighborhood definition
set. Then the set of neighbors N (t) of one node t, with t itself, is:

N (t) ∪ {t} = {t} ⊕ R

This extends to the neighborhood of a set of points.
The neighbors of t are given with:

N (t) = ({t} ⊕ R) \ {t}

The rewriting of neighborhood in terms of Minkowski sum, has the advantage that several
results of discrete geometry exists, including Brunn-Minkowski-Lysternik type inequalities.

The Brunn-Minkowski-Lysternik inequality gives a bound on the size of Minkowski sum
of two compact sets of R

n; for integer lattice, there exist several integer variants, including
the following one [15]: for two subsets A, B of the integer lattice Z

n,

|A ⊕ B| ≥ |A| + |B| − 1 (5)

where |X | represents the number of elements of a subset X of Z
n

5.1.3 Bound on the capacity of one cut C(S).

Consider a lattice L and a source s. We start with the definition of Cmin(s, t) of (3): it
requires considering the capacities of every s-t-cut S, T . Let C(S) be the capacity of such a
s-t cut S, T ∈ Q(s, t).

We have the following lemma linking the capacity of the cut and the size of ∆S, the set
of nodes of S which are neighbors of nodes of T
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Lemma 1 C(S) ≥ |∆S| (with ∆S defined in (1))

Proof. With the definition in (2), we have:
C(S) =

∑

v∈∆S Cv

⇒ C(S) ≥
∑

v∈∆S 1, because with IREN/IRON, Cv ≥ 1
⇒ C(S) ≥ |∆S|
which is the lemma. �

Lemma 2 If U ⊂ Li then U ⊕ R ⊂ L

Proof: The requirement on W in section 4.2 translates into: for any node x ∈ Li, {x}⊕R ⊂
L, hence the result.

Lemma 3 When the requirement 5.1.3 (in section 2) is met, for any two nodes U, V inside
the border area, there exist a path using only points for the border area.

Proof: Recall that requirement for the set R which defines the neighborhood (require-
ment 1 in section 2) is the following:

The set R is a subset of Γ and should include the origin point (0, 0) as well as
the 4 fours points which are immediate neighbors on the lattice: (1, 0), (0, 1),
(−1, 0), (0,−1)

The requirement is that R should include the 4 immediate neighbors in the directions
“left, right, up, and down”. Since the border area is a connex area (using this reduced
immediate neighborhood definition), the lemma follows.

Theorem 1 The capacity of one cut C(S) is such that:

C(S) ≥ M

Proof : There are three possible cases, either the set T has no common nodes with the border
∆L, or T includes all nodes of ∆L, or finally T includes only part of nodes in the border
area. Formally:� First case: T ∩ ∆L = ∅� Second case: ∆L ⊂ T� Third case: T ∩ ∆L 6= ∅ and δL 6⊂ T

We will prove inequality of theorem 1 in all 3 cases.
First case, T ∩ ∆L = ∅:
With lemma 2, we know that T ⊕ R ⊂ L, hence we can effectively write the neighbors

of nodes in T as a Minkowski addition (without getting points in Γ but out of L):

∆T , (T ⊕ R) \ T
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It follows that: |∆T | ≥ |T ⊕ R| − |T |
Now the inequality (5) can be used: |T ⊕ R| ≥ |T | + |R| − 1
Hence we get: |∆T | ≥ |T | + |R| − 1 − |T |, and therefore:

|∆T | ≥ |R| − 1 (6)

Recall that S and T form a partition of L ; and since ∆T is a subset of L, by definition
without any point of of T , we have ∆T ⊂ S. Hence actually ∆T ⊂ ∆S (with the definition
of ∆S in (2)). We can combine this fact with lemma 1, lemma 2, and (6), to get:

|C(S)| ≥ |R| − 1 and the Th. 1 is proved for the first case.
�

Second case, ∆L ⊂ T :
In this case, all the points of the border area are included in T , and as a consequence,

the complementary set of points S has no nodes on the border, i.e. S ∩∆L = ∅. As a result
S ⊂ Li.

We will show that a set S has equal or greater number of nodes which are neighbors of
nodes in T than |R| − 1. The method to prove it is similar with the method of the first
case, but we consider neighborhood in the opposite way: we consider the nodes in S that
are neighbors of nodes in T .

Let us denote Si the “interior” of S, that is, the set of nodes of S, which are not in
within range of the set T Precisely:

Si , {x : x ∈ S and (x ⊕ R) ∩ T = ∅}
By definition of ∆S in eq. (2), ∆S is the sets of nodes of S which are within range of

the set T , and hence the subsets Si and ∆S form a partition of S
Additionally, because Si ⊂ S and S ⊂ Li, we know with lemma 2 that Si⊕R ⊂ L. Since

by definition of S, Si ⊕R has no common element with T , and since S and T are a partition
of L, the property follows:3

Si ⊕ R ⊂ S (7)

Now there are two possibilities: either Si = ∅ or not.
• If Si = ∅, the implication is that S = ∆S, hence in particular, s ∈ ∆S. Going back to

the definition of a cut in (2), we had:
C(S) =

∑

v∈∆S Cv by definition,
⇒ C(S) ≥ Cs because s ∈ ∆S
⇒ C(S) ≥ M because Cs = M with IREN/IRON. and the theorem 1 is proved for the
second case, first possibility. �

• Otherwise, Si 6= ∅.
Starting from eq. 7, we had:

Si ⊕ R ⊂ S
⇒ |S| ≥ |Si ⊕ R|, and as a result, with ineq. 5:

|S| ≥ |Si| + |R| − 1 (8)
3Alternatively the reader familiar with mathematical morphology [27] could notice that Si is the erosion

of S by the structural element R. As a result Si ⊕R is actually the opening of S, and the following property
of the opening is known: Si ⊕ R ⊂ S (see [30] p.40).
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We had established that Si, ∆S was a partition of S, hence ∆S = S \ Si

⇒ |∆S| ≥ |S| − |Si|
⇒ |∆S| ≥ |R| − 1

Therefore with lemma 1, we deduce the capacity of the cut is such that:
C(S) ≥ |R| − 1
and the theorem 1 is proved for the second case, second possibility. �

Third case: T ∩ ∆L 6= ∅ and ∆L 6⊂ T :
Again, since T and S are a partition of L, we deduce that S ∩ ∆L 6= ∅ ; hence both T

and S have nodes in the border area ∆L.
Let us consider such nodes: ut ∈ T ∩ ∆L and us ∈ S ∩ ∆L. With the lemma 2, there

exist a path from us to ut with only nodes in the border.
Let us start with us, and iterate on the nodes of the path. Since us is in S and ut is in

T , we will ultimately find a node of the path u such that u is still in S and that its successor
v in the path is not (is in T ). By definition of ∆S, u ∈ ∆S, and also u ∈ ∆L by property
of the path.

Hence now, the contribution of u to the capacity of the cut C(S) can be used: C(S) =
∑

v∈∆S Cv (from def. 2)
⇒ C(S) ≥ Cu, because u ∈ ∆S
⇒ C(S) ≥ M because Cu = M

and the theorem 1 is proved for the third case. �

5.1.4 Value of the Min-cut Cmin(s)

The results of the previous section immediately result in a property on the capacity of
every s-t min-cut:

Theorem 2 For any t ∈ L different from the source s:

Cmin(s, t) = M

; and as a result: Cmin(s) = M

Proof: Let Smin/Tmin be one cut with minimal capacity, one such as: C(Smin) = Cmin(s, t).
Applying, the theorem 1, it appears that C(Smin) ≥ M , hence: Cmin(s, t) ≥ M

Conversely let us consider a specific cut, Ss = {s} and Ts = L \ {s}. Obviously s has
at least one neighbor, which has to be in T , hence ∆S = {s}. The capacity of the cut is
C(Ss) =

∑

v∈∆S Cv = Cs = M and thus Cmin(s, t) ≤ M , and the theorem follows.

5.2 Proof of the Value of Min-Cut for Unit Disk Graphs

In this section, we will prove a probabilistic result on the min-cut, in the case of random
unit disk graphs, using an virtual “embedded” lattice. The unit graph will be denoted V ,
whereas for the embedded lattice the notation of section 5 is used: L (along with ∆L and
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Li). The elements of V are still called “nodes”, but the elements of L are called “points” to
emphasize the fact that they are virtual.

We will assume W > ρ (for instance W = 2ρ)

5.2.1 Embedded Lattice

Given the square area L×L, we start with fitting a rescaled lattice inside it, with a scaling
factor r. Precisely, it is the intersection of square G and the set {(rx, ry) : (x, y) ∈ Z

2}.
We will map the points of G to the closest point of the rescaled lattice L: Let us denote

λ(x), the application which transforms a point u of the Euclidian space R
2 to its closest

point of L. Formally, for u = (x, y) ∈ Z
2,

λ(x) , (r⌊
x

r
+

1

2
⌋, r⌊

y

r
+

1

2
⌋)

For u ∈ L, λ−1(u) is the set of nodes of V that are mapped to u. This area of R
2 which

is mapped to a same point of the lattice, is a square r × r around that point. We choose
r so that G fits exactly so that such squares are not truncated. This is achieved by taking
the origin point of R

2 as the center of the square G, and by selecting r = 2k+1
L

where k is a
positive integer.

Let u be a point of the lattice L, and let denote the m(u) the number of points of V that
are mapped to u with g (they are in the square around u ; and m(u) , |λ−1(u)|). Since V
is a random graph, m(u) is a random variable.

Let us denote:
mmin , min

u∈L
m(u) and mmax , max

u∈L
m(u)

5.2.2 Neighborhood of the Embedded Lattice

We start by defining the neighborhood R for the embedded lattice. The desired property
is to have some relationship between neighborhood on the unit graph, and, after mapping,
neighborhood on the embedded lattice.

For this, we choose R to be the points of the lattice inside a disk of radius ρ − 2r:

R(r) = {(rx, ry) : (rx)2 + (ry)2 ≤ (ρ − 2r)2; (x, y) ∈ Z
2}

The following lemma shows that we have the desired property.

Lemma 4 Let us consider two nodes of u, v of V that are mapped on the lattice L to uL
and vL respectively:
• if uL and vL are neighbors on the lattice, them u and v are neighbors on the graph V
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Proof: We have ‖ u− v ‖≤‖ u− uL ‖ + ‖ uL − vL ‖ + ‖ vL − v ‖ using triangle inequality
of the Euclidian distance ‖ . ‖.

By definition of neighborhood on the lattice, uL− vL ∈ R(r), hence, ‖ uL− vL ‖≤ ρ−2r

Moreover since uL is the closest point on the lattice of u, and we have ‖ u − uL ‖≤
√

2
2 r

(the length of the half-diagonal of a r× r square), which is implies ‖ u−uL ‖≤ r. The same
reasoning applies to v and vLat, and as a result:
‖ u − v ‖≤ 2r+ ‖ uL − vL ‖≤ ρ. Hence the lemma.

Lemma 5 |R(r)| ≤ π ρ2

r2

Proof: In a similar spirit to the mapping to the lattice, let us consider the square of size
r × r around each point of R(r). Such squares are disjoint for different points of R(r) ; let

us denote ˆR(r) the union of all such squares of every point of R(r).

We have, for every point of u ∈ ˆR(r): there exists a point v ∈ R(r) such that u is in the

square around v. Then by a similar argument to lemma 4, ‖ u− v ‖≤
√

2
2 r ≤ r ; in addition

‖ v ‖≤ ρ − 2r, from the definition of R(r). Therefore ‖ u ‖≤ ρ, hence ˆR(r) is included in

the disk of radius ρ. Therefore its area A( ˆR(r)) verifies A( ˆR(r)) ≤ πρ2.

In addition, by definition of ˆR(r) as union of disjoint squares, we also have another

expression of its area: A( ˆR(r)) = |R(r)|r2. Using this equality with the previous inequality

with A( ˆR(r)) gives the result.

Lemma 6 |R(r)| = π ρ2

r2 + O(1
r
) when r → 0,

Proof: We can rewrite the definition of R(r) as:

R(r) = {(rx, ry) : x2 + y2 ≤ (
ρ − 2r

r
)2; (x, y) ∈ Z

2} (9)

It is the number of points in |R(r)| is the number of lattice points within a circle of
radius fixed around the origin (the “circle problem”). From [30] p. 133, Gauß has shown
that Nc(d) = πd2 + O(d) , for a circle of radius d, when d → ∞. Here d = ρ

r
− 2, hence

|R(r)| = π(ρ
r
)2 + O(1

r
), and the lemma.

5.2.3 Relationship between Capacities of the Cuts of the Embedded Lattice
and the Random Disk Unit Graph.

The idea here is to show that the relationship with a cut of the random unit graph, and a
cut of the lattice graph.

Let us consider one source s ∈ V , one destination t ∈ V and the capacity of any S/T
cut. Every node of S and T is then mapped to the nearest point of the embedded lattice.
For the source, we denote: sL = λ(s).

An induced cut of the embedded lattice is constructed as follows:
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22 Cédric Adjih, Song Yean Cho, Philippe Jacquet� The border area width WL is selected so as to be the greatest integer multiple of r
which is smaller than W ; and r < W − ρ, so that the requirement 5.1.3 of section 2
is met.� For any point of the lattice vL ∈ L, the rate C

(L)
vL

is set according to IREN/IRON on

the lattice: C
(L)
vL

= |R(r)| − 1 when vL is within the border area of width WL, and

C
(L)
vL

= 1 otherwise.� SL is the set with the point sL and with points of the lattice L, such as only nodes of
S are mapped to them:

SL , {sL} ∪ {uL : λ−1(uL) ⊂ S} (10)� TL is the set of the rest of points of L.

Note that t ∈ TL ; that all the points of the lattice, to which both points from S and T are
mapped, those points are in TL ; and that the points to which no points are mapped are in
SL: SL/TL is indeed a partition and a sL − tL cut.

Recall that definition of a cut in eq. 2, we have:
C(S) =

∑

v∈∆S Cv and C(L)(SL) =
∑

v∈∆SL
Cv where ∆S and ∆SL are subsets of S and

SL respectively.
We have the following relationship between these two sets:

Lemma 7 Excluding sL and s, the nodes of V that are mapped to points of ∆SL , are in
∆S ; that is:

λ−1(∆SL \ {sL}) ⊂ ∆S \ {s}

Proof: λ−1(∆SL) = ∪uL∈∆SL
λ−1(uL) hence it suffice to prove the property for λ−1(uL)

for every uL ∈ ∆SL.
Let us consider one such point uL ∈ ∆SL \ {sL}. By definition of ∆SL, there exists a

point vL ∈ TL within range for L (that is: (uL − vL) ∈ R(r)).
If λ−1(uL) = ∅, then the property λ−1(uL) ∈ ∆S \ {s} is verified. Hence let us consider

the case where λ−1(uL) 6= ∅:
Since vL ∈ TL, by the definition of this set, there exists at least one node of T mapped

to vL and thus: λ−1(vL) ∩ T 6= ∅.
Now consider two points of these non-empty sets, u ∈ λ−1(uL) and v ∈ λ−1(vL) ∩ T :
• From lemma 4, we know that u and v are within range (‖ u − v ‖≤ ρ).
• Recall that ∆SL ⊂ SL. By definition of SL, since uL is in SL, u must be in S.
• v ∈ T
These three conditions imply that u ∈ ∆S. Also s is mapped to the unique λ(s) = sL,

therefore uL 6= sL implies u 6= ∆S \ {s}. It follows that λ−1(uL) ⊂ ∆S \ {s}, and, as a
consequence, the lemma.

It is now possible to use this subset of ∆S to prove the following lemma on relating the
cut of V and its induced cut:
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Lemma 8 The capacity C(S) of the cut S/T and the capacity of the induced cut C(L)(SL)
verify:

C(S) ≥ mminC
(L)(SL)

Proof: First note that if mmin = 0, the lemma is proved. Hence, in the rest of the proof,
we can assume that this integer verifies mmin ≥ 1.

In this case, notice that there are L2

r2 squares of size r × r, each with at least mmin

nodes, therefore the total number of nodes verifies: N ≥ L2

r2 mmin, and then µ ≥ 1
r2 mmin by

definition of µ. Combining this with lemma 5, we get:

|R(r)| ≤ πρ2µmmin (11)

Now consider again the definition of a cut in eq. 2, that can be split in two parts, one
without the source, with the source:

C(S) =
∑

v∈∆S Cv =
∑

v∈∆S\{s} Cv +
∑

v∈∆S∩{s} Cv

With lemma 7, we know a subset of ∆S, hence:
C(S) ≥ Cinterm. + Csrc

with Cinterm. =
∑

v∈λ−1(∆SL\{sL}) Cv and Csrc =
∑

v∈∆S∩{s} Cv

• The first sum Cinterm. can be rewritten as:
Cinterm. =

∑

vL∈∆SL\{sL}
∑

v∈λ−1(vL) Cv

Let us consider all the nodes in the square area λ−1(vL), and their rates compared to
the rate of vL:� If C

(L)
vL

= 1, then since IREN/IRON assigns only rates ≥ 1, we have Cv ≥ C
(L)
vL

for
any v ∈ V .� If C

(L)
vL

> 1, vL is a border node for L (and WL), and C
(L)
vL

must actually be |R(r)|−1.
Since WL is chosen so that WL < W , we have also: λ−1(vL) is a set of border nodes
of V . Their rate is Cv = πρ2M by definition.

From eq. 11, we have Cv ≥ mmin|R(r)|, hence Cv ≥ |R(r)|, and finally: Cv ≥ C
(L)
vL

As a result, in both cases, ∀v ∈ λ−1(vL), Cv ≥ C
(L)
vL

, and:
∑

v∈λ−1(vL) CvL
= |λ−1(vL)|C

(L)
vL

≥ mminC
(L)
vL

Hence Cinterm.(S) ≥ mmin

∑

vL∈∆SL\{sL} C
(L)
vL

• The second sum Csrc reduces to 0 or 1 term:� If sL ∈ ∆SL, then ∆SL ∩ {sL} = {sL}.

With the same reasoning as in the proof of lemma 7, necessarily s ∈ ∆S as well, and:
∆S ∩ {s} = {s}.

Csrc = Cs = πρ2µ. As before, from eq. 11, we get Cs ≥ mmin|R(r)|, hence Csrc ≥

mminC
(L)
sL
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24 Cédric Adjih, Song Yean Cho, Philippe Jacquet� If sL /∈ ∆SL, then ∆SL ∩ {sL} = ∅, and obviously
∑

vL∈∆SL∩{sL} C
(L)
vL

= 0

In both cases, Csrc ≥ mmin

∑

vL∈∆SL∩{sL} C
(L)
vL

Putting together both inequalities for Cinterm. and Csrc, the result is:

C(S) ≥ Cinterm. + Csrc ≥ mmin

∑

vL∈∆SL\{sL} C
(L)
vL

+ mmin

∑

vL∈∆SL∩{sL} C
(L)
vL

Hence: C(S) ≥ mmin

∑

vL∈∆SL
C

(L)
vL

The right part of the inequality is actually the definition of the capacity of the sL−tL-cut,
hence: C(S) ≥ mminC

(L)(SL), which is the lemma.

Theorem 3 The min-cut Cmin(s) of the graph V, verifies:

Cmin(s) ≥ mmin(|R(r)| − 1)

Proof: From lemma 8, any cut C(S) is lower bounded by mminC
(L)(SL). Since C(L)(SL)

is the capacity of a cut of a lattice with IREN/IRON, Th. 2 also indicates that: C(L)(SL) ≥

C
(L)
min = |R(r)| − 1. Hence the lower bound mmin(|R(r)| − 1) for any C(S), and as a result,

for the min-cut Cmin(s)

5.2.4 Nodes of V Mapped to One Lattice Point.

In Th. 3, mmin plays a central part. In this section, a probabilistic bound is given for the
variation of mmin.

We start with the following property on random variables: for a variable X which is the
sum of n random variables Xi, i.e. X =

∑i=n

i=1 Xi, which are independant and identically
distributed, we have the following inequality, which is a Chernoff bound [28]:

Pr(X ≤ (1 − δ)E[X ]) ≤ exp(−
E[X ]δ2

2
) (12)

for 0 ≤ δ ≤ 1
Symetrically, a similar Chernoff bound exists for the upper tail [28]:

Pr(X ≤ (1 + δ)E[X ]) ≤ exp(−
E[X ]δ2

4
) (13)

Since V is a random graph, where points are uniformly distributed, for uL ∈ L, the
number of points of V mapped to it, m(uL), is random variable which is the sum of N
Bernoulli trials Xv:

m(uL) =
∑

v∈V
Xv

where Xv is the indicator variable, equal to 1 when v is mapped to uL, and equal to 0
otherwise.
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For all v, E(Xv) = r2

L2 , and hence: E(m(uL)) = r2N
L2 = µr2. The m(ui) are identically

distributed for all ui ∈ L. By applying the Chernoff bounds (12) on this sum, we get:

Pr[m(uL) ≤ (1 − δ)E[m(uL)]] ≤ exp(−
E[m(uL)]δ2

2
) (14)

for δ ∈]0, 1[.
We can deduce a bound on the probabilities for the minimum mmin of all m(u). For the

points ui ∈ L, the event (mmin ≤ K) implies the event
(

m(u1) ≤ K or m(u2) ≤ K or ... m(u|L|) ≤ K
)

:
Hence:

Pr[mmin ≤ K] ≤ Pr[m(u1) ≤ K or m(u2) ≤ K or . . .]

Now the different m(ui) are identically distributed, but are not independent because their
sum is exactly N ; but we can use the fact that for two events A and B, Pr[A or B] ≤
Pr[A] + Pr[B], and then:

Pr[mmin ≤ K] =
∑

u∈L
Pr[m(u) ≤ K] = |L| Pr[m(u1) ≤ K]

And it follows, with eq. 14:

Pr[mmin < (1 − δ)E[m(u)]] ≤ |L| exp

(

−
E[m(y)]δ2

2

)

for δ ∈]0, 1[. Hence, since |L| = L2

r2 , we have the following theorem 4:

Theorem 4

Pr[mmin ≤ (1 − δ)µr2] ≤ exp

(

(log
L2

r2
)(1 −

µr2δ2

2 log L2

r2

)

)

The Th. 4 could be used with Th. 3, to get probabilistic bounds of the min-cut for an
instance of a random graph.

Likewise, if we consider the maximum of m(u), mmax , minu∈L m(u), with the upper
tail Chernoff bound, the same expression as in Th. 4 is true with δ ∈] − 1, 0[.

5.2.5 Asymptotic Values of the Min-Cut of Unit-Disk Graphs.

Theorem 5 For a sequence of random unit disk graphs and associated source (Vi, si ∈ Vi),
with fixed radio range ρ, fixed border area width W , with a size Li → ∞, and a density
M = Lθ with fixed θ > 0, we have the following limit of the min-cut Cmin(si):

Cmin(si)

M

p
→ 1 in probability. Additionally :

Mmax

M

p
→ 1
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Proof: The starting point is Th. 4, which involves several variables: L, µ, δ, and r.The
theorem is a result when the size of the network L → ∞ (so that the relative area of the
border decreases). We also want:� µ → ∞ (that is: M → ∞): the density increases sufficiently fast, so that each square

r × r receives more points and the Chernoff approximation becomes tighter.� δ → 0: this ensures mmin converges to its average value as in Th. 4.� r → 0: in order to have |R(r)| converge to its limit of lemma 6.

By hypothesis, we already have µ = M
πρ2 = 1

πρ2 Lθ for some θ > 0.
We propose the following settings:� δ = L− θ

8 ; r = L− θ

8

In that case, using Th. 4, we have, for δ ∈]0, 1[:

Pr

[

mmin

µr2
≤ (1 − δ)

]

≤ exp

(

(2 −
θ

4
)(log L)(1 −

L
θ

2

(4 − θ
2 ) log L

)

)

The right side of the inequality converges towards 0 as L → ∞, hence this is a lower bound
in probability for mmin

µr2 .

For the upper bound, notice that mmin is the minimum of the (m(uL), u ∈ L), and µr2

is exactly their average. The minimum cannot be greater than the average hence:

Pr[mmin > µr2] = 0

,

Hence, we have mmin

µr2

p
→ 1 in probability, when L → ∞. In a similar way, mmax

µr2

p
→ 1.

Consider the bound of Th. 3: the min-cut Cmin(s) of the graph V , verifies: Cmin(s) ≥
mmin(|R(r)| − 1), hence:

Cmin(s)

M
≥

mmin(|R(r)| − 1)

M

The right side of the inequality is:

a = mmin(|R(r)|−1)
M

= mmin

µr2

µ
M

r2(|R(r)| − 1)
We have:� mmin

µr2

p
→ 1 in probability,� µ

M
= 1

πρ2� r2(|R(r)| − 1) = πρ2(1 + O(1
r
)), from lemma 6.
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Therefore the right side a
p
→ 1 in probability. This gives an lower bound of Cmin

M
for L → ∞.

Let us show that this lower bound is also an upper bound (in probability). Recall that
the min-cut Cmin is lower than any cut, for instance one cut with only neighbors of a node
t (T = {t}). Let us consider the node t ∈ V with the maximum number of neighbors Mmax,
and hence Cmin ≤ Mmax

We have: the maximum number of neighbors Mmax is at most mmax|R+(r)|, where R+(r)
is similar to R(r), except considering squares of around within a point of the lattice with
radius ρ + 2r. Like for |R(r)|, one can prove:

R+(r) = π
ρ2

r2
(1 + O(

1

r
))

and like mmin, one can show that mmax

µr2

p
→ 1 in probability.

Collecting these properties, we get:

Cmin

M
≤

Mmax

M
≤

mmax|R+(r)|

M

where the right side of the bounds : is such that mmax|R+(r)|
M

p
→ 1 in probability.

Hence upper bound, and the theorem.

6 Simulations

The previous sections have focused on the asymptotic value of the min-cut for large net-
works. Then random linear network coding can achieve asymptotically the maximum ca-
pacity known as the min-cut, when running for an asymptotically infinit time.

In this section, we provide an illustration of the performance of network coding with
simulations.

We performed the following types of simulations:� Performance comparison with store-and-forward bounds: the objective is to show that
the performance of broadcasting with network coding with IREN/IRON may out-
perform what be achieved without network coding (the traditional store-and-forward
broadcast), on some examples.� Min-cut comparison with the average number of neighbors: it illustrates the fact that
when broadcasting with IREN/IRON the min-cut approaches the average number of
neighbors in wireless networks as the density increases.

6.1 Comparison with Store-and-Forward

6.1.1 Metric for Comparison

For the broadcast of one packet to the entire network, any traditional broadcast method
(non-network coding) is characterized by a Connected Dominating Set (CDS): it is the set
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of the nodes which transmitted the packet. Note that the traditional methods need not to
explicitly use a such a CDS (like in the case of MPR-flooding technique used in [26], which
is self-pruning), although several efficient methods do (such as [21]).

To compare network coding and IREN/IRON with traditionnal store-and-forward broad-
cast, we will proceed following the steps and the logic of [20], as section 4.5 also did: the
metric for efficiency is the number of transmissions necessary to broadcast one packet to
the entire network. In section 4.5, the relative cost Erel−cost was the ratio of the total num-
ber of transmissions to a bound of the a lower bound number necessary of transmissions
Ebound = N

Mmax
. Here, in homogeneous networks, Mmax ≈ M , hence in this section, we will

use M instead of Mmax in the expression of the bound.
Then the expression of the relative cost

Erel−cost

Ebound
, can be re-interpreted as follows: from

the point of view of a given node, it is the average ratio of the non-redundant packets
received to the number of received packets.

For store-and-forward, “non-redundant packets” means “packets not already received”.
For network coding, it means “innovative packets” (the ones which that increase the dimen-
sion of the vector space of receivers).

We will compare the cost of broadcasting with Network Coding E
(nc)
rel−cost and with the

one of any Connected Dominated Set E
(cds)
rel−cost. The following notations are used:

NC: E
(nc)
rel−cost = T

G× N

M

CDS: E
(cds)
rel−cost = T

N

M� N : the total number of nodes� M : the average number of neighbors� G: the number of packets broadcast (generation size)� T : the total number of transmissions

With the argument of [20], in any CDS, except for the source, every node must be
connected to another node of the CDS: therefore for any common neighbor, the transmission
of the second node will be redundant with the transmissions of the first node. A bound on
the number of transmission T (cds) can then be computed.

6.1.2 Simulation Scenario

In the simulations of this section, we used examples of lattice networks where R (lattice
neighborhood definition set) is the four closer neighbors of the lattice).

Precisely R = {(0, 0), (−1, 0), (1, 0), (0,−1), (0, 1)}. The neighborhood of each node fits
exactly the minimum requirement 1. This scenario of nodes on a grid with at most four
neighbors corresponds to one scenario of [20] (except the lattice considered here is not a

torus), and their bound on E
(cds)
rel−cost is 4

3 .

INRIA



Near Optimal Broadcast with Network Coding in Large Homogeneous Wireless Networks29

The nodes are on lattice of width L = 70 (70 × 70) and the simulations were performed
while increasing the size of generation (total number of broadcast packets), and the border
width is W = 2.

The source s is chosen in the middle of the network.
In general all nodes have same constant transmission rate M

2 except the source and nodes
which are near the border and have less than M neighbors. The source sends original packets
at rate M , and the nodes near the border also send encoded packets at rate M .

For simplicity, the transmissions of nodes in the network are “synchronized”, that is, if
the transmission rate of one node v is Cv, then the every transmission occurs periodically
with a period equal to 1

Cv

The figure 4 shows the performance of E
(nc)
rel−cost and the bound on E

(cds)
rel−cost with N =

70 × 70 = 4900, M = 4 and G = 20, 40, 60, 80, 100.

Figure 4: Performance of broadcast with NC and CDS with increasing generation size

As shown in figure 4, the lower bound performance of Bcds is constant. (it is the bound
of 4

3 )
The performance of Bnc becomes better as the generation size increases. The reason that

the larger generation size brings the better performance, is the following. At the beginning
of the simulations, only the source has new packets, initially only the only transmissions
that could bring novel informations are: transmissions from the source, then after that,
transmissions from the immediate neighbors of the source, and so on. Hence there is a
start-up duration, during which the transmission of nodes further from the source are less
likely to bring innovative information to the nodes closer from the source. Similarily, at the
end, a similar problem occurs: consider for instance one node which has all the packets from
the sources ; then any transmission from a neighbor will bring non-innovative packets. This
phenomem explains why efficiency decreases at the end.

This start-up and termination interval durations are independant on the generation size:
hence, the efficiency increases together with the size of the generation.

From the figure, we can see confirm that, with our simulations settings, network coding
(with IREN/IRON) will outperform any method based on CDS (hence on store and for-
wards). Notice that [20] established identical results for M = 4, but in a scenario where
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each node had one packet to transmit to every other node. Here we have a single source
with several packets to broadcast.

In general, it is not difficult to see that the connectivity constraint gives a lower bound

E
(cds)
rel−cost > 1. For instance, in a unit disk graph, two neighbors share a neighborhood area

at least equal to (2π
3 −

√
3

2 )ρ2, hence E
(cds)
rel−cost ≥

6π

2π+3
√

3
with 6π

2π+3
√

3
≈ 1.6420 . . ., and as a

result, one can expect broadcast with network coding and IREN/IRON to outperform CDS,
when the generation size is sufficient, as illustrated by the simulations.

6.2 Efficiency with Increasing Density in Random Unit Disk Graphs

The previous simulations illustrated the performances on a lattice. For random unit disk
graphs, our results have shown that the min-cut, the performance of broadcasting with
network coding with IREN/IRON approaches the average number of neighbors in wireless

networks as the density increases, that is, with Th. 5, Cmin

m

p
→ 1.

Notice that for a given instance of a random graph, some efficiency is lost when because
the min-cut is usually lower than M - unlike for lattices where IREN/IRON results exactly
in Cmin = M .

To give an illustration of this convergence Cmin

m

p
→ 1, we computed the min-cut of random

graphs with increasing density. To do so, we modeled oriented hypergraphs as oriented
graphs, in the spirit of [4] (refer to the elementary graphs and also figure 2 of that reference).

Then, the min-cut was computed from the software library implementing the maxflow
algorithm from [32]. The optimizations for tree reuse from [33] were also used.

The network size is L = 1×1 ; the radio range ρ is such that it covers 1
25 of the network,

that is ρ = 1
5
√

π
≈ 0.1128 . . .. We compute the min-cut increasing the network density M ,

from 125 to 400. As seen in figure 5, the min-cut increases exponentially as the networks
become denser and the ratio Cmin

M
approaches to 1, as expected.
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Figure 5: Performance when Increasing Density
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7 Conclusion

We have presented a simple rate selection for network coding for large sensor networks. We
computed the broadcast performance from the min-cut with networks modelled as hyper-
graphs. The central result is that selecting nearly the same rate for all nodes, achieves
asymptotic optimality for the “homogeneous” networks that are presented, when the size of
the networks becomes larger. This can be translated into the remarkable property: nearly
every transmission becomes innovative for the receivers.
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[28] P. Barbe, M. Ledoux, Probabilité Editions Espaces 34, Belin (1998).

[29] M. Penrose, “Random Geometric Graphs”, Oxford Studies in Probability, 2003.

[30] K. Voss, Discrete Images, Objects, and Functions in Zn, Springer-Verlag 1993.

[31] R. Kimmel, “Numerical Geometry of Images: theory, algorithms, and applications”,
Springer-Verlag New-York, 2004.

[32] Y. Boykov and V. Kolmogorov, “An Experimental Comparison of Min-Cut/Max-Flow
Algorithms for Energy Minimization in Vision”, IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI), September 2004

[33] Pushmeet Kohli and Philip H.S. Torr, “Efficiently Solving Dynamic Markov Random
Fields Using Graph Cuts.”, International Conference on Computer Vision (ICCV), 2005

RR n° 6188



Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le ChesnayCedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université- ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)http://www.inria.fr

ISSN 0249-6399


