-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Using MeDLey for the Grid-Decomposition Methods
Tawfik Es-Sqalli, Jacques Guyard, Eric Dillon

» To cite this version:

Tawfik Es-Sqalli, Jacques Guyard, Eric Dillon. Using MeDLey for the Grid-Decomposition Methods.
International Conference on Parallel & Distributed Processing Techniques & Applications - PDPTA’99,
1999, Las Vegas, Nevada/USA, pp.1868-1873. inria-00147379

HAL Id: inria-00147379
https://hal.inria.fr /inria-00147379
Submitted on 16 May 2009

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50384844?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00147379
https://hal.archives-ouvertes.fr

Using MeDLey for the grid-decomposition methods

T. Es-sqalli, J. Guyard
RESEDAS Project
LORIA, Scientific Campus B.P. 239
54506 VAND(EUVRE-Les-NANCY CEDEX France

E. Dillon
Mathematics and Computing Technology
The Boeing Company P.O. Box 3707 MC 7L-20
Seattle, WA 98124-2207 U.S.A

Abstract Explicit parallelism relies on
transmissions of messages between pro-
cesses. However, as workstations are not
intended to manage this kind of communica-
tions, it is necessary to use communication
libraries, known as Message Passing. Cur-
rently, only MPI (Message Passing Inter-
face) is still used, and its use became more
complex. In order to solve this problem, a
new language called MeD Ley was developed,
its purpose is to allow to the users an easier
parallelism programming based on communi-
cations using Message Passing.

In this paper, we will first overview the
basics of the MeDLey syntax and seman-
tics, before talking about the extension part
of this language for the grid-decomposition
methods.

Keywords: parallelism, Message Passing, commu-
nication libraries, grid-decomposition, MeDLey

1 The MeDLey Language

The MeDLey project [2] [4] [3] is based on
two statements :

e first, a lot of users are now implementing
their parallel code using inter-task com-
munications apparented to Message Pass-
ing ;

e secondly, a lot of new communication
mechanisms are now available, leading a

novice user to confusion.

Moreover, all users keep seeking efficiency,
but the current development efforts (MPI for
instance) are often guided by the need of porta-
bility, leading to drops of performances. So, on
one hand such communication libraries try to
provide more and more functionalities to allow
fine tuning, but on the other hand, faced to
this wide number of primitives, users may find
it hard to get the best efficiency.

So, the first aim of MeDLey was to provide a
unified notation to specify the communications
within a distributed application. To reach this
goal, this notation allows the definition of data
exchanges with various semantics.

After this, the second aim of MeDLey was
to guarantee efficient communications within
such a distributed application based on MeD-
Ley. That means a MeDLey compiler should
be able to generate efficient communication
primitives in a target language (currently
C++) for some underlying implementation.
Among them, MeDLey should be able to gener-
ate primitives on top of something of a portable
library (MPI e.g.), but also for specific hard-
ware environments (directly on top of sockets,
or AAL-4/5, ...) to provide full efficiency.

In the following sections, we will first de-
scribe the syntax and semantics of the MeD-
Ley notation. After this, we will talk about
the extension part of this language for the grid-
decomposition methods.

task A connected with B task B connected with A

uses uses
double x,y; double z,w;
int n; int m;

} }

sends sends

{ {
msg1 to B = sequence {y};
} }

receives > receives

{ N
msg2 from B = sequence {n, x}; msg4 from A= sequence {w};
} }

msg3 to A = sequence {m, z};

Figure 1: Example of a MeDLey specification

1.1 MeDLey’s main features

So a MeDLey specification is the specification
of the data and communication parts of a dis-
tributed application. That means this notation
is mainly declarative, no control is provided.

In a MeDLey specification, a distributed ap-
plication is split into tasks : each MeDLey
module is the specification of a task. So, when
specifying an application, the user must first
define a set of tasks. After that, each task will
be specified by giving the data it uses and the
way it communicates with other tasks.

1.1.1 The task level

The application is the top-level entity in MeD-
Ley. At the second level, an application is com-
posed by a set of tasks.

A task specification in MeDLey mainly con-
tains four parts as shows in figure 1.

The syntax remains very simple:

e The connected with section allows the user
to map data coming from/towards tasks.
This section is optional when the program-
ming model of the application is SPMD
(Single Program Multiple Data) and only
needs one task definition. Of course, these
data structures may also be used for com-
putation purposes ;

e The uses section defines the data struc-
tures that will be used within the tasks to
exchange data ;

e The sends part specifies the outgoing com-
munications to other tasks using the pre-
viously declared data structures ;

e The receives section defines the incoming
communications from other tasks into the
data structures declared in the very first
part.

1.2 Communication modes

The communication modes suggested for MeD-
Ley are mainly inspired from message-passing
paradigm programming. It is possible to in-
dicate them with key words of this language
when declaring messages in sends and receives
blocks.

A send operation can be blocking or non-
blocking. The call to a blocking send oper-
ation does not return until the message data
has been safely stored away so that the sender
is free to access and overwrite the send buffer.
The message might be copied directly into the
matching receive buffer, or it might be copied
into a temporary system buffer. A nonblocking
send can complete as soon as the message was
buffered, even if no matching receive has been
executed by the receiver. On the other hand,
a nonblocking send start call initiates the send
operation, but does not complete it. The send
start call will return before the message was
copied out of the send buffer.

Each of these two send modes could be syn-
chronous or not. A send that uses the syn-
chronous mode can be started whether or not
a matching receive was posted. However, the
send will complete successfully only if a match-
ing receive is posted, and the receive operation
has started to receive the message sent by the
synchronous send. An asynchronous send op-
eration can be started whether or not a match-
ing receive has been posted. If a send is exe-
cuted and no matching receive is posted, MeD-
Ley buffer the outgoing message, so as to allow
the send call to complete.

On the other hand, there is only two receive
operations : blocking and nonblocking. A call
to receive blocking operation returns only after
the receive buffer contains the newly received
message. A nonblocking receive start call ini-
tiates the receive operation, but does not com-
plete it. The call will return before a message
is stored into the receive buffer.

1.3 Generating communication

primitives

MeDLey specification can give birth to several
implementations, when talking about commu-
nication primitives. First of all it could gener-
ate “Message Passing” like primitives, by gen-
erating MPI or PVM code : the main ad-
vantage would be that it ensures portability,
thanks to MPI’s or PVM’s.

Secondly, MeDLey specifications could be
used to generate more specific communication
primitives, taking into account a particular
communication layer (active messages, shared
memory). This approach would of course for-
get portability to ensure best efficiency on a
dedicated environment.

The experimentation part of the MeDLey
language was carried out within the framework
of a collaboration with the research laboratory
in physics (LPMI) of the UHP-Nancy, France,
and consisted in the use of a code of digital
simulation used by the physicists [6] [5].

In this paper, we will present the exten-
sion part of this language proposed for the
grid-decomposition methods, and the way ap-
proached here for parallelisation on parallel ar-
chitectures with distributed memory.

2 Grid-decomposition meth-
ods

These methods fit parallel architectures based
on distributed memory [1]. We split a domain
(grid) into several sub-domains as many as the
number of processes, and in each one, we per-
form calculations at the local level. The data
on the borders are exchanged via communica-

Second dimension

[]]

Calculation at the
local level

t— Exchange on the
frontier level

® (e o |
® (e o | e

» i First dimension

Figure 2: Grid-decomposition methods

tions by messages (see figure 2). The border
size is much smaller than the size of the global
domain.

A parallel version of the general algo-
rithm, based on the principle of the grid-
decomposition, is the following :

1. split the domain into as many of sub-
domains as processes number at the ex-
ecution time ;

2. reiterate :

(a) exchange messages on borders ;

(b) calculate.

2.1 MeDLey Extension

The use of MeDLey for the grid-decomposition
methods is very interesting. There are indeed
several communication libraries offering built-
in functions which in particular make it pos-
sible to create a virtual grid of processes, to
determine the neighbor processes, etc. Our
extension is based on the MPI functions [7].
The syntax and the semantics of this extension
were defined with the concern of being com-
plete without being complex. This in order to
allow people of different fields to use this uni-
fied notation while guaranteeing a certain level
of performances.

The selected programming model is the
SPMD (Single Program Multiple Dated)
model. Only one code is applied on each sub-
domains. There are many processes as sub-
domains. For each sub-domain (or process),
we need to know its neighbors. In the loop
(see the iteration above), we will exchange the
data with the neighbors on the borders and will
compute inside each sub-domain.

Moreover, in the majority of applications us-
ing the principle of the grid-decomposition, the
exchanges of the borders are performed with
adjacent sub-domains. In such a situation, the
user must first determine the neighbors of each
sub-domain before launching the communica-
tion process. With our extension, MeDLey
deals with the calculation of the neighbors of
each sub-domain, the user only defines the con-
tent of the messages to be exchanged.

The adjacent neighbors of each sub-domain
can be referred to by using the key word
“Neighbor” followed by a combination to the
following key words separated by underlined :

West or East : to determine the adjacent
neighbors according to the first dimension;

North or South : to determine the adjacent
neighbors according to the second dimen-
sion ;

Down or Up : to determine the adjacent
neighbors according to the third dimen-
sion.

This technique makes it possible to specify
only the adjacent neighbors. However, certain
applications require exchanges with remoted
neighbors, so we had to determine these neigh-
bors. To reach this purpose, we propose two
possibilities :

1. by using the key word ”Neighbor” fol-
lowed by indices presenting displacement
in a number of steps in each dimension
(see figure 3). The adjacent neighbors can
be defined by this method. For exam-
ple, Neighbor_West_North is equivalent to
Neighbor[-1][1] ;

i+ Second dimension Displm/mentaccordingtoi Displacement according o

Neighbor[-2][2] Neighbor[-fl][Z] Neighbor[0][2] Neighbor[l’[2] Neighbor[2](2]

Neighbor[-2[1] Nei@thwaﬂtﬂh Neighbor North NEigthf.’:O"h Neighbor{2J1]
Wes _Eal

Neighbor[-2][0] Neighbor West Neighbor_East | Neighbor[2][0]

Neighbar-2J-1]| Nelonbor_South| neighpor South | NeISBOT_SOUth weighro]f1
_West _East

Neighbor{-2][-2]{ Neighbor[-1][-2] | Neighbor(0][-2] | Neighbor[1][-2] | Neighbor[2][-2]

>
>

i: First dimension

Figure 3: Specification of the neighbors in a
bidimentionnel field

2. or the new MDL_Get_Neighbors function.

2.1.1 Suggested functions

In this paragraph, we briefly present the var-
ious functions suggested for the extension of
MeDLey for the grid-decomposition methods.

MDL_Grid_Create : allows to build a grid of
process and to determine the number of
processes in each dimension ;

MDL_Grid_Rank : return the rank of the pro-
cess associated with the local coordinates;

MDL_Get_Neighbors : allows to determine the
neighbors of a process ;

MDL_Grid_Coords : return the coordinates of
the process whose rank is specified in the
call, (see figure 4) ;

MDL_Grid_Mycoords : it is an alternative of
MDL_Grid_Mycoords which makes it pos-
sible to return the coordinates of the pro-
cess which makes the call.

j Coordinates of the northen neighbor Row of the northen neighbor in the grid

0,2) L Neighbor_Northy],__| 2.2)
2 _’&?1,2) 57 8
ti t ti
Neighbor_West Neighbor_East
n 17 f @) T
ti ti iy
(0,00 f«—{ Neighbor_Southie— (2,0)
0 [(10 3f 6

Figure 4: Correspondence between coordinates
and the row of a process

2.1.2 Structure of a MeDLey specifica-
tion

An example of the structure of a MeDLey spec-
ification using the grid-decomposition methods
is the following :

Task Node connected with grid(Ndim)
[of Nodel
// Ndim : Number of dimensions,
// of Node is optional

uses
{
// declaration of the data to be
// used during communication
// and computation

int a,b;
double c,d,e;

}

sends

{
// declaration of messages to be
// sent by using key words :
// to, sequence, Neighbor, East,
// West, North, South, Up, Down

ml to Neighbor_West=sequence{c,d,b};

}

receives
{
// declaration of messages to be
// received by using key words :
// from, sequence, Neighbor, East,
// West, North, South, Up, Down.
m2 from Neighbor[2] [3]=sequence{a,e};

}

2.1.3 Generating communication prim-
itives

The MeDLey compiler generates for each task
a class in the target language (C++) which
contains all the data to be sent and received
as well as the communications methods. If
we want to send the message m1 of the task
Node, described in the example below, we only
need to perform a call, by using generated
class for this task, to the following function:
MDL_SendTo_Node_m1().

3 Conclusion

Parallel programming is more complex than se-
quential case. Indeed, to write a parallel pro-
gram, many tools are needed : language with
explicit parallelism, tools of traces and visual-
isation, evaluation of performances, communi-
cation libraries, etc. One of the topics of the
RESEDAS team, the new MeDLey language,
is the component which allows the specification
of the communications for distributed calcula-
tion.

In this paper, we have presented the exten-
sion part of this language related to the grid-
decomposition methods. This programming
model leads to a very natural parallelization
and has the advantage of muching well the lo-
cal memory use. In this framework, we have
proposed structures and functions meeting the
need of applications of these methods. More-
over, the use of the preset neighbors, proposed
in this MeDLey extension, makes it possible to
facilitate this programming model in fact that
the user should worry only to define the con-
tents of the messages to be exchanged.

References

1]

7]

Brugeas (I.). — Utilisation de MPI en
décomposition de domaine. — Rapport tech-
nique, IDRIS, 1996.

Dillon (E.). — MeDLey : User’s guide. —
Rapport technique, CRIN-CNRS/INRIA-
Lorraine, February 1997.

Dillon (E.), Guyard (J.) et Wantz (G.). —
Medley : An abstract approch to message
passing. PARA96 : Workshop on Applied
Parallel Computing in Industrial Problems
and Optimisation, Lynby, Denmark, Au-
gust 1996.

Dillon (E.), Santos (C. Gamboa Dod) et
Guyard (J.). — An environnement for
quick design and efficient inplementation of
message-passing applications. HPCN Fu-
rope’97, Vienna, Austria, 1997.

Es-sqalli (T.), Dillon (E.), Bertrand (P.),
Coulaud (O.), Sonnendrucker (E.) et
Ghizzo (A.). — Parallelization of semi-
lagrangian vlasov codes. 16th Conference

on the Numerical Simulation of Plasmas,
Santa-Barbara, Ca, USA, February 1998.

Es-sqalli (T.), Dillon (E.) et Guyard (J.).
— Using medley to resolve the vlasov
equation. The 7th International Conference
on High Performance Computing and Net-
working Europe, Amsterdam, The Nether-
lands, April 1999.

Forum (MPI). — Extension to Message
Passing Interface. — NSF and ARPA, 1996.

