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Sara Alouf, Iacopo Carreras∗, Daniele Miorandi∗, Giovanni Neglia

Thème COM — Systèmes communicants
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Evolutionary Epidemic Routing

Abstract: In this work, we introduce a framework which allows forwarding schemes to evolve in
order to adapt to changing and a priori unknown environments. The framework is inspired by genetic
algorithms: at each node a genotype describes the forwarding scheme used, a selection process fos-
ters the diffusion of the fittest genotypes in the system and new genotypes are created by combining
existing ones or applying random changes. This framework isillustrated through a simple case study
and simulations are undertaken to evaluate its performance.

Key-words: Wireless networks, delay-tolerant networks, epidemic forwarding, evolving protocols,
genetic algorithms
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1 Introduction

Epidemic-style forwarding [15] has been proposed as an approach for achieving packet delivery
in Delay-Tolerant Networks (DTNs) [3], in order to ensure system-wide dissemination of messages
in face of frequent disconnections [18, 11]. DTNs are sparseand/or highly mobile wireless ad hoc
networks where no continuous connectivity guarantees can be assumed. Epidemic-style forwarding
in DTNs is based on a “store-carry-forward” paradigm : a nodereceiving a message buffers it and
carries that message as it moves, passing the message on to new nodes that it encounters. Analogous
to the spread of infectious diseases, each time a message-carrying node encounters a new node that
does not have a copy of that message, the carrier may decide – according to some specific policies
– to infect this new node by passing on a message copy ; newly infected nodes, in turn, behave
similarly. The destination receives the message when it first meets an infected node.

An unconstrained epidemic forwarding scheme (in which an infected node spreads the epidemic
to all nodes it encounters) is able to achieve minimum delivery delay at the expense of an increased
use of resources such as buffer space, bandwidth, and transmission power. Variations of epidemic
forwarding have been recently proposed in order to exploit the trade-off between delivery delay
and resource consumption. This family includes, among the others,K-hop schemes [5],K-copy
techniques [2], probabilistic forwarding [8, 6], and spray-and-wait [14, 13]. These schemes differ
in their “infection process”, i.e., the spreading of a message in network. They need to be combined
with a “recovery process” that deletes copies of a message atinfected nodes, following the successful
delivery of the message to the destination. Various recovery schemes have been proposed : some are
simply based on timers, others actively spread in the network the information that a copy has been
delivered to the destination, using so-called antipackets[6].

Depending on the specific application scenario, different performance metrics could be envi-
saged. These include, e.g., the probability to successfully deliver a message to the destination, the
delivery time, the total energy consumption in the system ora combination of the previous ones. For
a given optimization goal the choice of a specific forwardingscheme and the configuration of its
parameters depend in general on the number of nodes in the system, on their mobility patterns and
on the traffic generated in the networks [9]. In many scenarios, these characteristics cannot be known
at system design and deployment time and can also significantly change across time and space. For
example, let us consider a personal digital assistant carried by a user in its daily activities. During
the day the node can travel at different speeds (e.g. from zero up to car speed), moving from highly
crowded areas (supermarkets, classrooms,...) to less crowded ones, with very different trajectories
(straight along a highway or following a random walk from shop to shop) and different levels of
power availability.

In order to deal with these issues, various adaptive techniques for message forwarding can be
envisaged. This approach is limited in that it requires ana priori definition of the actions to be taken
to optimize the mechanism for some specific situation. The approach we propose is different. We
want to embed the ability to evolveautonomouslyin the forwarding service itself. This is achieved
by using concepts and tools from the Genetic Algorithms (GAs) field. Each node employs a (poten-
tially different) forwarding policy, which prescribes theoperations to be undertaken when receiving
a message destined to another node. Such policy is describedby an array of parameters called the

RR n° 6140



4 Alouf, Carreras, Miorandi & Neglia

genotype. Genotypes are associated with a fitness measure which, roughly speaking, indicates the
ability of the current set of parameters to achieve good performance in the current environment. Fit-
ness is evaluated using local information and feedback which is sent from the destination backwards
within ACK messages, which act also as antipackets. When twonodes meet, they may exchange
genotypes (and associated fitness levels), updating the pools they maintain. Each node periodically
generates a new genotype judiciously using those in its pooland implements the corresponding
policy. The whole system is engineered in such a way to present a drift towards higher fitness levels.

The rest of the report is organized as follows. Section 2 overviews the evolutionary delay-tolerant
forwarding service engineered in this report, and presentsthe multiple components of this service :
the forwarding policy followed by each node and its unified representation ; the selection process of
good forwarding policies and the fitness evaluation process; and the generation of new policies. A
case-study implementation is described in details in Section 3. The outcomes of a simulative study,
performed using a freely available software tool, are reported in Section 4. Section 5 concludes the
report describing some open research issues.

2 A Framework for Evolution of Forwarding Services

As mentioned in the previous section, in this work we aim to develop a framework that will allow
the forwarding service to evolve online in order to optimizea given performance metric and to adapt
autonomously to the actual system operating conditions. Inorder to increase the readability of the
report, all the notation employed is summarized in Table 1.

We first observe that multiple forwarding schemes can co-exist at the same time in the network.
In fact this form of information delivery, based on the presence of multiple copies in the network,
does not need nodes to be compliant with a specific behavior, enhancing system robustness with
respect to conventional schemes. This flexibility comes from the completely distributed nature of
the forwarding process in epidemic-style relaying, which allows node to use different policies in an
uncoordinated fashion.

In our framework, each node can apply a distinct forwarding policy to relay messages to other
nodes. We want nodes tolearnonline what is the best forwarding policy (or what are good policies)
in the current scenario and change consequently the one theyemploy. We note that a node cannot
evaluate by itself whether its current policy fits the current scenario, because it is in general not
aware of the consequences of its actions. For example a givennode can never know by itself whether
its decisions – according to its forwarding policy – to relayor not to relay a message were the right
ones or not. Thus, a node may be relaying a message when the latter has already been delivered to its
destination, hence wasting resources. On the other hand, a node may refrain from relaying a message
when it happens to be the key node in the message delivery process, e.g., if it is the only node
traveling between two disconnected clusters of nodes in thenetwork. It should be clear therefore
that only other nodes in the system can evaluate the fitness ofa node’s forwarding policy. We also
observe that the goodness (or fitness) of a node’s policy depends on the policies implemented by the
other nodes as well. Message delivery is in fact a collaborative process, whose performance depends
on the behaviors of all nodes, so that a specific policy can be beneficial or detrimental depending on
other nodes actions.

INRIA



Evolutionary Epidemic Routing 5

The previous considerations imply the need of an online distributed fitness evaluation process
and raises an issue about the use of the fitness in the evolution process. Once a node get marks for its
own policy, how should these be used in order to change the policy ? We opt for a blind evolutionary
approach, which relies on the following assumption :

Assumption 2.1 The set of nodes in the network can be partitioned in “large” groups of homoge-
neous nodes having similar mobility models and traffic patterns.

If this assumption holds then each node can learn from nodes in the same group : it can make its
policy more similar to those policies presenting a higher level of fitness. This suggests that two other
components are required in our framework : a unified description of the policies, so that each node
can communicate to other nodes the one in use, and mechanismsfor the derivation of new (hopefully
better) policies from existing ones.

Here we summarize the three fundamental components in our evolutionary framework using
genetic algorithms terminology. These components are :

1. the possibility to share with other nodes a description ofthe specific forwarding mechanism
deployed at each node (thegenotypeassociated to the forwarding policy employed at the
node) ;

2. the possibility for each node to modify its forwarding scheme taking into account the schemes
of other nodes (what we call, with a slight abuse of terminology, the genotypeevolution) ;

3. a consistent process for evaluating the fitness of the schemes employed, rewarding “good”
solutions in such a way to foster the diffusion of the fittest forwarding genotypes (performing
a sort ofnatural selection).

In the following, we will describe in more detail these threecomponents. But first we briefly describe
the differences with respect to conventional genetic algorithms or genetic programming approaches.

2.1 Differences with Genetic Algorithms

A genetic algorithm (or GA) is a search technique used in computing to find true or approximate
solutions to optimization and search problems, using techniques inspired by evolutionary biology
such as inheritance, mutation, selection, and crossing-over [4].

GAs have been successfully employed and showed to perform well over a wide range of opti-
mization problems arising in sciences. It is nonetheless worth recalling that, in general, GAs do not
outperform other search techniques (this is a direct consequence of the classical no-free-lunch theo-
rem [16]), but it all depends on the peculiar structure (alsoreferred to as “fitness landscape”) of the
problem under study. We decided to focus on GAs since they already showed to be able to perform
well over commonly found fitness landscapes, while on the other hand presenting a low complexity
from an algorithmic perspective.

Let F (x) denote the function to optimize, wherex is an abstract representation (called the geno-
type) of a candidate solution. The fitness of a genotypexi is defined asφi := F (xi), i.e. the function
to optimize evaluated atx = xi. Genetic algorithms are implemented as a computer simulation in
which a population of genotypes evolves toward better solutions, i.e., solutions characterized by a
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6 Alouf, Carreras, Miorandi & Neglia

TAB . 1 – Notation
xi genotype of nodei
F (·) function to optimize
f(·) performance metric of interest
Pi forwarding probability in nodei genotype
Hi maximum allowed hop-count in nodei genotype
TD message delivery time
h hop-count of the first copy reaching the destination
Ci number of copies of a given message made by nodei
γ time-equivalent cost of a copy in the cost function
ri reward received by nodei for spreading a message
φi fitness of nodei genotype
φ̂i estimation of nodei genotype fitness
φ̂i,j estimation of nodei genotype fitness known by nodej
Gi set of genotypes in the pool of nodei
pi,j probability of selecting genotypei at nodej during the reproduction phase
Tg time between two consecutive reproductions
pc crossing-over probability
pm bit mutation probability
N number of mobile nodes
Ts maximum inter-packet arrival time at each node
L side size of squared playground
r transmission range
v node speed
Tstep mobility time step in simulations

higher fitness level. The evolution usually starts from a population of randomly generated individuals
and occurs in discrete steps (“generations”). In each generation, the fitness of every individual in the
population is first evaluated, then multiple individuals are stochastically selected from the current
population (based on their fitness), and modified (recombined and possibly mutated) to form a new
population. The new population is hence used in the next iterative step of the algorithm. The proce-
dure stops when a “good enough” solution (i.e., one whose fitness level exceeds a given threshold)
is found.

In our framework, the population is the set of genotypes present in the system, each genotype
representing the forwarding policy of a node in the network.Let us assume there areN nodes
and thusN genotypes. Coherently with the above notation, we denote asF (.) the function to be
optimized (usually the expectation of a metric of interest), andxi the genotype used by nodei.
According to the discussion presented at the begin of Section 2, the performance metric depends,
in our case, on all genotypes present in the system, i.e.,F = F (x1, x2, · · · , xN ). So a candidate

INRIA



Evolutionary Epidemic Routing 7

solution is no longer a single genotype, but rather an array of N genotypes1. A simple N -times
repetition of the same genotype may well be an optimal solution. However, in general, this will not
be case. SinceF depends on all genotypes present in the system, we cannot considerφi, the fitness of
genotypexi, to be the corresponding value of the function to optimize (like in conventional GAs)2.
We need to have a new definition of the fitness such that fitter genotypes yield better performance
according toF . We are going to provide it in Section 2.3.

Another difference in comparison to standard GAs is that many functionsF (·) we are interested
in (e.g. delivery delay and number of copies) have no closed form in general, but can only be esti-
mated online measuring the performance of the actual running system. This estimation (and hence
the estimation of fitness values) will potentially be affected by the randomness inherently present in
nodes’ mobility, data traffic pattern and wireless channelsfluctuations.

Further, in our framework, evolution is an open-ended process, in that the system needs to be
able to react to unpredictable changes in the environment. While some of these issues are not new in
the community working on evolutionary computing strategies [7], their application in the proposed
framework is far from being straightforward.

2.2 The Forwarding Policy

A first step towards an evolutionary forwarding service consists in a formal representation of a
generic forwarding scheme. Such descriptions represent the genotypesof the implemented forwar-
ding schemes.

A forwarding policy consists of a set of actions to undertakeupon message reception. It defines
what nodes do when they become within mutual transmission range. The actions can be specified
using parameters and may rely on information contained in message headers (like message genera-
tion time or count of hops the message has traversed). For instance, a node can transmit a message
with probabilityP as long as the message has not been forwarded more thanH times. The values
of the two parameters uniquely specify one forwarding policy. A simple binary string can be used
to represent the policy as illustrated in Fig. 1, where the genotype spans 12 bits. The 6 leftmost bits
represent the numeratora of the fractiona/63, which is the forwarding probability valueP , while
the 6 rightmost bits represent the maximum number of hopsH . Hence, out of such representation it
is possible to reconstruct the corresponding forwarding policy.

The behavior of a generic forwarding scheme can thus be changed by tuning the values of the
parameters that specify the actions to be undertaken.

2.3 The Selection Process

The natural selection process promotes the diffusion of organisms presenting a high fitness level.
In much the same way, we want to engineer mechanisms for promoting the diffusion of “good” ge-
notypes already present in the population. Those would be the genotypes yielding good performance

1In a homogeneous scenario, all nodes play the same role, hence F does not depend on the order of the genotypes. A
candidate solution is just a multiset ofN genotypes.

2 We would haveφ1 = φ2 = · · ·φN = F (x1, x2, · · · , xN ).

RR n° 6140
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0 1 0 0 1 0    0 0 1 1 0 1

endif

if (msgHOPS < Max Hops) then

if (uniform(0,1) > Forw. Prob.) then

ForwardMessage()
endif

Forwarding Policy:

Forw. Prob. = 18/31, Max Hops = 13

FIG. 1 – Example of forwarding policy mapping : from the binary representation to the forwarding
algorithm.

for the optimization goal. At the same time, new genotypes can be generated in order to explore new
possible solutions. In this section, we focus on the first issue letting the next section discuss how new
genotypes can be generated from existing ones.

In traditional GAs,reproductionis a process which selects existing genotypes to create new
offsprings. At discrete time intervals, genotypes are randomly selected from the population to ge-
nerate offsprings : genotypexi is selected with probability proportional to its fitness, namely,pi :=
φi/

∑

j φj . This procedure tends by itself to increase the average fitness of the population. However,
in the considered mobile network scenario the different genotypes are distributed over all the nodes
of the network. This means that standard GAs reproduction phase can not occur without resorting to
a centralized solution where a central node (i) stores the genotypes, (ii) applies GA operators, (iii)
distribute back the produced offsprings to the mobile nodes. In order to overcome this limitation,
we assume that upon meeting nodes exchange information about their respective genotypes and the
corresponding fitness indexes. As depicted in Fig. 2, in our system each node maintains a pool of
available genotypes (including the one currently in use) and their corresponding fitness values. At
regular time intervals, each node goes into a reproduction phase, running the selection process on
the genotypes currently stored in its own pool.

We now need to devise a new definition of the fitness (cf. Section 2.1). For the sake of simplicity,
we consider that the function to optimize,F , is the expected value of some performance metric, say
f , which can be evaluated for a specific infection process. More formally letI refer to the complete
history of a generic infection process in the network. An infectionIm reports all of the infection
steps since the generation of messagem until the cancellation of the message and all its copies. For
example it specifies which nodes are infected at a given time instant. The infectionIm depends on
the genotypes and the mobility patterns of all nodes involved in the infection process but also on
the concurrent data traffic at these nodes. The function thatwe want to optimize can be rewritten
asF = E[f(I)] where the expectation is taken with respect to the probability measure defined by
the mobility and message generation processes. Examples ofperformance metricf(I) are the time

INRIA
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[policy 1, fitness]

[policy 78, fitness]

[policy 32, fitness]
...

...

[policy 2, fitness]

[policy 78, fitness]

[policy 12, fitness]

Node A

Node B

Node C

P
oo

l o
f n

od
e 

A

P
oo

l o
f n

od
e 

B

P
oo

l o
f n

od
e 

C

[policy 1, fitness]
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FIG. 2 – Considered system architecture : each node employs a policy, characterized by a geno-
type with associated fitness value. Each node maintains a pool of candidate solutions used in the
reproduction phase to generate new genotypes.

needed to deliver a message to the intended destination, thetime before an infection dies (i.e., when
all copies are erased from the network), the number of copiesdone for a given message and the
power required to propagate the message.

Observe that an infectionI will most likely involve only a subset of the nodes in the system.
Conversely, a given nodei will take part in only a subset of all infections. The fitness of a genotype
xi can be defined then as

φi = E[f(I) | nodei contributed to infectionI] . (1)

This ensures that the genotypes of nodes taking part in “good” delivery processes get on average a
higher fitness than those involved in “bad” diffusion processes.

According to (1), for a node to estimate the fitness of the genotype it is using, it should average
the performance metricf(I) over all infections it had taken part in. A difficulty arises from the fact
that the forwarding service is intrinsically a cooperativedistributed service and a node is in general
not able to evaluate by itselff(I). For example the node does not know whether or not a message
has been delivered, when or how many times it has been copied in the system, and so on. Some
communication among nodes is thus required in order to let each node be able to evaluatef(I).

In many cases, the process of evaluatingf(I) can be triggered by the destination node of a
message as it is the best entitled to evaluate the outcome of the infection process. The destination
node propagates then the evaluation off(I) or at least information needed for this evaluation to all
nodes involved in the infection process. The communicationcost can become significant so that a
communication-cost versus information-accuracy trade-off arises. Beside the communication ove-
rhead, another aspect to consider is the time needed to evaluate the performance metricf(I). If
information is delivered to a node long after message delivery, the node could have changed its
genotype, so that the evaluation would not refer to the current genotype.

RR n° 6140



10 Alouf, Carreras, Miorandi & Neglia

2.4 Generation of New Forwarding Policies

New forwarding policies are generated applying GA-like operators to the genotypes maintai-
ned by a node in its pool. The two following operators can be used to create new genotypes from
existing ones.Crossing-overconsists in breaking two genotypes at a randomly chosen position and
exchanging the tails of the genotypes. Two offsprings, calledcrossovers, are produced, and one is se-
lected at random.Mutationconsists in a random change occurring in the genotypes. As anexample,
mutation can be implemented by randomly swapping, with someprobability, the bits of a binary
representation of the genotype. For ensuring stability, mutation should occur with small probability.

2.5 Adaptation vs. Evolution

A possible critic to the framework presented is that it embeds a complex form of adaptation
rather than a form of evolution, because the nodes will finally select one genotype out of a finite set.
We think that the distinction between adaptation and evolution is in part a problem of scale. Even
human DNA has only a finite number of possible different combinations, enabling natural evolution
to only choose in a limited set of genotypes. The critical point seems to be the expression capacity of
the adopted genotype description. The higher this capacity(and a higher capacity in general requires
a more complex language), the larger the number of possible behaviors, perhaps to the extent that
the system will start exhibiting some new (unforeseen) behaviors.

3 Mechanism Specifications

In this section we propose a case-study implementation of the proposed approach, aiming at
gaining insight into the applicability of the proposed approach to epidemic-style forwarding in delay-
tolerant networks. In particular, our purpose is to providea first answer to the following questions :

(i) Does the distributed genetic algorithm “converge”?
(ii) If so, what does the convergence point look like and how much time is required for the

convergence?
(iii) What are the performance with respect to an optimally configured static forwarding scheme ?
These questions will be tackled by implementing a (reduced)version of the proposed framework,

and running numerical simulations to evaluate, in a realistic scenario, the behavior of the system.

3.1 Implementation of the Evolutionary Process

We consider a simple fixed-length genotype comprising one parameter, which is the probability
P to copy a message upon encountering a new node.

Let W denote the set of nodes which contributed to the delivery of the first copy to reach the
destination. As optimization goal we consider the minimization of the expectation of the weighted
sum of the delivery time,TD, and the number of message copies made by the nodes inW . The cost

INRIA



Evolutionary Epidemic Routing 11

function is then

F = E

[

TD + γ
∑

i∈W

Ci

]

, (2)

whereγ is a parameter which can be understood as the time-equivalent cost of a copy.
Should the optimization goal be to minimize solely the expected delivery time, then the evolutio-

nary forwarding scheme will trivially converge, in a underloaded network – i.e., when traffic is small
in comparison to the available capacity – to standard epidemic routing, where messages are flooded
in the entire network. Conversely, the presence of the number of copies in the cost function makes
also an underloaded network (a realistic case and faster to simulate) an interesting scenario to study.
The evolutionary forwarding scheme will limit the number ofcopies depending on the value of the
parameterγ. Taking into account the number of copies is also meaningfulbecause they are strongly
related to bandwidth usage and power consumption. A more natural choice would be to consider the
total number of copies done in the network (i.e.

∑N

i=1
Ci), but a heavier communication overhead

would be required. In our case-study we opt for light signaling.
We assume that all nodes are synchronized and that the message header contains a field speci-

fying the time at which the payload was generated at the source3. In such a way the destination can
evaluate the delivery time as soon as it receives the first copy of a message. On the other hand, each
node knows the number of times it has copied a message, but notthe delivery time. We assume that
each node, before forwarding a copy of a message, adds its ownidentifier to the message header
(this is analogous to what is done in source routing in mobilead hoc networks). The setW is no-
thing but the set of node IDs present in the header of the first copy reaching the destination. The
destination node sends to nodes inW a new acknowledgment (ACK) message. This message speci-
fies the delivery delay and the number of hops (h = |W |) traveled by the message before reaching
the intended destination. In this way each nodei along the path of the first copy delivered has the
following information available : the delivery time, the number of hops in the path and the number
of copies it didCi, the latter value being computed locally at each node. The node evaluates the
“reward” obtained for having taken part to the infection, asa decreasing function of the quantity
TD/h + γCi, which we refer to as the “reward” obtained for having taken part to the infection. The
fitness of the genotype is then estimated as the average of therewards obtained. During the selection
phase, nodes select genotypes with higher fitness level, so they implicitly select genotypes yielding
smallerTD/h+ γCi. The intuition behind this choice is that in this way the system is minimizing4 :

E

[

∑

i∈W

(TD/h + γCi)

]

= E

[

TD + γ
∑

i∈W

Ci

]

,

3If local clocks are enough accurate at the message delivery time-scale, then there is another solution which does not
require synchronization. Message header should have a fieldwhich indicates the time since the payload was generated. This
field can be updated by each node before forwarding the message. In this case the node should keep track of the time running
since it has received the message.

4 We observe that this is not exact since the number of nodes inW is not constant but it depends itself on the genotypes
present in the network.
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12 Alouf, Carreras, Miorandi & Neglia

which is exactly the cost function given in (2). We note that considering the total number of copies
would have required each node to be informed about the numberof copies done by every other node
in the system.

We consider the following expression for the reward at nodei :

ri = max

{

1 −
TD/h + γCi

R
, 0

}

(3)

whereR is set to a high enough value, for instance2E[TD] + γN .
Upon receiving then-th ACK message and computing the rewardri(n) according to Eq. 3, node

i updates its estimation of the genotype fitness as follows :

φ̂i(n) =
n − 1

n
φ̂i(n − 1) +

1

n
ri(n), (4)

which corresponds to averaging all rewards received.
When two nodes meet, they transmit to each other their own genotype and its current fitness

level estimation. Each node maintains a pool of available genotypes (including the one currently in
use) and their fitness. We useGj to denote the pool at nodej andφ̂i,j to denote the fitness value
of nodei genotype known by nodej (φ̂i,j is the value of̂φi at the time of the last meeting between
nodei and nodej, so at a given time instant these two values can be different). We consider a
synchronized reproduction phase. EveryTg seconds, thegeneration lifetime, nodes synchronously
create a new offspring each, i.e., they update their own genotype. This synchronism allows to clearly
identify different generations during the evolution. Crossing-over is performed with probabilitypc

and requires to select two genotypes from the pool, otherwise only one genotype has to be selected.
At each node, e.g., at nodej, genotypes are selected with a probability proportional totheir own
fitness5, namely,pi,j = φ̂i,j/(

∑

l φ̂l,j) where the sum is over all genotypes contained in the pool
Gi. Finally each bit of the current genotype, directly selected from the pool or obtained through
a crossing-over of two genotypes, can mutate with probability pm. The genotype pool is emptied
after every generation, and the fitness value of the genotypethat will be used is set to zero. If the
network is large, the node’s pool may not be large enough to keep all genotypes discovered in a
generation. Should this be the case, a node may keep only the fittest genotypes, or alternatively
select the genotypes according to a fitness-biased distribution.

3.2 Message Structures and Communications

Two nodes are able to exchange messages when they get within mutual communication range.
Once it happens, they perform the following steps :

5In practice, scaled fitness values are used instead of the rawfitness valueŝφi,j . This is common in GAs and has a twofold
purpose. First it avoids having in the first generations few extraordinary genotypes taking over a significant proportion of
the finite population in a single generation. Second, shouldthe best fitness values be close to the average ones, more best
genotypes than average ones will appear in future generations. We can linearly scale the fitness values such that the best
fitness value is double the average fitness value which remains unchanged. In generations where the scaling produces negative
normalized fitness values, an alternative scaling is used. The latter maintains equality of the raw and scaled average fitness
values, but maps the minimum raw fitness to a null value.
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1. exchange node IDs ;

2. exchange header information of data messages ;

3. each node decides which messages should be forwarded to the other node ;

4. messages are exchanged ;

5. each node can drop some messages from its buffer (if full) in order to free space for new
messages.

The evolving protocol makes use of two types of messages to beexchanged over the network :
DATA messages and ACK messages. DATA messages are those carrying the payload transmitted
by any mobile node to a specific destination, whereas ACK messages are used for the following
purposes :

– to acknowledge the successful delivery of the message at its intended destination ;
– to feed back the reward to the nodes along the successful path from source to destination

(rewarding) ;
– to serve as anti-DATA, by blocking the diffusion of alreadydelivered messages and removing

them from nodes buffer.
The fields common to all message headers are (i) [message ID],which is the (unique) identifier

(ID) of each message and also specifies whether it is a DATA or an ACK message (ii) [GenTime],
which describes the time at which the message has been generated.

Further, data messages include a hop-count field [hops] and the labels of all nodes which for-
warded the message along the path from the source to the actual node. ACK messages, on the other
hand, include the complete set of nodes involved in the forwarding path and a field, called [Feed-
back], containing the value of the rewarding metricTd/h, whereTd is the DATA message delivery
time, andh is the value of the field [hops] when the DATA message was received by the destination
(i.e., the length of the source-to-destination path).

Each mobile node maintains two internal data structures dedicated to the storage of DATA and
ACK messages respectively. In the structure storing DATA messages, each item additionally stores
a counter of the number of copies of that message already disseminated in the network.

Whenever a node receives a DATA message to be relayed, it firstadds its own node ID to the
header and then increments by one the [hops] field of the message. The message is kept in the node’s
internal memory until the corresponding ACK message is received.

In addition to DATA messages, mobile nodes diffuse also ACK messages. Unlike the case of
DATA messages, no limiting policy is applied to the forwarding of these messages (ACK messages
are simplyfloodedinto the network according to the VACCINE recovery scheme [17]).

Whenever it receives an ACK message, a node first adds the received ACK message to the inter-
nal message list. It then checks whether the corresponding DATA message is present in its internal
memory and, in case, removes it. If the corresponding DATA message was present and the node has
contributed to the successful path to the destination (NodeID ∈ W = {Node ID 1, . . . , Node ID
M}), it applies the proper rewarding scheme to update its own fitness, as described in the previous
section. The overall procedure is summarized in Algorithm 1.

RR n° 6140



14 Alouf, Carreras, Miorandi & Neglia

Algorithm 1 Algorithm performed by a node upon reception of an ACK message.
1: Add the received ACK message to the internal ACK messages list
2: if msgID∈ {msgID 1, . . . , msgIDL} then
3: Remove the corresponding DATA message from the internal structure.
4: if Node ID∈ W then
5: Update node’s fitness value (REWARDING).
6: end if
7: end if

TAB . 2 – Simulation Parameters
L = 500 m Ts = 3000 s Tg = 120000 s
r = 25 m Tstep= 2 s pc = 0.10
v = 1 m/s γ = 100, 400, 800, 1600 s pm = 0.01
Static scenario N = 20
Dynamic scenario N varies in{5, 10, 20, 30, 40}

4 Numerical Results

In order to evaluate the performance of the presented algorithms, we run extensive simulations
using the freely available simulation tool OMNeT++ [10].

We considerN mobile nodes, moving at constant speedv over aL × L square playground
according to the random direction mobility model [12]. Eachnode selects the angular direction of its
next movement uniformly in[0, π], moves along this direction with a uniform speed ; upon reaching
the border, it generates a new angular direction and moves accordingly. The initial locations of nodes
are sampled from a uniform distribution which is the stationary distribution of nodes’ location under
this mobility model (perfect simulation).

Distinct nodes are considered to be in communication range if the mutual distance falls below
a thresholdr, the communication range. Each mobile node generates a DATAmessage in a time
interval which is uniformly distributed between0 andTs seconds, with a destination chosen uni-
formly among the nodes in the simulation. Each message generated is stored in the out queue of the
generating node. The position of every mobile node in the simulation is updated everyTstepseconds.
Each generation lasts forTg units of time.

The specific values used are in Table 2. Genetic algorithm parameters (pc, crossover probability,
andpm, mutation probability) are taken to be fixed. The investigation of performance sensitivity to
these parameters is left to future work.

As regards the genotype, the forwarding probabilityP has been quantized non-uniformly using5

bits for the representation. Such parameter can take valuesin the set
{

(i/31)1.5 , i = 0, 1, . . . , 31
}

.
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FIG. 3 – Evolution of the forwarding probabilities withγ = 800.

4.1 Static Scenario

We first consider a case where the number of nodes is kept constant (N = 20) throughout the
simulation run. The time-equivalent cost of one message copy is set toγ = 800. TheN initial for-
warding probabilities are chosen independently in the set of possible values according to a uniform
distribution.

Figure 3 depicts the forwarding probability values presentin each generation. As it might be
seen, after a few generations only small probabilities are used across the population, but for some
occasional high values due to random mutations. Simulations with different initial random seeds
show similar results.

Figure 4 shows the corresponding evolution over time of the cost (2), expressed in seconds. Ob-
serve how the cost rapidly decreases across the first generations and how it “converges” to an almost
constant value after6 generations. Again, running simulations with different initial random seeds
yields similar conclusions.

4.2 Comparison with Probabilistic Forwarding

We have conducted a series of simulation runs in which message dissemination was achieved
through traditional probabilistic forwarding [8] ; that is, a scheme in which all nodes use the same
constant forwarding probability. We ran simulations varying the forwarding probabilityP from0 to1
and computed the cost forγ in {100, 400, 800, 1600}. For each value ofγ we conducted simulations
using our evolutionary forwarding scheme.

Figure 5 reports the cost, as expressed in (2), achieved by the probabilistic forwarding scheme
against the forwarding probability. The cost achieved by our scheme is also reported for the sake
of comparison. As it might be expected, for low values ofγ, like γ = 100 (corresponding, roughly
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FIG. 4 – Cost averaged over all messages delivered in a generation vs. generation, withγ = 800.
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FIG. 5 – Cost vs. forwarding probability for probabilistic forwarding and evolutionary forwarding,
γ ∈ {100, 400, 800, 1600}.

speaking, to a scenario where resources are not an issue but low delays are required), the cost func-
tion is monotonically decreasing inP and flooding (P = 1) is the best forwarding policy. On the
other hand, if the value ofγ is high (resource-constrained scenario, e.g.γ = 1600), the minimum is
for P = 0 and nodes should make no copy letting the source deliver its message to the destination.
For intermediate values ofγ (in our caseγ = 800), a minimum exists and a tradeoff between low
delay and low resource consumption can be found. The graph reports also the performance achieved
by our evolutionary scheme, after the initial convergence transient. The scheme is able to achieve
almost optimal performance for all different values ofγ.

INRIA



Evolutionary Epidemic Routing 17

0 20 40 60 80 100
Generation

3000

3500

4000

4500

5000

5500

6000

C
os

t

Evolutionary forwarding
Probabilistic forwarding

N=5 N=10 N=20 N=30 N=40

FIG. 6 – Cost vs. time for a dynamic scenario, in which every20 generations the number of nodes
in the network is increased, withN ∈ {5, 10, 20, 30, 40}, γ = 800. The evolutionary forwarding
scheme proposed is compared to the traditional probabilistic forwarding scheme with the forwarding
probability set to its optimal value whenN = 20.

4.3 Dynamic Scenario

Last, we consider a simulation case in whichN , the number of nodes in the system, varies with
time. In particular, it is increased every20 generations, following the sequence5, 10, 20, 30, 40.
This dynamic scenario challenges the ability of the proposed framework to track the variations in
the network and adapt its parameters accordingly. The time-equivalent cost of a copy is set toγ =
800. We compute the cost (in seconds) achieved by our evolutionary forwarding scheme in each
generation. The results are reported in Fig. 6 which depictsas well the performance of the traditional
probabilistic forwarding scheme with the forwarding probability set to its optimal value whenN =
20 (approximately0.06, as can be seen from Fig. 5).

As expected, probabilistic forwarding exhibits steady performance as long as the number of
nodes does not change. Instead the cost plot of our evolutionary forwarding scheme presents spikes
wheneverN increases. The abrupt change is mainly due to the arrival of new nodes, whose initial
forwarding probability is set at random. During the transient following the spike, genotypes fitter to
the new scenario are identified and the cost reduces.

Given a network scenario, our proposed solution exhibits performance similar to a traditional
probabilistic forwarding scheme tuned for the specific scenario. But the evolutionary solution out-
performs probabilistic forwarding whenever the scenario changes.
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5 Outlook and Future Work

In the report, we have presented a framework for embedding autonomous evolution in epidemic-
style forwarding schemes. The proposed approach is based onthe application of a GA-like mecha-
nism to parameters arrays describing policies employed by the nodes in the system. The simulation
results presented indicate in particular that the proposedcase-study implementation is able to track
changes in the system conditions (e.g., number of nodes in the scenario considered), and achieves
similar if not better performance than solutions statically optimized for a given operating point.

The technique proposed in the report represents a first step towards the application of dynamic
optimization techniques to forwarding schemes in DTN-likescenarios. In particular, effects of factor
like (i) mobility and traffic pattern, (ii) nodes cooperation level, (iii) network heterogeneity, have not
been accounted for in the present report, and deserve futurestudies. Another interesting direction
concerns the application of other metaheuristics [1] for run-time optimization.
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