
HAL Id: inria-00155089
https://hal.inria.fr/inria-00155089

Submitted on 15 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ambient-Oriented Programming in Fractal
Ales Plsek, Philippe Merle, Lionel Seinturier

To cite this version:
Ales Plsek, Philippe Merle, Lionel Seinturier. Ambient-Oriented Programming in Fractal. 3rd Object
Technology for Ambient Intelligence and Pervasive Systems / ECOOP 2007, 2007, Berlin, Germany.
�inria-00155089�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50377719?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00155089
https://hal.archives-ouvertes.fr


Ambient-Oriented Programming in Fractal

Aleš Pľsek, Philippe Merle and Lionel Seinturier

INRIA-Futurs, Project ADAM LIFL,
Université des Sciences et Technologies de Lille (USTL), FRANCE,

{plsek,merle,seinturi}@lifl.fr

Abstract. Ambient-Oriented Programming (AmOP) comprises suits of
challenges that are hard to meet by current software development tech-
niques. Although Component-Oriented Programming (COP) represents
promising approach, the state-of-the-art component models do not pro-
vide sufficient adaptability towards specific constraints of the Ambient
field. In this position paper we argue that merging AmOP and COP can
be achieved by introducing the Fractal component model and its new
feature : Component-Based Controlling Membranes. The proposed so-
lution allows dynamical adaptation of component systems towards the
challenges of the Ambient world.

1 Introduction

Ambient-Oriented Programming (AmOP) [1] as a new trend in software devel-
opment comprises a suite of challenges which are yet to be addressed fully. So
far, only a few solutions facing the obstacles of ambient programming have been
developed. In this paper we focus on AmbientTalk [1] since in our opinion it
represents one of the most sophisticated solutions.

Although AmbientTalk conceptually proposes a way to implement applica-
tions for the ambient environment, this is achieved by defining a new program-
ming language. Consequently, AmbientTalk potentially introduces a steep learn-
ing curve for the developers. From this point of view, it is reasonable to search for
an approach which uses well-known techniques and is powerful enough to face the
obstacles of ambient programming. We believe that these requirements can be
met by the introduction of Component-Based Software Engineering techniques.

Our goal is therefore to propose a dynamically evolvable middleware system
based on the Fractal component model [2] to facilitate development of appli-
cations adapted to the ambient environment. To reflect the goal, this position
paper is summarized as follows. Section 2 anchors our research into the context
of AmOP and Component-Oriented Programming (COP). Section 3 proposes
our approach to the challenges of Ambient Programming. Section 4 describes
the experiment we have conducted to demonstrate the abilities of the proposal.
Section 5 concludes.



2

2 Context

2.1 Ambient-Oriented Programming

Ambient Intelligence [3] represents a new trend of computing where wireless
technology is gracefully integrated into the everyday life of its users. This new
field in distributed computing comprises wireless devices which spontaneously
communicate with each other.

The specific character of a highly dynamical mobile environment however im-
poses special constraints (facing the connection volatility, the ambient nature of
resources, etc.). These challenges form a new group of programming techniques
– Ambient-Oriented Programming. Although the main stress here is laid on fac-
ing the so-called Hardware Phenomenon [1], we believe that software engineering
aspects supporting more effective development of ambient oriented applications
should be more emphasized. Therefore we additionally pose the following re-
quirement:

– Evolvability. Since the ambient environment is from its nature highly dy-
namical, the solution has to keep up with hardware evolution and to ad-
dresses specific needs of the target environment. Consequently, the ability to
develop systems which can dynamically evolve towards changing conditions
and mission goals is essential.

The Ambient Reference concept represents a powerful solution to refer-
encing objects in ambient environment. Ambient reference operates in two states
- unbound and bound. When an ambient reference is unbound, it acts as a dis-
covery channel looking for remote service objects in the environment to bind
to. Once such a suitable object is found, the ambient reference becomes bound.
Once bound, an ambient reference is a true remote object reference to the re-
mote service. When the service object to which an ambient reference is bound
moves out of communication range, the ambient reference can become unbound
again. Then it acts as a peer discovery mechanism again and tries to rebind to
the same or another matching service.

Since the concept represents an asynchronous way of communication, it is
necessary to face the challenge of returning the result of a client’s request. To
provide this, the Non-blocking Futures concept is introduced. It allows to
associate a block of code which will be triggered on the client once its request
is resolved – the returning value from the server is thus processed. The main
motivation for employing this feature is to manage the returning value processing
without the introduction of callback methods.

Other solutions to the ambient environment challenges exist. Due to the space
limitations, we do not present them here, but refer to [4].
AmbientTalk is a programming language that explicitly incorporates poten-
tial constraints of the distributed mobile environment in the very heart of their
basic computational steps, thus addressing directly the obstacles of application
development for mobile devices. To deal with the ambient environment charac-
teristics, AmbientTalk implements several features. For this discussion we focus
on two keystone concepts: Ambient Reference and Non-blocking Futures.



3

2.2 Fractal Component Model

The Fractal component model [2] is a light-weight component model, focused on
programming language concepts. In contrast to other component models, such
as EJB, .Net or CCM, it does not require the extra-machinery supporting its
functionality. The model is built as a high level model and stresses on modular-
ity and extensibility. Moreover it allows the definition, configuration, dynamic
reconfiguration, and clear separation of functional and non-functional concerns.

The component model is hierarchical in the sense that a component may be
primitive, or composite. The central role is played by interfaces, which can be
either business or control. Whereas business interfaces are external access point
to components, control interfaces are in charge of some non-functional properties
of the component, for instance its life-cycle management, or the management of
its bindings with other components.

Fig. 1. Fractal Control Membrane, Schema

Component-based Control Membranes (CBCM) The abilities of the
Fractal component model are even more extended by a new feature introducing
the component-based architecture for the control environment surrounding com-
ponents. Similar to EJB’s containers, the Fractal component model features a
controlling environment, called membrane. This supports before mentioned non-
functional properties of components. However, in contrast with fixed structures
of EJB containers, the control membrane of a component is implemented as an
assembly of so-called control components and can dynamically evolve. The whole
idea is depicted in Fig. 1.

Not only does this approach brings effective development in the sense of
reusability and transparentness, but the main benefits lay in the ability to in-
trospect and dynamically reconfigure the architecture of the control layers of
each component. Moreover, the membranes can be designed individually thus
precisely fitting the needs of specific components. This leads to a reflective com-
ponent model, where both the business layer and the layer which controls it are
implemented using components.

3 Ambient-Oriented Programming in Fractal

Considering the challenges of AmOP we believe that binding both Ambient- and
Component-Oriented Programming techniques together would bring numerous
benefits to the world of Ambient Intelligence.



4

Our vision is to use COP to develop dynamically evolvable software systems
that are able to adapt themselves towards the challenges of AmOP. Additionally,
we propose to use COP also to develop a middleware layer that will support
the ambient nature of these systems and shield the developer from potential
complexities of designing ambient aware systems.

To achieve a higher level of symbiosis between both - the system and the
middleware, we propose to use the CBCM feature of Fractal to implement the
middleware layer. It enables us to precisely deploy ambient functionality only to
those components where it is needed. To achieve this, we lay out the following
tasks:

– Component-Oriented Approach. With the growing complexity of ambient-
aware applications, there is a strong need for an unified way of application
development which widely supports dynamical adaptability of the systems.
Therefore, we propose COP to face these requirements.

– Fractal CBCM Application We believe that the component oriented ar-
chitecture of the Fractal membrane provides the necessary extendability to
host the features supporting the ambient nature of the software applications.
Therefore, extending the Fractal membrane is the key design choice.

– Ambient Middleware. The ambient middleware emerges from the imple-
mentation of previous points. The ambient functionality is spread among the
components in the application and implemented through the component-
oriented membrane extensions, thus virtually forming a middleware layer
that can evolve.

4 Ambient-Oriented Middleware : Experimental
Implementation

To demonstrate the potential abilities of our proposed solution, we have con-
ducted an experiment that implements a middleware layer supporting the Am-
bientReference and Non-blocking Future concepts - the fundamental features of
AmbientTalk.

The experimental implementation involves two actors : a server that provides
a given service and a client that is searching for the service and that sponta-
neously enters and leaves the communication range of the server. The task is
to use Ambient Reference and Non-blocking Futures concepts and thus hide the
ambient character of the environment. To focus only on the implementation of
these two concepts, we have extended this system by a third actor - a discovery
service, which manages the service provisions and requirements in the environ-
ment. The discovery service operates at the middleware layer, communicating
only with ambient-aware parts of actors.

4.1 Membrane Extensions

The adaptability of the membrane, described in Section 2.2, is the key feature
we want to employ during the implementation of our solution. As already said,



5

each component membrane can be extended individually thus perfectly fitting
the specific needs of particular component. Applied to our experiment, we ex-
tend membranes of components implementing the communication between both
actors with the ambient functionality. Thus the functionality is deployed only to
specific components, they are extended with following units:

Ambient Controller The ambient controller is a new managing unit in-
troduced into the component membrane architecture. The task of the controller
lays in managing the ambient functionality of the component. Particularly, the
key responsibilities of this unit are the control of the ambient references and the
deployment of ambient interceptors.

Ambient Interceptor The interceptors deployed on every component inter-
face allow to trace the component communication and to adjust the communica-
tion towards the specific needs of the ambient environment. E.g. either forward
the messages to the recipient or buffer them when the recipient is unavailable.

4.2 Ambient Component

Through the membrane adaptation we are able to achieve the ambient func-
tionality, obtaining an ambient component. The business code is not affected
thus putting no extra burden on the developer. Moreover, ambient-awareness
extensions are transparent and can co-exist with the remaining unmodified com-
ponents – achieving that potentially every Fractal component systems can be
extended.

Fig. 2. Ambient Component

When applying the approach to our experiment, the membranes of compo-
nents participating in the ambient communication are extended by the ambient
controllers. An ambient binding, a component-oriented variant of the Ambient
Reference concept, is instantiated once the discovery service announces that a
client’s desired service becomes available. Then, the ambient controller creates
the binding between ambient components and deploys an ambient interceptor on
the interface of the client component. Once the ambient binding is instantiated,



6

the ambient controller keeps this reference updated and notifies the interceptor
every time the discovery service announces that an ambient resource is unavail-
able. The role of the interceptor is to either transmit messages to the server
interface or to buffer them when the ambient service is currently unavailable.

To implement the Future concept, the callback technique is used even though
the original implementation of the concept in AmbientTalk avoids a callback.
Every communication of the component with its environment has to be provided
through an interface, it is therefore necessary to define a method for resolving a
returning value and to expose this method in an interface definition. However,
the callback binding is created automatically with the creation of an ambient
reference. Both bindings are managed by the ambient controller and thus no
special burden is laid on the shoulders of the developer.

The architecture of the ambient component is depicted in Figure 4.2, where
we can see membrane extensions, the ambient binding, and the Future callback
binding which is created simultaneously and is managed in cooperation of am-
bient controllers on both client and server components.

5 Conclusion

In this position paper we propose a new approach to the design of Ambient-
oriented systems. Our proposal is based on the usage of a new feature of the
Fractal component model : Component-based Control Membranes. These allow
to dynamically deploy the ambient functionality only to those parts of the system
which really need it. Moreover, dynamic adaptability is achieved without putting
any special burden on the developer.

The experiment we conducted showed that the Fractal Control Membrane
provides sufficient extendability to develop Ambient-oriented components. Fur-
thermore, it indicates that the proposed solution potentially represents an equiv-
alent alternative to the AmbientTalk.

References

1. J.Dedecker, T. Van Cutsem, S.Mostinckx, T. D’Hondt, and W. De Meuter. Ambient-
Oriented Programming. In “OOPSLA ‘05: Companion of the 20th annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages and
Applications”, 2005.

2. E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani. The Fractal
Component Model and Its Support in Java. Software Practice and Experience,
Special Issue on Experiences with Auto-adaptive and Reconfigurable Systems, 2006.

3. IST Advisory Group. Ambient Intelligence: From Vision to Reality. 2003.
4. A. Gaddah and T. Kunz. A Survey of Middleware Paradigms for Mobile Computing.

Carleton University Systems and Computing Engineering Technical Report SCE-03-
13, 2003.


