
HAL Id: inria-00155287
https://hal.inria.fr/inria-00155287

Submitted on 17 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A characterization of polynomial complexity classes
using dependency pairs

Jean-Yves Marion, Romain Péchoux

To cite this version:
Jean-Yves Marion, Romain Péchoux. A characterization of polynomial complexity classes using de-
pendency pairs. [Research Report] 2007, pp.12. �inria-00155287�

https://hal.inria.fr/inria-00155287
https://hal.archives-ouvertes.fr

A characterization of polynomial complexity
classes using dependency pairs

Jean-Yves Marion and Romain Péchoux

Nancy-Université, Loria, Carte team, B.P. 239, 54506 Vandœuvre-lès-Nancy Cedex,
France, and École Nationale Supérieure des Mines de Nancy, INPL, France.

Jean-Yves.Marion@loria.fr Romain.Pechoux@loria.fr

Abstract. The dependency pair method has already shown its power in
proving termination of term rewriting systems. We adapt this framework
using polynomial assignments in order to characterize with two distinct
criteria the set of the functions computable in polynomial time and the
set of the functions computable in polynomial space. To our knowledge,
this is a first attempt to capture complexity classes using of the depen-
dency pair method. The characterizations presented are inspired by pre-
vious works on implicit computational complexity, and, particularly, by
the notions of quasi-interpretation and sup-interpretation. Both criteria
are decidable so that we can synthesize resource upper-bounds.

1 Introduction

The dependency pair method has been introduced in [1] in order to prove the
termination of programs automatically. The dependency pair method is a com-
plete termination criterion. In other words, the termination of any terminating
program or, more precisely, of any term rewriting system, can be demonstrated
with the help of such a criterion. However, undecidability of termination forces to
specialize this method through applications. Nowadays, almost all termination
provers, among others AProVE [10], CiME [8] and TTT [11], take advantage of
such applications.

One of the key challenges is to improve these termination tools in order to
analyze the computational complexity of programs automatically. Indeed, there
is a strong relation between termination and computational complexity. In order
to predict the complexity of the function computed by a program, we first have
to prove that it terminates and, then, to put drastic restrictions on either its
syntax or its semantics. The motivations behind such an analysis are to provide
resource certificates by static analysis. For example, a resource certificate can
give the guarantee to the programmer that no buffer overflow occurs during the
execution of a program.

Throughout the paper, we focus our attention on the dependency pair method
using polynomial assignments. Polynomial assignments are strongly related to
polynomial interpretations of [15, 17] and, more recently, of [2, 7]. However, we
no longer consider polynomials over natural numbers but polynomials over real

2

numbers. Since the set of real numbers is no longer well-founded, we can add
constraints on the shape of considered polynomials for preserving termination.
The subterm property of [9], i.e. ∀i ∈ {1, n} f(x1, · · · , xn) > xi, is an ex-
ample of such a constraint. Nevertheless, this condition is a serious drawback
when analyzing the complexity of algorithms since it approximates functions
too largely. Hopefully, it is demonstrated in [16] that this condition can be re-
placed by a suitable quasi-ordering. Polynomial assignments are also inspired
by quasi-interpretations [5] and sup-interpretations [18]. These two notions pro-
vide upper bounds on the size of the values computed by a function symbol. The
sup-interpretation is only a generalization of the quasi-interpretation without the
subterm property and, as a consequence, allows to capture more algorithms. It is
demonstrated in [5, 19] that these notions combined with the product extension
and the lexicographic extension of Recursive Path Orderings (RPO) character-
ize the set of functions computable in polynomial time and, respectively, the
set of functions computable in polynomial space. Moreover, sup-interpretations
allow to characterize the set of functions computable in alternating logarithmic
time [4].

In this paper, we make a step forward in the study of relations between com-
putational complexity and termination by giving two new characterizations of
the sets of functions computable in polynomial time and in polynomial space
with the help of polynomial assignments over reals without the subterm prop-
erty. To our knowledge, this is a first attempt to capture complexity classes
using of the dependency pair method. As demonstrated by Tarski, first order
theory over reals is decidable and so are our criteria whenever we consider poly-
nomials of bounded degree. Another consequence is that we obtain heuristics for
synthesizing sup-interpretations.

The paper is organized as follows. Section 2 describes the syntax and the
semantics of the language. Section 3 introduces the dependency pairs and de-
pendency pair graph. Section 4 defines the polynomial assignments which are
used in the characterizations. Sections 5 and 6 provide two distinct criteria which
correspond to the characterization of the set of function computable in polyno-
mial space and, respectively, the set of functions computable in polynomial time.
Finally, it is stated in the last Section that both criteria provide a natural way
for synthesizing sup-interpretations.

2 Syntax and semantics of first order programs

A program is defined formally as a quadruple 〈X , C,F ,R〉 with X , C and F finite
disjoint sets which represent respectively the variables, the constructor symbols
and the function symbols and R a finite set of rules defined in Figure 1.

The set of rules induces a rewriting relation→. The relation ∗→ is the reflexive
and transitive closure of →. Throughout the paper, we only consider programs
having disjoint and linear patterns. So each program is confluent [13].

The domain of computation of a program 〈X , C,F ,R〉 is the constructor
algebra T (C). A ground substitution σ is a mapping from variables to values of

3

(Values) T (C) 3 v ::= c | c(v1, · · · , vn)
(Terms) T (C,F ,X) 3 t ::= c | x | c(t1, · · · , tn) | f(t1, · · · , tn)
(Patterns) P 3 p ::= c | x | c(p1, · · · , pn)
(Rules) R 3 r ::= f(p1, · · · , pn)→ t

where x ∈ X , f ∈ F , and c ∈ C.

Fig. 1. Syntax of the programs

T (C). Given a term t and a ground substitution σ, if tσ ∗→w and w is in T (C)
then JtσK = w, JtσK = ⊥ otherwise.

The size |t| of a term t is defined to be the number of symbols of arity strictly
greater than 0 occurring in t.

Example 1. Consider the following program which computes the logarithm func-
tion:

log(0)→ 0 half(0)→ 0
log(S(0))→ 0 half(S(0))→ 0

log(S(S(y)))→ S(log(S(half(y)))) half(S(S(y)))→ S(half(y))

We have for every natural number n, Jlog(Sn(0))K = Sblog(n)c(0) where Sn+1(0) =
S(Sn(0)) and S0(0) = 0.

A context is an expression C[�1, · · · , �r] with only one occurrence of each �i,
where the �i are fresh symbols. The substitution of each �i by an expression di
is noted C[d1, · · · , dr].

Example 2. The substitution of the variable � by half(y) in the context C[�] =
S(log(S(�))) is equal to S(log(S(half(y)))).

Now, we define the notion of call-tree which corresponds to the tree of func-
tion calls in one execution of a program.

Definition 1. A state is a tuple 〈f, v1, · · · , vn〉 where f is a function sym-
bol of arity n and v1, . . . , vn are values. Assume that η1 = 〈f, v1, · · · , vn〉 and
η2 = 〈g, u1, · · · , um〉 are two states. Assume also that we have f(p1, · · · , pn) →
C[g(e1, · · · , em)] ∈ R with C[�] a context. A transition between two states η1 and
η2, noted η1 η2, is defined by:

1. There is a ground substitution σ such that piσ = vi for i = 1, . . . , n
2. and JejσK = uj for j = 1, . . . ,m.

We call such a tree a call-tree of f from values u1, . . . , un if 〈f, v1, · · · , vn〉 is its
root.

A state may be seen as a stack frame since it contains a function call and its
respective arguments. A call-tree of root 〈f, v1, · · · , vn〉 represents all the stack
frames which will be pushed on the stack when we compute f(v1, . . . , vn). We
will sometimes refer to +

 as the transitive closure of .

4

The size of a state is the sum of the sizes of its values. Given a call-tree and
two of its states 〈f, t1, · · · , tn〉 and 〈g, u1, · · · , um〉, such that 〈f, t1, · · · , tn〉

+

〈g, u1, · · · , um〉, then 〈f, t1, · · · , tn〉
+
 〈g, u1, · · · , um〉 is called a branch of the

call-tree. The size of a branch is defined to be the sum of the sizes of all its
states. The length of a branch is the number of states in the branch. Finally, the
size of the call-tree is the sum of the sizes of all its states.

3 The Dependency Pair Method

In this section, we briefly review the notion of dependency pair introduced by
Arts and Giesl [1] in order to analyze the termination of programs automatically.

Definition 2 (Dependency pair). Given a program 〈X , C,F ,R〉, a depen-
dency pair < f(p1, · · · , pn), g(e1, · · · , em) > is a couple satisfying f, g ∈ F and
there is a context C[�] such that f(p1, · · · , pn)→ C[g(e1, · · · , em)] ∈ R.

Example 3. If we consider the program of Example 1, 〈log(S(S(y))), half(y)〉
is a dependency pair since there is a rule log(S(S(y))) → C[half(y)] with a
context C[�] = S(log(S(�))).

Definition 3 (Dependency pair graph). We define the dependency pair
graph of a program 〈X , C,F ,R〉 by:

– The nodes are the dependency pairs
– Given two dependency pairs u =< f1(p1, · · · , pn), f2(e1, · · · , em) > and
v =< f3(q1, · · · , qk), f4(d1, · · · , dl) >, there is an edge from u to v if f2 = f3.

A cycle of dependency pairs is defined to be a cycle in the dependency pair graph.
We say that the dependency pair u is involved in a cycle if u belongs to a cycle
in the dependency graph.

The notions of dependency pairs and dependency pair graph allow to derive
a termination criterion:

Theorem 1 ([1]). A program p is terminating if there is a well-founded weakly
monotonic quasi-ordering ≥q.o., closed under substitution, such that:

1. For each rule f(p1, · · · , pn)→ e ∈ R, f(p1, · · · , pn) ≥q.o. e.
2. For each dependency pair 〈s, t〉, s ≥q.o. t
3. For each cycle in the dependency pair graph, there is a dependency pair 〈s, t〉

involved in the cycle such that s >q.o. t

4 Polynomial and additive assignments

In this section, we define polynomial assignments over real numbers. A polyno-
mial assignment associates a polynomial function to every symbol of a program.
We have chosen to study polynomials over real numbers instead of polynomials
over natural numbers since the synthesis of such assignments is decidable, under
some restrictions, as an application of [3]. Following the terminology of [5], we
define the notion of assignment.

5

Definition 4 (Assignments). An assignment of a symbol b ∈ F
⋃
C of arity

n is a function LbM : (R+)n → R+.
We extend assignments L−M to terms canonically. Given a term t = b(t1, · · · , tn)

with m variables, the assignment LtM is a function (R+)m → R+ defined by the
rules:

Lb(t1, · · · , tn)M = LbM(Lt1M, · · · , LtnM)
LxM = X

where X is a fresh variable ranging over reals.
A program assignment is an assignment L−M defined for each symbol of the

program.

Definition 5 (Polynomial assignments). Let Max-Poly{R+} be the set of
functions defined to be constant functions over R+, projections, max, +, × and
closed by composition. An assignment L−M is said to be polynomial if for each
symbol b ∈ F

⋃
C, LbM is a function in Max-Poly{R+}.

Now we define the notion of additive assignments which guarantees that the
assignment of a value remains affinely bounded by its size.

Definition 6 (Additive assignments). An assignment of a constructor sym-
bol c of arity n > 0 is additive if

LcM(X1, · · · , Xn) =
n∑
i=1

Xi + αc, with a constant αc ≥ 1.

An assignment L−M of a program p is additive if each constructor symbol of p
has an additive assignment.

Lemma 1. Given an additive assignment L−M, there is a constant α such that
for each value v, the following inequality is satisfied:

|v| ≤β LvM ≤β α× |v|

Proof. Define α = maxc∈C(αc) where αc is taken to be the constant of defi-
nition 6, if c is of strictly positive arity, and αc is equal to the constant LcM
otherwise. The inequalities follow directly by induction on the size of a value.

ut

Since the dependency pair method requires a well-founded quasi-ordering
and we are working over real numbers, we first have to restrict the considered
inequalities in order to preserve the well-foundedness. Following [16], we define
a well-founded quasi-ordering:

Definition 7 ([16]). Given a fixed constant β > 0, we define the quasi-ordering
≥β over R+, and its strict part, by:

– x ≥β y iff x ≥ y

6

– x >β y iff for every x, y ∈ R+, x ≥ β + y

Definition 8 (Monotonic assignments). An assignment is monotonic if for
any symbol b, LbM is an increasing (not necessarily strictly) function with respect
to each variable. That is, for every symbol b and all X1, · · · , Xn, Y1, · · · , Yn of
R+ with Xi ≥β Yi, we have LbM(X1, · · · , Xn) ≥β LbM(Y1, · · · , Yn).

5 A criterion for polynomial space computations

We present in this section a criterion using the dependency pair method and
polynomial assignments which allows to characterize the set of functions com-
putable in polynomial space.

Definition 9 (polynomial space interpretation). A program 〈X , C,F ,R〉
admits a polynomial space interpretation if there is an additive, monotonic and
polynomial assignment L−M such that its dependency pair graph satisfies:

– For each rule f(p1, · · · , pn)→ e ∈ R, Lf(p1, · · · , pn)M ≥β LeM.
– For each dependency pair 〈s, t〉, LsM ≥β LtM
– For each cycle in the dependency pair graph, there is a dependency pair 〈s, t〉

involved in the cycle such that LsM >β LtM

Example 4. The program of Example 1 admits the following polynomial space
interpretation:

L0M = 0 LSM(X) = X + 1
LhalfM(X) = X/2 LlogM(X) = X

Indeed, for every rule, we check that:

Lhalf(0)M = 0 ≥β 0 = L0M
Lhalf(S(0))M = 1/2 ≥β 0 = L0M

Lhalf(S(S(y)))M = (Y + 2)/2 ≥β Y/2 + 1 = LS(half(y))M
Llog(0)M = 0 ≥β 0 = L0M

Llog(S(0))M = 1 ≥β 0 = L0M
Llog(S(S(y)))M = Y + 2 ≥β 2 + Y/2 = LS(log(S(half(y))))M

Moreover, taking β = 1, for every dependency pair, we have:

Lhalf(S(S(y)))M = Y/2 + 1 >β Y/2 = Lhalf(y)M
Llog(S(S(y)))M = Y + 2 >β 1 + Y/2 = Llog(S(half(y)))M
Llog(S(S(y)))M = Y + 2 ≥β Y/2 = Lhalf(y)M

Just notice that the inequalities corresponding to the two cycles in the depen-
dency pair graph are strict.

7

First, we are going to show that a program whose dependency pair graph
admits a polynomial space interpretation is terminating:

Theorem 2. Suppose that p is program whose dependency pair graph admits a
polynomial space interpretation L−M, then the program p terminates on all inputs.

Proof. Just define the quasi-ordering ≥q.o. on terms to be ≥β . By definition of a
polynomial space interpretation the criterion of the dependency pair method is
checked. It remains to see that this quasi-ordering is monotonic well-founded and
closed by substitution. It is well-founded since the strict inequality>β guarantees
a decrease by at least the fixed constant β > 0. It is closed under substitution by
definition of assignments. Finally, it is monotonic since assignments are mono-
tonic. ut

Proposition 1. Given a program p which admits a polynomial space interpre-
tation L−M, then for every term t and every ground substitution σ such that
tσ →∗ u, we have :

LtσM ≥β LuM

Proof. We show this result by induction on the derivation length. Consider
a term e = b(e1, · · · , en) and suppose that b(e1, · · · , en)σ →∗ u. By induc-
tion hypothesis (I.H.), and using a call-by-value evaluation, if eiσ →∗ ui then
LeiσM ≥β LuiM. We can evaluate programs in such a way since they are confluent.
Moreover, suppose that b(u1, · · · , un)→∗ u then, by induction hypothesis again,
we have Lb(u1, · · · , un)M ≥β LuM. So, that :

LeσM =β Lb(e1, · · · , en)σM Since e = b(e1, · · · , en)
=β LbM(Le1σM, . . . , LenσM) By Definition of L−M
≥β LbM(Lu1M, . . . , LunM) By I.H. and Monotonicity
=β Lb(u1, · · · , un)M By Definition of L−M
≥β LuM By I.H. again

ut

Theorem 3. Given a program p admitting a polynomial space interpretation,
then for every function symbol f of arity n there is a polynomial such that for
every values v1, · · · , vn we have:

P (|v1|, · · · , |vn|) ≥ |Jf(v1, · · · , vn)K|

Proof. By Theorem 2, the program terminates so that Jf(v1, · · · , vn)K is clearly
defined. By Proposition 1, we have Lf(v1, · · · , vn)M ≥β LJf(v1, · · · , vn)KM. We set
P (�1, · · · , �n) = LfM(α × �1, . . . , α × �n) with α the constant of Lemma 1. We
obtain that P (|v1|, . . . , |v1|) ≥ |Jf(v1, · · · , vn)K| by monotonicity of assignments.

ut

8

Lemma 2. Given a program p admitting a polynomial space interpretation L−M
and a call-tree corresponding to one execution of this program and containing a
branch of the shape 〈f, v1, · · · , vn〉

+
 〈f, u1, · · · , un〉 then:

Lf(v1, · · · , vn)M >β Lf(u1, · · · , un)M

Proof. This result is obtained by combining Definition 9, which guarantees that
each cycle of a dependency pair graph corresponds to a strict decrease of the
polynomial space interpretation, Proposition 1 and the monotonicity of assign-
ments. ut

Corollary 1. Given a program p admitting a polynomial space interpretation
L−M then every branch of the call-tree of the shape 〈f, v1, · · · , vn〉

+
 〈f, u1, · · · , un〉

has a length bounded by γ × Lf(v1, · · · , vn)M, for some constant γ.

Proof. By Lemma 2, we know that two successive calls of the same function
symbol corresponds to a strict decrease Lf(v1, · · · , vn)M >β Lf(u1, · · · , un)M. It
means that Lf(v1, · · · , vn)M ≥ β+Lf(u1, · · · , un)M. Consequently, we have at most
Lf(v1, · · · , vn)M/β successive states in the branch where the function symbol f
occurs. Since the maximal number of dependency pairs involved in a cycle of the
dependency pair graph is bounded by the size of the program, which is fixed,
we obtain that the branch corresponding to the cycle has a length bounded by
γ × Lf(v1, · · · , vn)M, for some constant γ. ut

Lemma 3. Given a program p admitting a polynomial space interpretation L−M
and a call-tree corresponding to one execution of this program, then the size of
each branch of the call-tree is polynomially bounded in the size of the inputs.

Proof. By Theorem 3, we know that every value of a state is polynomially
bounded by the size of the inputs. That is, there is a polynomial R such that
for every state 〈g, v1, · · · , vm〉 of a call-tree of root 〈f, u1, · · · , un〉, we have:

∀i ∈ {1,m} , |vi| ≤ R(max
j=1..n

(|uj |))

So that, the size of each state is bounded by Q(maxj=1..n |uj |) with Q(X) =
k×R(X) and k the maximal arity of the program. By Corollary 1, we have shown
that each cycle starting from 〈g, v1, · · · , vm〉 has at most γ× Lg(v1, · · · , vm)M oc-
currences, which is bounded by Pg(|v1|, · · · , |vn|) = γ × LgM(α × |v1|, . . . , α ×
|vk|) with α the constant of Lemma 1. Consequently, each cycle starting from
〈g, v1, · · · , vm〉 has at most Pg(Q(maxj=1..n |uj |), . . . , Q(maxj=1..n |uj |)) occur-
rences. Now define ω(X) = maxg∈F (Pg(Q(X), . . . , Q(X))). Let A be the maxi-
mal number of cycles in the program (Notice that A is considered as a constant
since it only depends on the size of the program). We know that the depth of
each branch starting from 〈f, u1, · · · , un〉 is bounded by A×ω(maxj=1..n(|uj |)).
Finally, A× ω(maxj=1..n(|uj |))×Q(maxj=1..n(|uj |)) is the required polynomial
bound on the size of each branch. ut

9

Theorem 4. The set of functions computed by programs which admits a polyno-
mial space interpretation is exactly the set of functions computable in polynomial
space.

Proof. By Lemma 3, we know that the size of each branch and each state of
the call-tree is polynomially bounded in the size of the inputs. Evaluating the
program in the depth of the call-tree, we obtain that the set of functions com-
puted by programs which admit a polynomial space interpretation is included
in Pspace. The proof of completeness is inspired by a characterization of [5]
using Parallel Register Machines (PRM). Savitch [20] and Chandra, Kozen and
Stockmeyer [6] have shown that the set of functions computed by PRM in poly-
nomial time is exactly the set of functions computable in polynomial space. We
let the reader check that the program given in [5], which simulates PRM by a
TRS admits clearly a polynomial space interpretation. ut

This criterion is an improvement of the previous characterization of [5] using
the notion of quasi-interpretation and Recursive Path Orderings (RPO) with lex-
icographic and product status. Indeed, our criterion has a greater intensionality
since it captures more natural algorithms, like the ones computing the great-
est common divisor or the division of two unary numbers, as illustrated in the
following example.

Example 5. Consider the following program which computes the greatest com-
mon divisor:

le(S(x),S(y))→ le(x, y) minus(0, z)→ 0
le(S(x),0)→ tt minus(S(z),0)→ S(z)
le(0,S(y))→ ff minus(S(u),S(v))→ minus(u, v)
if(tt, u, v)→ u if(ff , u, v)→ v
gcd(0, z)→ z gcd(S(z),0)→ S(z)

gcd(S(u),S(v))→ if(le(u, v), gcd(minus(v, u),S(u)), gcd(minus(u, v),S(v)))

This program is not terminating by RPO since the last rule calls the function
symbol minus on the arguments of a recursive call. However, we let the reader
checks that it admits the following polynomial space interpretation:

L0M = LttM = LffM = 0 LSM(X) = X + 1
LleM(X,Y) = LminusM(X,Y) = X LifM(X,Y, Z) = max(Y,Z)

LgcdM(X,Y) = X + Y

6 A criterion for polynomial time computations

We present in this section a refinement of the previous criterion which allows
to apply the dependency pair method using polynomial assignments in order to
capture polynomial time computable functions. First, we define the notion of
agglomerated set which allows to control the recursive calls corresponding to the
same recursive rule together:

10

Definition 10 (Precedence). We define a precedence ≥F on function symbols.
Set f ≥F g if there is a rule of the shape f(p) → C[g(e)] ∈ R. Then, take the
reflexive and transitive closure of ≥F , that we also note ≥F . f ≈F g if f ≥F g

and inversely g ≥F f. Lastly, f >F g if f ≥F g and g ≥F f does not hold.
Intuitively, f ≥F g means that f calls g in some executions. And f ≈F g means
that f and g call each other recursively.

Definition 11 (Agglomerated set). Given a dependency pair < s, t > of the
dependency pair graph, we define its agglomerated set A(< s, t >) by:

A(< s, t >)={< s′, t′ > such that s = s′ = f(p1, · · · , pn), t′ = g(e1, · · · , em)
and f ≈F g }

Definition 12 (polynomial time interpretation). A program 〈X , C,F ,R〉
admits a polynomial time interpretation if there is an additive, monotonic and
polynomial assignment L−M such that its dependency pair graph satisfies:

– For each rule f(p1, · · · , pn)→ e ∈ R, Lf(p1, · · · , pn)M ≥β LeM.
– For each dependency pair 〈s, t〉, LsM ≥β LtM
– For each agglomerated set A(< s, t >) = {< s, t1 >, . . . , < s, tn >}, we have

LsM >β
∑n
i=1LtiM

Remark 1. Notice that the last condition corresponds to a resource sharing be-
tween the distinct recursive calls. It is very close in the spirit from the resource
diamond introduced by Hoffman [12] and from Soft Linear Logic [14]. Moreover,
this condition also implies that for every cycle of the dependency pair graph,
there is a dependency pair < s, t > such that LsM >β LtM since LsM >β

∑n
i=1LtiM

implies ∀j ∈ {1, n} LsM >β LtjM and every polynomial time interpretation is a
polynomial space interpretation. Consequently, Proposition 1 and Theorems 3
and 2 hold for polynomial time interpretations.

Example 6. Just check that the program of Example 1 admits the following
polynomial time interpretation:

L0M = 0 LSM(X) = X + 1
LhalfM(X) = X LlogM(X) = X

Lemma 4. Given a program p admitting a polynomial time interpretation L−M
and a call-tree corresponding to one execution of this program, then the size of
the call-tree is polynomially bounded in the size of the inputs.

Proof. By Theorem 3, we know that every value of a state is polynomially
bounded by the size of the inputs. That is, there is a polynomial R such that
for every state 〈g, v1, · · · , vm〉 of a call-tree of root 〈f, u1, · · · , un〉, we have:

∀i ∈ {1,m} , |vi| ≤ R(max
j=1..n

(|uj |))

If the state 〈g, v1, · · · , vm〉 corresponds to a recursive call, then suppose that its
corresponding agglomerated set is of the shape

{< g(p1, · · · , pn), f1(e1) >, . . . , < g(p1, · · · , pn), fn(en) >}

11

There is a ground substitution σ such that piσ = vi. The third condition of the
polynomial time interpretation implies that:

Lg(v1, · · · , vnM >β
n∑
i=1

Lfi(eiσ)M By Definition 12

≥ β +
n∑
i=1

Lfi(JeiσK)M By Proposition 1

Consequently, we can apply at most 1/β × Lg(v1, · · · , vnM recursive rules. And
the number of states added in the call-tree by the rules corresponding to a cycle
in the dependency pair graph is polynomially bounded by the inputs size. Since
the number of cycles in the dependency pair graph is bounded by the size of the
program, we obtain that the number of states in the call-tree is polynomially
bounded by the inputs size. ut
Theorem 5. The set of functions computed by programs which admits a polyno-
mial time interpretation is exactly the set of functions computable in polynomial
time.

Proof. By Lemma 4, we know that the size of the call-tree is polynomially
bounded by the input sizes, and consequently the derivation length is poly-
nomially bounded. Theorem 3 states that the size of any computed value is
polynomially bounded by the input sizes. As a consequence, we can apply the
proof of the characterization of the polynomial time computable functions with
polynomial interpretations of [2], showing that every program can be simulated
by a Turing Machine in polynomial time.

Conversely, every polynomial interpretation of [2] is a polynomial time inter-
pretation. Indeed, the subterm property and the definition of polynomial inter-
pretations in [2] entail all the conditions of Definition 12. ut

This criterion is an improvement of the characterization of [2] for two reasons.
Firstly, we work on real numbers so that we have more flexibility for the choice
of the assignments. Moreover, because of Tarski’s result assignments of bounded
degree over real numbers are decidable so that we have procedure in order to
find an assignment which is a polynomial time interpretation. Secondly, we only
require a strict inequality for the function calls which correspond to cycles in the
dependency pair graph. As a consequence, this criterion has less constraints and
captures more algorithms. It also improves the characterization of polynomial
time computable functions using Recursive Path Orderings (RPO) with product
status and quasi-interpretations in [5]. Indeed, our criterion has a greater inten-
sionality since it captures more natural algorithms, like the one computing the
division of two numbers, as illustrated by the following example.

Example 7. Consider the following program which computes the greatest com-
mon divisor:

minus(0, z)→ 0 quo(0,S(z))→ 0
minus(S(z),0)→ S(z) quo(S(y),S(z))→ S(quo(minus(y, z),S(z)))

minus(S(u),S(v))→ minus(u, v)

12

This program is not terminating by RPO with product status since the last rule
of quo calls the function minus on the arguments of a recursive call. However, we
let the reader checks that it admits the following polynomial time interpretation:

L0M = 0 LminusM(X,Y) = X
LSM(X) = X + 1 LquoM(X,Y) = X + Y

7 Sup-interpretation synthesis

A sup-interpretation is a tool [18, 19] which provides an upper-bound on the size
of a value computed by a symbol. In [4], we show that sup-interpretations allow
to characterize the set of alternating logarithmic time computable functions. We
show in this section that polynomial time and space assignments give heuristics
to compute polynomial sup-interpretations.

Definition 13 (Sup-interpretation). A sup-interpretation is a partial assign-
ment θ which verifies the three conditions below:

1. The assignment θ is weakly monotonic. That is, for each symbol b in the
domain of θ, the function θ(b) is a monotonic function.

2. For each value v of the computational domain T (C), the sup-interpretation
of v is greater than the size of v, i.e. θ(v) ≥ |v|.

3. For each symbol b in the domain of θ of arity n and for each values v1, . . . , vn
of T (C), if Jb(v1, . . . , vn)K ∈ T (C), then θ(b(v1, . . . , vn)) ≥ θ(Jb(v1, . . . , vn)K).

Theorem 6. Every polynomial time or polynomial space interpretation is a sup-
interpretation.

Proof. By Proposition 1, for every polynomial time or polynomial space inter-
pretation we have Lf(v1, · · · , vn)M ≥ LJf(v1, · · · , vn)KM. Since every polynomial
time or polynomial space interpretation is additive, by Lemma 1, we have for
every value v, LvM ≥ |v|. Finally, it remains to see that polynomial time or poly-
nomial space interpretation consist in monotonic assignments. ut

A consequence of this Theorem is that we have a procedure to compute sup-
interpretations. Indeed, if we manage to compute a polynomial time or polyno-
mial space assignment then we obtain a sup-interpretation.

References

1. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-
oretical Computer Science, 236:133–178, 2000.

2. G. Bonfante, A. Cichon, J.-Y. Marion, and H. Touzet. Algorithms with polynomial
interpretation termination proof. Journal of Functional Programming, 11(1):33–53,
2001.

3. G. Bonfante, J.-Y. Marion, J.-Y. Moyen, and R. Péchoux. Synthesis of quasi-
interpretations. LCC2005, LICS affiliated Workshop, 2005. http://hal.inria.

fr/.

13

4. G. Bonfante, J.-Y. Marion, and R. Péchoux. A characterization of alternating log
time by first order functional programs. In LPAR, volume 4246 of Lecture Notes
in Artificial Intelligence, pages 90–104, 2006.

5. G. Bonfante, J.Y. Marion, and J.Y. Moyen. Quasi-interpretations, a way to control
resources. Theoretical Computer Science, 2007.

6. A. Chandra, D. Kozen, and L. Stockmeyer. Alternation. Journal of the ACM,
28:114–133, 1981.

7. E.A Cichon and P. Lescanne. Polynomial interpretations and the complexity of
algorithms. In CADE, number 607 in Lecture Notes in Artificial Intelligence, pages
139–147, 1992.

8. E. Contejean, C. Marche, B. Monate, and X. Urbain. Proving Termination of
Rewriting with CiME. WST, pages 71–73, 2003.

9. N. Dershowitz. Orderings for term-rewriting systems. Theoretical Computer Sci-
ence, 17(3):279–301, 1982.

10. J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termina-
tion proofs in the dependency pair framework. IJCAR, 4130:281–286.

11. N. Hirokawa and A. Middeldorp. Tyrolean termination tool. Technical Report
AIB-2004-07, RWTH, pages 59–62, 2004.

12. M. Hofmann. The strength of Non-Size Increasing computation. In POPL, pages
260–269, 2002.

13. G. Huet. Confluent reductions: Abstract properties and applications to term rewrit-
ing systems. Journal of the ACM, 27(4):797–821, 1980.

14. Y. Lafont. Soft linear logic and polynomial time. Theoretical Computer Science,
318:163–180, 2004.

15. D.S. Lankford. On proving term rewriting systems are noetherien. Technical
report, 1979.

16. S. Lucas. Polynomials over the reals in proofs of termination: from theory to
practice. RAIRO Theoretical Informatics and Applications, 39(3):547–586, 2005.

17. Z. Manna and S. Ness. On the termination of Markov algorithms. In Third hawaii
international conference on system science, pages 789–792, 1970.

18. J.-Y. Marion and R. Péchoux. Resource analysis by sup-interpretation. In FLOPS,
volume 3945 of LNCS, pages 163–176, 2006.

19. J.Y. Marion and R. Péchoux. Sup-interpretations, a semantic method for static
analysis of program resources. ACM Transactions on Computational Logic. Sub-
mitted.

20. W. J. Savitch. Relationship between nondeterministic and deterministic tape
classes. Journal of Computer System Science, 4:177–192, 1970.

