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1 Introduction

The recent biological theory of adaptive dynamics [6,9] proposes a descrip-
tion of the long term evolution of an asexual population by putting emphasis
on the ecological interactions between individuals, in contrast with classi-
cal population genetics models which focus on the genetic structure of the
population. The basic models are individual-based models in which the
population dynamics is precisely described and includes birth, death, com-
petition and mutation. The basic idea of the theory of adaptive dynamics
is to try to get insights about the interplay between ecology and evolution
by studying the invasion of a single mutant type appearing in a simplified
(monotype stable) resident population. The evolution of the population can
then be described as a sequence of mutant invasions in the population. If
the resident type goes extinct when the mutant type invades (we say that
the mutant type fixates), the evolution is described by the so-called ‘trait
substitution sequence’ (TSS) [10]. This appraoch has revealed powerful to
predict the qualitative behaviour of complicated evolutionary dynamics. In
particular, it allows to determine the (local) direction of evolution in the
space of phenotypic traits (or simply traits) from the individual ecological
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parameters, and to predict and explain the phenomenon of evolutionary
branching [10], where a population, initially composed of individuals with
traits concentrated around a single trait value, divides into two (or more)
subpopulations concentrated around distinct trait values that stably coexist
because of their ecological interactions. The description of this phenomenon
is an important achievement of this theory, as well as the ‘canonical equa-
tion of adaptive dynamics’ [3], which describes the evolution of the dominant
trait of the population as a deterministic “hill-climbing” process on a fitness
landscape which depends on the current state of the population (see (1)
below).

More formally, as soon as eternal coexistence of two or more types is not
permitted by the model, the evolution can be described by the sequences
(Tn)n and (Vn)n, where Tn is the n-th time where the population becomes
monomorphic (i.e. composed of only one type) and Vn is the surviving type
at time Tn. The sequence (Vn) is the above-mentionned TSS. It is possible
to prove the convergence of an individual-based model to the TSS under
two biologically motivated assumptions [10,1]. First, the assumption of rare
mutations guarantees that, in the timescale of mutations, the widths of
time intervals during which the population is polymorphic vanish, so that
there is only one type surviving at any time t. To prevent the population
from rapidly becoming extinct in the new timescale, one also has to rescale
population sizes, thereby making the assumption of large populations.

Subsequently, the TSS is a Markov jump process on the trait space whose
semigroup is shown [1] to depend on the invasion fitnesses (as defined in [9])
f(x, y), x, y ∈ X , where f(x, y) is defined as the expected growth rate of
a single individual of type y — the mutant — entering a monomorphic
population of type x ‘at equilibrium’ — the residents. Note that this fitness
is not given a priori, but derived from the microscopic model of individual
interactions. Because of the assumption of large population, the sign of this
fitness determines the possibility of invasion of a mutant type: if f(x, y) < 0,
the mutant type y cannot invade a resident population of type x. Thus,
evolution proceeds by successive invasions of (only) advantageous mutant
types replacing the resident one.

The ‘canonical equation of adaptive dynamics’ [3], which describes the
evolution of a one-dimensional trait x as the solution of the following ODE,
is obtained from the TSS in the limit of small mutations:

dx

dt
=

1

2
σ(x)2µ(x)n̄(x)

∂

∂y
f(x, x), (1)

where σ(x)2 stands for the (rescaled) variance of the mutation step law,
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n̄(x) for the equilibrium size of a pure x-type population, and f(x, y) for the
invasion fitness mentioned above. Note how only advantageous types get
fixed (the trait follows the fitness gradient) and how the fitness landscape
y 7→ f(x, y) depends on the current state x of the population.

However, it is well-known that slightly deleterious types can be fixed by
chance in finite populations. This phenomenon is known under the name of
genetic drift. Depending on the strength of genetic drift, selection is said to
be strong (genetic drift has negligible effects) or weak. In the large popula-
tion asymptotic from which the TSS of adaptive dynamics is derived, genetic
drift has negligible impact compared to the action of selection. Therefore,
the fixation of slightly deleterious types cannot be observed. Our goal here
is to include genetic drift in the adaptive dynamics models by considering
finite populations under weak selection. We continue using the bottom-up
approach of adaptive dynamics; that is, model (macroscopic) evolution from
(microscopic) populations. In particular, we allow the population sizes to
fluctuate randomly through time and we aim to reconstruct a fitness function
from the microscopic parameters.

After the description of the model (Section 2), we derive a new TSS in
the limit of rare mutations (Section 3), from which a limit of small mu-
tations gives what we call the ‘canonical diffusion of adaptive dynamics’
(Section 4). The coefficients of this diffusion involve the first-order deriva-
tives of the fixation probabilities, which are computed in Section 5 as a linear
combination of four fundamental components associated to fertility, defence,
aggressiveness and isolation. New numerical results on the robustness of the
population with respect to these fundamental components are also given, as
well as some consequences on the canonical diffusion of adaptive dynamics
in large populations.

2 The microscopic model

We will restrict here to logistic interaction. More general models are con-
sidered in [2].

A monotype (binary) logistic branching process (LBP, see [7]) with dy-
namical parameters (b, c, d) is a Markov chain in continuous time (Xt; t ≥ 0)
with nonnegative integer values and transition rates

qij =















bi if j = i + 1
ci(i − 1) if j = i − 1

−i(b + c(i − 1)) if j = i
0 otherwise.
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The non-linear term ci(i−1) describes competition mortality due to random
encounters between individuals. Other terms correspond to independent
birth events with constant individual rates. This Markov chain is positive-
recurrent and converges in distribution to a r.v. ξ, where ξ is a Poisson
variable of parameter θ := b/c conditioned on being nonzero

P(ξ = i) =
e−θ

1 − e−θ

θi

i!
i ≥ 1. (2)

We consider in the sequel, a multitype asexual birth and death pro-
cess with mutation, generalizing this LBP. At any time t, the population is
composed of a finite number N(t) of individuals characterized by their phe-
notypic traits x1(t), . . . , xN(t)(t) belonging to a given trait space X , assumed

to be a closed subset of R
k. The population state at time t is represented

by the counting measure on X

νt =

N(t)
∑

i=1

δxi(t).

The population dynamics is governed by the following parameters.

• b(x) is the rate of birth from an individual of type x. The function b
is assumed to be C2

b .

• c(x, y) is the rate of death of an individual of type x due to the com-
petition with another individual of type y. Therefore, the total death
rate of an individual of type x in a population ν may be written as
∫

c(x, y)(ν(dy)− δx(dy)). In this expression, the Dirac mass at x sub-
stracted to the measure ν means that the individual does not compete
with himself. The function c is assumed to be C2

b and bounded away
from 0 on X 2.

• γµ(x) is the probability that a birth from an individual with trait x
produces a mutant individual, where µ(x) ∈ [0, 1] and where γ ∈ (0, 1]
is a parameter scaling the frequence of mutations. When there is no
mutation, the new individual inherits the trait of its progenitor. In
Section 3, we will be interested in the limit of rare mutations (γ → 0).

• M(x, dh) is the law of the trait difference h = y−x between a mutant
individual with trait y born from an individual with trait x. We assume
that M(x, dh) has 0 expectation (no mutation bias), i.e.

∫

hM(x, dh) =
0, and has a density on R

k which is uniformly bounded in x ∈ X by
some function M̄ (h) with finite third-order moment.
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We will denote the dependence of νt on the parameter γ with the notation
νγ

t . Observe that such a population cannot go extinct because the death
rate is 0 when there is only one individual in the population. Since we want
to apply a limit of rare mutations while keeping the population size finite,
this is necessary to prevent the population to become extinct before any
mutation occur.

Let ξ(x) be a random variable whose law is the stationary distribution
of a pure x-type population with no mutation (µ ≡ 0). This law is given
by (2) where θ is replaced by θ(x) := b(x)/c(x, x).

The last notation needed concerns a population with initially only two
types x and y and with no mutation. Then νt = Xtδx +Ytδy, where (Xt, Yt :
t ≥ 0) is a bivariate Markov chain. For this Markov chain, P(T < ∞) = 1,
where T is the first time where either Xt or Yt reach 0. We call fixation
(of the mutant y) the event {XT = 0}. The probability of fixation will be
denoted by un,m(x, y)

un,m(x, y) := P(XT = 0 | X0 = n, Y0 = m).

3 The trait substitution sequence in finite popu-

lations

In this section, we apply the limit of rare mutations (γ → 0) to the process
νγ , in order to describe the evolution of the population as a TSS in finite
population. This limit requires to rescale time properly, as t/γ, to describe
the evolution on the mutation timescale.

Theorem 3.1 Fix x ∈ X . Assume that νγ
0 = Nγ

0 δx where supγ∈(0,1) E((Nγ
0 )p) <

∞ for some p > 1. Then, for any 0 < t1 < . . . < tn, the n-tuple (νγ
t1/γ , . . . , νγ

tn/γ)

converges in law for the weak topology to (Nt1δSt1
, . . . , NtnδStn

) where

(1) (St; t ≥ 0) is a Markov jump process on X with initial value S0 = x and
whose jumping rates q(x, dh) from x to x + h are given by

q(x, dh) = β(x)χ(x, x + h)M(x, dh),

where β(x) = µ(x)b(x)E(ξ(x)) = µ(x)b(x)θ(x)/(1 − e−θ(x)) and

χ(x, y) =
∑

n≥1

nP(ξ(x) = n)

E(ξ(x))
un,1(x, y) =

∑

n≥1

e−θ(x) θ(x)n−1

(n − 1)!
un,1(x, y).

(3)
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(2) Conditional on (St1 , . . . , Stn) = (x1, . . . , xn), the Nti are independent
and respectively distributed as ξ(xi).

Therefore, in the limit of rare mutations, on the mutation timescale, the
population is always monomorphic and the dominant trait of the population
evolves as a jump process over the trait space, where a jump corresponds to
the appearance and fixation of a mutant type. Moreover, at any time, the
population size stationary (i.e. has the stationary distribution corresponding
to the dominant trait of the population). The fixation rate of a mutant is
governed by the function χ(x, y), which is therefore the random analogue of
the traditional invasion fitness [9], defined as the probability of invasion of
a mutant type y is a resident population of type x at equilibrium. Observe
that, as usual in adaptive dynamics, the fitness landscape depends on the
current state of the population. Moreover, in contrast with the classical
TSS [10], from a given monomorphic resident population, any mutant trait
has a positive probability to invade (by genetic drift). Therefore, evolution is
possible in any direction of the trait space. However, a directional selection
still exists, as will appear in the next section.

We refer to [2] for the proof of this result. However, this convergence is
natural in view of the following interpretation of each parameter. β(x) can
be seen as the mean mutant production rate of a stationary x-type population
(i.e. with size ξ(x)), and χ(x, y) is the probability of fixation of a single y-
type mutant entering a pure x-type population with size-biased stationary
size. The size bias comes from the fact that the mutant appears at a birth
time in the stationary population (since the birth rate is proportional to
the population size, the population size after a birth event in the stationary
population is given by the size-biaised stationary population size).

4 The canonical diffusion of adaptive dynamics

Let us assume for simplicity that X = R
k. Let σ(x) be the square root

matrix of the covariance matrix of M(x, ·). We also need to assume that the
matrix σ(x) is a Lipschitz function of x.

In order to obtain the equivalent of the canonical equation of adaptive
dynamics in a finite population, we want to apply a limit of small mutation
steps (weak selection) to the TSS S. To this aim, we introduce a param-
eter ǫ > 0 and replace the mutation kernels M(x, ·) by their image by the
application h 7→ ǫh. Time also has to be rescaled in order to obtain a
non-degenerate limit. The correct time scaling is 1/ǫ2, which leads to the
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following generator for the rescaled TSS (Sǫ
t ; t ≥ 0)

Aǫϕ(x) =
1

ǫ2

∫

Rk

(ϕ(x + ǫh) − ϕ(x))β(x)χ(x, x + ǫh)M(x, dh).

Using the assumption that the mutation kernels M(x, ·) have 0 expectation,
it is elementary to compute the limit of this expression as ǫ → 0 (for suffi-
ciently regular ϕ). This limit, which takes the form of a diffusion generator,
explains the following result (its full proof can be found in [2]).

Theorem 4.1 If the family (Sǫ
0)ǫ>0 has bounded first-order moments and

converges in law as ǫ → 0 to a random variable Z0, then the process Sǫ with
initial state Sǫ

0 converges in law for the Skorohod topology on D(R+, Rk) to
the diffusion process (Zt; t ≥ 0) with initial state Z0 unique solution to the
stochastic differential equation

dZt = β(Zt)σ
2(Zt) · ∇2χ(Zt, Zt)dt +

√

β(Zt)χ(Zt, Zt)σ(Zt) · dBt (4)

where ∇2χ denotes the gradient w.r.t. the second variable y of χ(x, y) and
B is a standard k-dimensional Brownian motion.

This result gives the equivalent of the canonical equation of adaptive
dynamics (1) when the population is finite. It is no longer a deterministic
ODE, but a diffusion process, in which the genetic drift remains present (in
the form of a stochastic diffusion term), as a consequence of the population
finiteness and of the limit of weak selection. The deterministic drift part
of (4) is very similar to the standard canonical equation of adaptive dynam-
ics (1), and involves in particular the gradient of the fitness function χ. The
process (4) provides a diffusion model describing the evolution of the dom-
inant trait value in a population [8,5], grounded on a precise microscopic
density-dependent modelling of the population dynamics. It also gives the
precise balance between directional selection and genetic drift as a function
of the individual’s dynamical parameters.

5 Fixation probability near neutrality

The SDE (4) involves the fixation probability χ(x, x) and the fitness gradient
with respect to the second variable ∇2χ(x, x). In this section, we explain
how these quantities can be explicitly computed.

We need to compute the derivatives of the fixation probabilities un,m(x, y)
when y is close to x. Recall that the law of the two-types LBP without mu-
tation (X,Y ) used to define un,m in the end of Section 2 is characterized by
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the birth vector B and the competition matrix C

B =

(

b(x)
b(y)

)

, C =

(

c(x, x) c(x, y)
c(y, x) c(y, y)

)

.

We will say that the mutant is neutral if all individuals are exchangeable,
i.e. when b(y) = b(x) and c(x, y) = c(y, x) = c(y, y) = c(x, x) (this holds in
particular when y = x). As will appear below, using the notation (b, c) :=
(b(x), c(x, x)), it is natural to focus on deviations from the neutral case
expressed as

B = b1 +

(

0
λ

)

, C = c1−

(

0 0
δ δ

)

+

(

0 α
0 α

)

−

(

0 ε
ε 0

)

In words, deviations from the neutral case are a linear combination of four
fundamental selection coefficients λ, δ, α, ε, that are chosen to be positive
when they confer an advantage to the mutant. It is convenient to assess
these deviations to the neutral case in terms of

1. fertility (λ): positive λ means increased mutant birth rate

2. defence capacity (δ): positive δ means reduced competition sensitiv-
ity of mutant individuals w.r.t. the total population size

3. aggressiveness (α): positive α means raised competition pressure
exerted from any mutant individual onto the rest of the population

4. isolation (ε): positive ε means lighter cross-competition between the
two different types, that would lead, if harsher, to a greater probability
of exclusion of the less abundant one

Under neutrality, an elementary martingale argument shows that the fixa-
tion probability equals the initial mutant frequency p := m/(m + n). This
implies in particular that

χ(x, x) =
e−θ(x) − 1 + θ(x)

θ(x)2
. (5)

The following theorem unveils the dependence of u upon λ, δ, α, ε, when
they slightly deviate from 0, and explains why these four selection coefficients
provide a natural basis to decompose the gradient of the fixation probability.
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Theorem 5.1 As a function of the multidimensional selection coefficient
s = (λ, δ, α, ε), the probability u is differentiable, and in a neighbourhood of
s = 0 (selective neutrality),

u = p + v′.s + o(s), (6)

where the selection gradient v = (vλ, vδ , vα, vε) can be expressed as

vι
n,m = p (1 − p) gι

n+m ι 6= ε,

vε
n,m = p (1 − p) (1 − 2p) gε

n+m

where the g’s depend solely on the resident’s characteristics b, c, and on the
total initial population size n+m. They are called the invasibility coefficients.

The invasibility coefficients of a pure resident population are interesting
to study, as they provide insights about how the fixation probability devi-
ates from p as the selection coefficients of the mutant deviate from 0. They
also provide information about the robustness of the resident population,
i.e. its resistance to mutant invasions. In particular, this allows to compare
the sensitivity of the invasion probability in a given monomorphic resident
population with respect to the four fundamental selection coefficients. In
the simplest case where mutations in the parameter space are isotropic,
the biggest invasibility coefficent gives the direction of the parameter space
where a mutant is more likely to invade. More generally, when there are
correlations between mutations in the parameter space (either because of
the phenotypic structure in the functions b(·) and c(·, ·), or because the co-
variance matrix of the mutation steps is non-diagonal), the likeliest direction
of evolution in the trait space is given by the deterministic coefficient of the
canonical diffusion (4), in which the fitness gradient is given by

∇2χ(x, x) = aλ(x)∇b(x) − aδ(x)∇1c(x, x) + aα(x)∇2c(x, x), (7)

where, for ι = λ, δ, α,

aι(x) = e−θ(x)
∞
∑

n=1

ngι
n+1(x)θ(x)n−1

(n + 1)2(n − 1)!
.

It is possible to obtain explicit expressions for the invasibility coefficients
gι as series. We refer to [2] for the exact expressions. In particular, these
expressions yield that aι(x) = âι(θ(x))/c(x, x) for some function âι. More-
over, they allow one to compute numerically the invasibility coefficients, and
therefore the quantities âι for ι = λ, δ, α as functions of the parameter θ(x).
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Figure 1: The functions âλ, âδ and âα as functions of θ.
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Figure 2: The functions θ 7→ θâλ(θ) and θ 7→ θâα(θ).
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These numerical results can be used to make simulations of the canonical
diffusion of adaptive dynamics in various ecological examples. In particular,
in contrast with the classical canonical equation of adaptive dynamics, the
presence of a genetic drift can induce the evolutionary dynamics to drift
away from evolutionary stable strategies, where the fitness gradient is zero.
When the fitness gradient admits several zeros, it can visit several basins of
attraction on various timescales.

This numerical study is a work in progress, that is quite delicate because
the series involved in the computation of gι are slowly converging, with first
terms that grow exponentially fast with θ. We shall give here our first
results. Fig. 1 shows the functions âι for ι = λ, δ, α. Several comments can
be made from this figure. First, for any θ > 0, âδ(θ) > âα(θ) > âλ(θ). This
means that, for equal mutation steps in the parameter space, a mutation is
always more advantageous in the direction δ than in the direction α, which
is itself more advantageous than in the direction λ. In other words, in a
given population, a better defence capacity is more beneficial than a better
aggressiveness, which is more beneficial than a better fertility.

Moreover, as θ goes to infinity, these functions have different asymptotic
behaviors. âδ seems to converges to 1/2, whereas âλ(θ) and âα(θ) are both
equivalent to 1/2θ (see Fig. 2). However, this does not mean that mutations
are much more likely to fixate in the δ direction, because, when θ is large,
b = θc is larger than c, and, in (7), aδ and aα are multiplied by ∇1c and ∇2c
respectively, whereas aλ is multiplied by ∇b. More formally, to compute
the limit of the canonical diffusion when θ goes to infinity, one can divide
the competition kernel c(·, ·) by a constant K in the microscopic model and
then let K go to infinity in the canonical diffusion. Denoting by χK(·, ·) the
fitness function obtained this way and using the asymptotic behaviors given
above, one gets that

lim
K→+∞

∇2χK(x, x) =
1

2b(x)
(∇b(x) − θ(x)∇1c(x, x)).

Moreover, by (5), χK(x, x) converges to 0 when K → ∞. Now, as proved
in [1], with our notation, the fitness function of the canonical equation of
adaptive dynamics (1) is given by f(x, y) = b(y) − c(y, x)θ(x). Therefore,
as K → +∞, the canonical diffusion converges to a deterministic ODE
which is precisely the canonical equation of adaptive dynamics. This gives
a new justification of this equation, and this also allows one to study the
fluctuations around the canonical diffusion when K is large. In particular,
this diffusion equation with small diffusion term enters the framework of
Freidlin-Wentzell’s theory [4], which can be applied to predict the long time
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behaviour of the diffusion, and its chain of visit of basins of attractions when
K is large. This kind of information is biologically very relevant, since it
allows one to predict in which order all the evolutionary stable strategies
will be visited by the population and on which timescale.
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