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Abstract: A semi-commutation R is a relation on a finite alphabet A. Given an infinite
word u on A, we denote by R(u) = {xbay | x ∈ A∗, y ∈ Aω (a, b) ∈ R and xaby = u}
and by R∗(u) the language {u} ∪ ∪k≥1R

k(u). In this paper we prove that if an ω-language
L is a finite union of languages of the form A∗

0a1A
∗
1 . . . akA∗

kak+1A
∗
k+1

, where the Ai’s are
subsets of the alphabet and the ai’s are letters, then R∗(L) is a computable regular ω-
language accepting a similar decomposition. In addition we prove the same result holds
for ω-languages which are finite unions of languages of the form L0a1L1 . . . akLkak+1Lk+1,
where the Li’s are accepted by diamond automata and the ai’s are letters. These results
improve recent works by Bouajjani, Muscholl and Touili on one hand, and by Cécé, Héam
and Mainier on the other hand, by extending them to infinite words.

Key-words: Finite Automata, Infinite Words, Transitive Closures, Semi-commutations



Clôtures transitives de realtions de semi-commutation

sur les ω-langages réguliers

Résumé : Une relation de semi-commutation R est une relation sur un alphabet fini A.
Etant donné un mot infini u sur A, on pose R(u) = {xbay | x ∈ A∗, y ∈ Aω (a, b) ∈
R and xaby = u} et R∗(u) le langage {u}∪∪k≥1R

k(u). Dans cet article nous montrons que
si un ω-langage L est une union finie de langages de la forme A∗

0a1A
∗
1 . . . akA∗

kak+1A
∗
k+1

, où
les Ai sont des sous-ensembles de l’alphabet et les ai des lettres, alors R∗(L) est un ω-langage
régulier calculable et possédant une décomposition similaire. De plus, nous prouvons que le
même résultat existe pour les ω-langages qui sont une union finie de langages de la forme
L0a1L1 . . . akLkak+1Lk+1, où les Li sont acceptés par des automates diamants et les ai des
lettres. Ces résultats étendent aux mots infinis des travaux récents de Bouajjani, Muscholl
et Touili d’une part, et Cécé, Héam et Mainier d’autre part.

Mots-clés : Automates finis, mots infinis, clôtures transitives, semi-commutations
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We assume a basic background in finite automata theory. For more information on
automata the reader is referred to [Ber79, HU80]. We also assume that the reader is familiar
with notions on finite/infinite words and languages. For precise definitions the reader could
refer to [PP04].

1 Introduction

1.1 Contributions

The main purpose of the paper is to prove stability results on several classes of regular
ω-languages. More precisely, we are interested in semi-commutation relations: a semi-
commutation R is a relation on a finite alphabet A. Given an infinite word u on A, we
denote by R(u) = {xbay | x ∈ A∗, y ∈ Aω, (a, b) ∈ R and xaby = u}. We denote by R∗(u)
the ω-language {u} ∪ ∪k≥1R

k(u). By extension, for an ω-language L, we set

R(L) = ∪u∈LR(u) and R∗(L) = ∪u∈LR∗(u).

We say that a finite automaton A is a diamond automaton[MP01] if for each pair of transi-
tions of the form (p, a, q), (q, b, r), there exists a state s of A such that (p, b, s) and (s, a, r)
are transitions too. Finally, we say that a finite automaton A is a partially ordered automa-
ton [TT02] if there exists a partial order ≤ on its set of states such that for each transition
(p, a, q) of A, p ≤ q.

The main results of this paper are as follows:

(1) We prove that the class of ω-languages accepted by partially ordered Büchi automata
is closed under semi-commutation; i.e. if L is accepted by a partially ordered Büchi au-
tomaton then, for each semi-commutation relation R, R∗(L) is accepted by a partially
ordered Büchi automaton too.

(2) We prove that the class of ω-languages, called ω − PolC, that are finite unions of
ω-languages of the form

L0a1L1 . . . akLkak+1Lk+1,

where the Li’s are accepted by diamond automata and the ai’s are letters is closed
under semi-commutations.

(3) We provide an automaton based algorithm to compute R∗(L) for the two above cases.

In order to obtain this results, we have to use the R operator. Given two words u ∈ A∗

and v ∈ A∗ ∪ Aω, the R-shuffle of u and v, denoted u R v, is the set of words of the form
u1v1 . . . unvn with u = u1 . . . un, v = v1 . . . vn and such that α(ui)× α(vj) ⊆ R for all j < i.
The R-shuffle operation is extended to languages L ⊆ A∗ and K ⊆ A∗ or K ⊆ Aω by

L R K = ∪u∈L,v∈Ku R v.

In this paper we obtain the following results for the R operator.
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(4) If L is a regular language on finite words and K is a regular ω-language, then L R K
is a regular ω-language.

(5) We provide a polynomial-time algorithm to compute L R K.

(6) We prove that the classes defined in (1) and (2) are closed under the R operator.

Results (1-6) extend results obtained on finite words by Bouajjani et al. [BMT01,
BMT07] and by Cécé et al. [CHM03] to infinite words.

1.2 Related Works

Regular model-checking [BG96, BW98, AJNd03] is an approach to verify infinite state sys-
tems. One represents, symbolically, sets of states by regular languages and one develops
meta-transitions which can compute, in one step, infinite sets of successors. This amounts
to compute R∗(L) for a given regular language L and a given relation R representing a
subset of the transition relation T of the system. The transition relation T can be decom-
posed into several (sub) relations Ri (of semi-commutation or something else), each of them
implying their ad-hoc techniques of computation. As most of the developed techniques are
based on automata, it is more efficient and consistent to use automata during the whole
computation. As explained in [BMT07], these techniques also are suitable for verifying of
High-level Message Sequence Charts using both finite and infinite executions [GM05]. In
this direction our works may have several applications. Moreover, diamond automata play
a significant role in the translation of Büchi automata into HMSC’s [MP01].

Polynomial closure of varieties of regular languages is an operation widely studied in
the literature (see for example [PW97, Tho82, Brz76, BS73]). Languages on finite words
accepted by partially ordered automata are called languages of level 3/2 in the Straubing-
Thérien hierarchy [Str85, Thé81] which represents the current border for decidability prob-
lems and whose structure makes them suitable for verification of certain systems [ABJ98,
AAB99, BMT07] [BMT01, Tou01].

Decomposable languages form a class of regular languages used for the simulation of
process algebra [LS98]. It was conjectured in [Sch99] that this class was exactly the dual
class of ω − PolC for finite words. However this conjecture has been invalidated in [GP03].
Finally, looking for the maximal (positive) variety closed under an operator [BBC+06] is
widely studied in the literature. One can cite the result for the shuffle operator for varieties
[ES98, Per78] and for positive varieties [GP04].

The shuffle product is an operation on languages which is strongly connected to combi-
natorics on words and which was widely studied in the literature [Rad79, Spe86, NRR+94,
PMR98, BB99].

1.3 Layout of the paper

After introducing the main issues of this paper and basic notations, we extend in Section 2
a result proved in [DM97] to infinite words and we prove that computing the R-closure of a

INRIA
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regular language reduces in some cases to the computation of the R-shuffle of these languages.
Then, we provide an algorithm to compute the R-shuffle of two regular languages. Section 3
is dedicated to proving the main contributions of the paper. Finally, we conclude in Section 4
by giving some future works.

1.4 Background and Notations

We recall in this section notations and unusual definitions on words and automata.
Recall that a finite automaton is a 5-tuple A = (Q, A, E, I, F ) where Q is a finite set of

states, A is the alphabet, E ⊆ Q×A×Q is the set of transitions, I ⊆ Q is the set of initial
states and F ⊆ Q is the set of final states. If A is a finite automaton, L(A) denotes the
language accepted by A. If C ⊆ Q and D ⊆ Q, AC,D denotes the automaton (Q, A, E, C, D).
Moreover, for all p ∈ Q, p ·A a = {q ∈ Q | (p, a, q) ∈ E}. If there is no ambiguity on A, p ·A a
is also denoted p · a. If p · a = {q} is a singleton, we also write p · a = q. If q ∈ p · a, we also
write p →a q.

A finite word u is accepted or recognized by a finite automaton A if there exists a path
in A from an initial state to a final state labelled by u. The language of words accepted by
A is denotes by L(A).

An infinite word w is accepted or recognized by a finite automaton A if there exists an
infinite path in A starting from an initial states of A and using infinitely many final states
of A. In this context, a finite automaton is commonly called a Büchi automaton. The
ω-language of ω-word accepted by A is denotes by Lω(A).

If u is a finite or infinite word, α(u) denotes the set of letters occurring in u. This notion
is extended to languages or ω-languages: α(L) = ∪u∈Lα(u).

If R is a semi-commutation relation an u a finite word, we denote by R(u) = {xbay | x ∈
A∗, y ∈ A∗, (a, b) ∈ R and xaby = u}. We denote by by R∗(u) the language {u}∪∪k≥1R

k(u).
By extension, for a language L, we set

R(L) = ∪u∈LR(u) and R∗(L) = ∪u∈LR∗(u).

A language (resp. ω-language) L is R-closed if R∗(L) = L.

2 R-shuffle Product and Finite Automata

We first extend a result of [DM97] to infinite words.

Proposition 1 Let L1 be a language of finite words and L2 a language of ω-words. One
has:

R∗(L1L2) = R∗(L1) R R∗(L2).

Proof.

RR n
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⊆: By definition of R one has L1L2 ⊆ L1 R L2. Therefore, since L1 ⊆ R∗(L1) and
L2 ⊆ R∗(L2), one has

L1L2 ⊆ R∗(L1) R R∗(L2). (1)

Now let w ∈ R∗(L1) R R∗(L2). We claim that R(w) ⊆ R∗(L1) R R∗(L2). There
exists u and v such that w ∈ u R v. Moreover, by definition of R, there exist
ui’s and vi’s such that u1v1 . . . unvn with u = u1 . . . un, v = v1 . . . vn and such that
α(ui)×α(vj) ⊆ R for all j < i. Let w′ ∈ R(w). According the position of the rewriting
process, following cases arise:

– The semi-commutation occurs in uk: one has
w′ = u1v1 . . . uk−1vk−1u

′
kvkuk+1 . . . unvn with u′

k ∈ R(uk). Since α(u′
k) = α(uk),

w′ ∈ R(u) R v. But u ∈ R∗(L1), therefore w′ ∈ R∗(L1) R R∗(L2).

– The semi-commutation occurs in vk: similarly, one has w′ ∈ R∗(L1) R R∗(L2).

– The semi-commutation occurs at the end of a uk: one has
w′ = u1v1 . . . uk−1vk−1u

′
kv′kuk+1 . . . unvn with uk = xa, vk = by, u′

k = xb, v′k =
ay and (a, b) ∈ R. In this context, set xi = ui and yi = vi for i < k and xk = u′

k

and yk = v′k. Let also xi = ui+1 and yi = vi+1 for i > k. Finally, let xk+1 = b
and yk+1 = b. One has w′ = x1y1 . . . xn+1vn+1. Moreover, u = x1 . . . xn+1 and
v = y1 . . . yn. Now, one can easily check that α(xi) × α(xj) ⊆ R for all j < i.
Therefore, w′ ∈ u R v. Thus w′ ∈ R∗(L1) R R∗(L2).

– The semi-commutation occurs at the end of a vk: by a similar decomposition,
one has w′ ∈ R∗(L1) R R∗(L2), proving the claim.

Consequently R∗(L1) R R∗(L2) is R-closed. Therefore, using (1), one has

R∗(L1L2) ⊆ R∗(R∗(L1) R R∗(L2)) = R∗(L1) R R∗(L2).

⊇: By a straightforward induction, one has: for every u ∈ A∗ and every v ∈ Aω,

u R v ⊆ R∗(uv).

Obviously this inclusion can be extended to languages. Thus

R∗(L1) R R∗(L2) ⊆ R∗(R∗(L1)R
∗(L2)).

Since R∗(R∗(L1)R
∗(L2)) = R∗(L1L2), one has

R∗(L1L2) ⊇ R∗(L1) R R∗(L2),

which concludes the proof.

2

INRIA
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The above result may be easily extended to a finite product of languages by an obvious
induction on the length of the product. Thanks to this result, we reduce the computation
of R∗(L1L2) to the computation of R∗(L1), R∗(L2) and of −R operator. We are now
interested in a procedure for computing L1 −RL2 when L1 and L2 are given by finite
automata.

Proposition 2 Let A1 = (Q1, A, E1, I1, F1) and A2 = (Q2, A, E2, I2, F2) be two finite au-
tomata on A. We define the automaton A1 R A2 by:

� the set of states of A1 R A2 is

Q1 × Q2 × 2A ∪ Q2

� the set of initial states of A1 R A2 is

I1 × I2 × {∅},

� the set of final states of A1 R A2 is F2,

� the set of transitions of A1 R A2 is

{(p, q, X) →a (r, q, X) | r ∈ p ·A1
a and (a, X) ⊆ R}

∪{(p, q, X) →a (p, r, X ∪ {a}) | r ∈ q ·A2
a}

∪{(p, q, X) →a r | r ∈ q ·A2
a, p ∈ F1}

∪E2

where p, q, X, a respectively describe Q1, Q2, 2
A and A.

One has
Lω(A1 R A2) = L(A1) R Lω(A2).

Consider for example the two following automata:

1 2 3 4

a

b

c

a ca

A1 A2

RR n
�
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The construction of A1 R A2 provides the following finite automaton:

1,4,{c}

1,3,∅

1,3,{a}

1,4,{a, c}

2,3,∅ 2,4,{c}4

3

c

a

c
a

a

a

a

c
c

c

c b

a

b

c

c

c

c

c

c a

Notice that in the construction, if (p, q, B) →a (r, s, D) is a transition, then B ⊆ D.
Proof.

The proof will naturally be divided into two steps: we will first prove that Lω(A1 R

A2) ⊆ L(A1) R Lω(A2) and second that L(A1) R Lω(A2) ⊆ Lω(A1 R A2).

To simplify notations, set

� A = A1 R A2,

� G1 = {(p, q, X) →a (r, q, X) | r ∈ p ·A1
a and (a, X) ⊆ R, p ∈ Q1, q ∈ Q2, X ⊆ 2A, a ∈

A},

� G2 = {(p, q, X) →a (p, r, X ∪ {a}) | r ∈ q ·A2
a, p ∈ Q1, q ∈ Q2, X ⊆ 2A, a ∈ A},

� G3 = {(p, q, X) →a r | r ∈ q ·A2
a, p ∈ F1, p ∈ Q1, q ∈ Q2, X ⊆ 2A, a ∈ A}.

Note that the set of transitions of A is G1 ∪ G2 ∪ G3 ∪ E2.

INRIA
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Let w ∈ Lω(A). By definition, there exists an infinite path m in A labelled by w, starting
from an initial state of A and using infinitely many final states of A. By construction, all
transitions of G1 and G2 are between states of Q1×Q2×2A, all transitions of G3 starts form
a states of Q1 × Q2 × 2A and ends in a state of Q2, and all transitions of E2 are between
states of Q2. Thus, since initial states of A are in Q1 ×Q2 × 2A and final states of A are in
Q2, the path m can be decomposed into:

m = mfinite, t, mω

where the path mfinite is a finite path using only transitions of G1 and G2, t ∈ G3 and mω

is an infinite path using only transitions of E2.
In turn, the finite path mfinite can be decomposed into:

mfinite = m1, m2, m3, . . . , mk

such that each m2i+1 (0 ≤ i ≤ (k − 1)/2) only uses transitions of G1 and each m2i (1 ≤
i ≤ k/2) only uses transitions of G2 (some of them may be empty). Now, let us denote
by ui+1 the label of m2i+1 and vi the label of m2i. By construction, the label of mfinite is
u1v1u2 . . . urvr (r = k/2 if k is even and r = (k − 1)/2 if k is odd). We claim that for all
1 ≤ j < i ≤ r, α(ui) × α(vj) ⊆ R. Indeed, let 1 ≤ j < i ≤ r. Assume that ui or vj is
empty. Then α(ui) × α(vj) = ∅ ⊆ R. Assume now that ui and vj are both non-empty. Let
(s1, s2, B) be the first state of m2j . Since m2j only uses transitions of G2 the last state of
m2j is of the form (s1, q2, B ∪ α(vj)). Let (p1, p2, C) the first state of m2i+1. Since m2i+1

only uses transitions of G1, its last state is of the form (r1, p2, C).

(s1, s2, B) (s1, q2, B ∪ α(vj))

(p1, p2, C) (r1, p2, C)

uj+1...vi−1

vj

ui

By construction C = B ∪ α(vjvj+1 . . . vi−1). Moreover, since the path m2i+1 only uses
transitions of G1, each letter a ∈ α(ui) has to satisfy {a} × C ⊆ R. It follows that

α(ui) × α(vj) ⊆ R, (2)

proving the claim.
Now since m = mfinitetmω and since t ∈ G3, the last state of mfinite is of the form (p, q, D)
with p ∈ F1. Consequently,

u1u2 . . . ur ∈ L(A1). (3)

RR n
�
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Now let v be the label of t, mω. By construction, the path m2, m4, . . . , m2r, t, mω is labelled
by v0v1 . . . vrv and is a word of Lω(A2). Consequently, and by (2) and (3), w ∈ L(A1) R

Lω(A2), proving the first step of the proof.

Now we can we prove that L(A1) R Lω(A2) ⊆ L(A). Let z be in L(A1) R Lω(A2).
By definition there exist x1, y1, . . . , xn−1, yn−1, xn ∈ A∗, yn ∈ Aω, such that x1x2 . . . xn ∈
L(A1), y1y2 . . . yn ∈ Lω(A2) and for all 1 ≤ i ≤ n and for all 1 ≤ j < i ≤ n, α(xi)×α(yj) ⊆
R. Since x1x2 . . . xn ∈ L(A1), there exist p0, p1, . . . , pn ∈ Q1 such that

- p0 ∈ I1,

- pn ∈ F1,

- for all i ∈ {1, . . . , n}, there exists a path in A1 from pi−1 to pi labelled by xi.

Since y1y2 . . . yn ∈ Lω(A2), there exist q0, q1, . . . , qn ∈ Q2 such that

- q0 ∈ I2,

- qn ∈ F2,

- for all i ∈ {1, . . . , n − 1}, there exists a path in A2 from qi−1 to qi labelled by yi.

- there exists an infinite path in A2 from qn−1 visiting infinitely many often qn.

For all i ∈ {1, . . . , n − 1}, let us denote by ti the word y1 . . . yi. Moreover, let t0 = ε.
We claim that for all i ∈ {1, . . . n}, there exist a path in A1 R A2 labelled by xi from
(pi−1, qi−1, α(ti−1)) to (pi, qi−1, α(ti−1)) and for all i ∈ {1, . . . n − 1},a path in A1 R A2

labelled by yi from (pi, qi−1, α(ti−1)) to (pi, qi, α(ti)).

(pi−1, qi−1,
α(y1 . . . yi−1))

(pi, qi−1,
α(y1 . . . yi−1)

(pi, qi,
α(y1 . . . yi))

xi yi

Let i be in {1, . . . , n}. Since for all j such that 1 ≤ j < i, α(xi) × α(yj) ⊆ R, one has
α(xi)×α(ti−1) ⊆ R. Thus, by definition of pi−1, pi, qi−1 and by construction of A1 R A2,
there exists a path in A1 R A2 labelled by xi from (pi−1, qi−1, α(ti−1)) to (pi, qi−1, α(ti−1)).
Furthermore, by definition of qi−1, pi, qi and by construction of A1 R A2, there exists a
path in A1 R A2 labelled by yi from (pi, qi−1, α(ti−1)) to (pi, qi, α(ti)), proving the claim.

Now, let a be the first letter of yn and set yn = ay′
n. By definition of qn−1 and qn there

exists a state q′n ∈ Q2 such that (qn−1, a, qn) ∈ E2 and such that there exists an infinite path
from q′n labelled by y′

n and visiting infinitely many often q′n. Since pn is final in A1, there
exists in A a transition from (pn, qn−1, α(y1 . . . yn−1) to q′n labelled by a. Consequently,

INRIA
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there exists an infinite path in A from (pn, qn−1, α(y1 . . . yn−1)) labelled by yn and visiting
infinitely many often qn. It results that z ∈ L(A), which concludes the proof. 2

3 Permutation Rewriting and Polynomial Closure of

Commutative Regular Languages

In this section the main stability results of the paper are proved.
A regular language on finite words is commutative if and only if its minimal automaton

is a diamond automaton. It is obvious that all languages and ω-languages accepted by
diamond automata are R-closed for all semi-commutation relations.

The class PolC (polynomial closure of commutative regular languages) is composed of
finite union of languages of the form L0a0L1a1 . . . akLk where the ai’s are letters and the
Li’s are commutative regular languages.

One has the following result [CHM03].

Theorem 3 The class PolC is closed under semi-commutation.

Recall that ω −PolC is the class of ω-languages which are a finite union of languages of
the form

L∗
0a1L2 . . . ak−1Lk−1akLk

where the ai’s are letters of A and the Li’s (i < k) are commutative regular languages and
Lk is accepted by a diamond Büchi automaton.

Following results in [BMT07], we also introduce the following class of regular ω-languages
which is the infinite words version of APC or of languages of level 3/2 in Straubing’s hierarchy
[Thé81, Str85].

Proposition 4 Let L be a regular ω-language.The following propositions are equivalent:

(1) L is a finite union of languages of the form

A∗
0a1A

∗
2 . . . ak−1A

∗
k−1akAω

k

where the ai’s are letters of A and the Ai’s are subsets of A.

(2) L is recognized by a partially ordered Büchi automaton.

This class of ω-languages is called ω-alphabetic pattern constraints and is denoted ω-APC.

The proof is obvious and left to the reader.

Theorem 5 The classes ω-APC and ω − PolC are closed under semi-commutations.

The proof of Theorem 5 is obtained thanks to the sequence of lemmas below.

RR n
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Lemma 6 Let A = (Q, A, E, I, F ) be a finite automaton, L1, L2 be two languages on A and
R a semi-commutation relation over A. The following equality holds:

L1L2 R L(A) = ∪q∈Q((L1 R (L(AI,q) ∩ B∗))((L2 ∩ C∗) R Lω(Aq,F ))

where the union is taken for all subsets B and C of A such that C × B ⊆ R.

Proof. Let q ∈ Q and u ∈ ((L1 R (L(AI,q) ∩ B∗))((L2 ∩ C∗) R Lω(Aq,F )), with
C × B ⊆ R. Then u can be decomposed into:

u = x1y1 . . . xnynz1t1 . . . zktk

such that

(1) x1 . . . xn ∈ L1, y1 . . . yn ∈ L(AI,q) ∩ B∗,

(2) for all 1 ≤ j < i ≤ n, α(xi) × α(yj) ⊆ R,

(3) z1 . . . zk ∈ L2 ∩ C∗, t1 . . . tk ∈ L(Aq,F ) ,

(4) for all 1 ≤ j < i ≤ k, α(zi) × α(tj) ⊆ R,

Since C×B ⊆ R and by (1) and (3), for all 1 ≤ i ≤ n and for all 1 ≤ j ≤ k, α(zj)×α(yj) ⊆ R.
Consequently and by (2) and (4), u ∈ L1L2 R Lω(A).
Conversely, let u ∈ L1L2 R Lω(A). By definition of the R-shuffle, there exist x1, . . . , xn−1, y1 . . . , yn ∈
A∗ and xn ∈ Aω such that

(5) u = y1x1 . . . ynxn

(6) for all 1 ≤ j < i ≤ n, α(xj) × α(yi) ⊆ R,

(7) x1 . . . xn ∈ Lω(A),

(8) y1 . . . yn ∈ L1L2.

Statement (8) implies that there is 1 ≤ k ≤ n such that yk may be decomposed into yk = st,
with s, t ∈ A∗ and y1 . . . yk−1s ∈ L1 and tyk+1 . . . yn ∈ L2. Statement (7) implies that there
exists a state q such that x1 . . . xk ∈ L(AI,q) and xk+1 . . . xn ∈ Lω(Aq,F ). Now, by (5) and
(6),

y1x1y2 . . . xk−1yk−1s ∈ L1 R (L(AI,q) ∩ α(x1 . . . xk−1)
∗)

and
txk+1yk+1 . . . ynxn ∈ (L2 ∩ α(tyk+1 . . . yn)∗) R L(Aq,F )

By (6), α(x1 . . . xk) × α(tyk+1 . . . yn) ⊆ R, which concludes the proof. 2
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Lemma 7 Let A1 = (Q1, A, E1, I1, F1) and A2 = (Q2, A, E2, I2, F2) be two finite automata
and R a semi-commutation relation over A. If A1 and A2 are diamond automata, then
Lω(A1 R A2) ∈ ω − PolC.

Proof. Let A = (Q, A, E, I, F ) be the trim automaton obtained from A1 R A2. For all
subsets B of α(L(A2)), we denote by QB the subset {(q1, q2, B) | q1 ∈ Q1, q2 ∈ Q2} of Q
and by EB the subset E ∩ QB × A × QB of E.

Let t = ((p, q, C), a, (p′, q′, D)) ∈ E \ ∪B⊆AEB . We claim that there is no loop in
A1 R A2 using t: since C ( D all states accessible from (p′, q′, D) are of the form (r, s, B),
with D ⊆ B.

Each successful path m in A1 R A2 can be decomposed into:

m = m0, t1, m1, t2, . . . , tn, mn, t, mω

with ti ∈ E \ ∪B⊆AEB and mi only using transitions of EBi
, for all 0 ≤ i ≤ n. Using the

above claim, we have n ≤ |E \ ∪B⊆AEB |. Consequently, L(A1 R A2) is a finite union of
languages of the form:

L0a1L1a2 . . . anLnaL

where the ai’s are letters and the Li’s are accepted by finite automata whose graphs of
transitions are (QBi

, EBi
), a is the label of t and L is accepted by finite automata whose

graphs of transitions (Q2, E2).
By Lemma 1, it remains to prove that the Li’s are commutative languages and that L is

accepted by a diamond automaton. Since A2 is a diamond automaton, L is accepted by a
diamond automaton. Now, let B ⊆ A, we prove that the monoid of transitions generated by
(QB , EB) is commutative. Let r = (p, q, B), ra = (pa, qa, B) and rab = (pab, qab, B) be three
states of QB such that there exist transitions ta = (r, a, ra) and tab = (ra, b, rab) in EB .

(p, q, B) (pa, qa, B) (pab, qab, B)
a b

With the notation of the proof of Proposition 2, the following cases occur:

• ta, tab ∈ G1. Since A1 is minimal and since L(A1) is commutative, the transition
monoid of A1 is commutative. Thus there exists pb in Q1 such that p · b = pb and
pb · a = pab. Moreover, since ta and tb belong to G1, {a} × B ⊆ R and {b} × B ⊆ R.
Consequently, (r, b, (pb, q, B)) and ((pb, q, B), a, rab) are in G1 ∩ EB . It follows that
rab ∈ r · ba.

• ta, tab ∈ G2. By a similar argument on A2, one has rab ∈ r · ba.

• ta ∈ G1, tab ∈ G2. Thus qa = q and pab = pa. Consequently (r, b, (p, qab, B)) ∈ G2∩EB

and ((p, qab, B), a, rab) ∈ G1 ∩ EB . It follows that rab ∈ r · ba.

• ta ∈ G2, tab ∈ G1. By a similar argument on A2, one has rab ∈ r · ba.
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Consequently r ·ab ⊆ r ·ba. Since the roles of a and b are symmetric, r ·ba ⊆ r ·ab. Therefore,
the monoid of transitions generated by (QB , EB) is commutative, which concludes the proof.

2

Lemma 8 Let K be a language of PolC and A a diamond automaton. Then K R L(A)
belongs to ω − PolC.

Proof. For each regular language K and each ω-language L, one has: if ε ∈ K, then
KL = L∪a∈A (Ka−1)aL, and if ε /∈ L, then KL = ∪a∈A(Ka−1)aL, with Ka−1 = {v ∈ A∗ |
va ∈ K}. Moreover, since the class of languages accepted by diamond automata forms a
variety of regular languages, if Ka−1 is accepted by a diamond automaton too.

Now Lemma can be proved by a direct trivial induction using Lemma 7. 2

The same proof works for the following lemma.

Lemma 9 Let K be an APC language and L a language of the form Bω, where B ⊆ A.
Then K R L belongs to ω-APC.

One can now prove Theorem 5.
Proof. Let R be a semi-commutation relation.

We just give the proof for ω − PolC languages. The same proof works for ω−APC.
Since for all sets H and I of Aω, R∗(H ∪ I) = R∗(H)∪R∗(I), we only have to prove the

result for languages of the form L = L0a1L1 . . . akLkak+1Lk+1, where the Li’s are accepted
by diamond automata and the ai’s are letters.

Now, by Proposition 1, one has

R∗(L) = R∗(L0a1L1 . . . akLkak+1) R Lk+1.

Using Theorem 3, one has R∗(L0a1L1 . . . akLkak+1) belongs to PolC, and we conclude by
Lemma 8. 2

4 Conclusion

The results presented in this paper improve recent works by Bouajjani, Muscholl and Touili
on one hand, and by Cécé, Héam and Mainier on the other hand, by extending them to
infinite words.

We intend to investigate practical applications of this work, particularly for HMSC’s
formal verification. As far as we know, several connected theoretical problems remains open:
are the classes ω−APC, ω − PolC and PolC decidable (the class APC is decidable [Arf91]).
Another difficult related problem is, given a language of ω − PolC, to decompose it into a
finite union of products of languages accepted by diamond automata. The same problem
faces for PolC, while an inefficient algorithm exists for APC. This kind of problems generally
requires deep semi-groups theory arguments, see [Pin87, Pin94] for instance.
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