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Abstract

We consider a system of uniform recurrence equations (URE) of dimension one. We show

how its computation can be carried out using minimal memory size with several synchronous

processors. This result is then applied to register minimization for digital circuits and parallel

computation of task graphs.
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1 Introduction

Definition 1.1 (URE). We consider Q-valued variables Xi(n), i ∈ V, n ∈ K, where Q is an

arbitrary set, V a finite set, and K ⊂ Z
p for some p ∈ N. These variables satisfy the equations

Xi(n) = Fi

(

Xj(n − γ), (j, γ) ∈ ∆i

)

,∀n ∈ K . (1)

The sets ∆i, called dependence sets, are finite subsets of V × Z
p. The collection of Equations

(1) is called a set of Uniform Recurrence Equations.

There is no restriction on the generality of the functions Fi except the fact that they are com-

putable. The system S defined by Equation (1) is said to be uniform because the dependence

sets ∆i do not depend on n. The integers γ are called the delays. It is possible to have two

delays γ, γ′ ∈ Z
p, γ 6= γ′ such that (j, γ) ∈ ∆i and (j, γ′) ∈ ∆i.

There are various motivations to study URE. They appear in the description of differential
equations using finite difference methods or in the study of discrete event systems. The case

p > 1 and K = Z
p has often been studied in the literature, see [16]. In this case, some of the

major issues are the constructivity [16] and loop parallelization [8]. These problems and others

appearing in this framework will be discussed in § A.

In this paper, we consider only the simple case where K = Z (systems of dimension one). The

computational model considered is that of parallel processors with a shared memory (CREW-

PRAM model: Concurrent Read Exclusive Write-Parallel Random Access Memory ). More

precisely, a computation is performed by a processor, using data stored in the memory. For

example, to compute Xi(n), it is necessary to have at least |∆i| memory locations, each location

containing one of the data {Xj(n − γ), (j, γ) ∈ ∆i}. In a model of parallel processors with

shared memory, there are several processors which can make computations simultaneously and
also access the same memory locations simultaneously.
The problem investigated consists in minimizing the “memory size”:

What is the minimal number of memory locations that is needed to compute all

the variables Xi(n) of Equation (1) using a CREW-PRAM computational model?

We solve this problem in the recycled case (see Section 2.2 for the definition) by proving that it

is equivalent to the search for minimal cuts in the dependence graph associated with the system
of URE. This provides polynomial algorithms to compute the minimal memory requirements.
We show that the solution of this problem has many applications. Indeed, URE appear in the
modeling of logical circuits, systolic arrays or program loops. Our result can be used practically
for the optimization of circuit design. Given a digital circuit, we show how to find another circuit
with the same functional behavior and using a minimal number of registers. This application
will be discussed in § 7.
Our results can also be used in another context, namely, in order to obtain the most efficient
representation of task graph systems for parallel computation purposes. The evolution of a

task graph can be represented as a linear system over the (max,+) algebra of the form x(n +

1) = A(n)x(n), where x(.) ∈ R
k
max and A(n) ∈ R

k×k
max. Our results enable us to obtain a

linear representation of a task graph with a minimal dimension k for the matrices A(n). This

application will be treated in § 8.
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The paper is organized as follows. In Section § 2, we precise the definition of a system of
URE and we present two associated graphs, the dependence graph and the reduced graph. In
Section § 3 we describe the problem that we are going to address. In particular, we restrict our
attention to recycled systems of URE. Sections 4 and 5 investigates the relations that can be
found between cuts in the dependence graph and the memory size required for an execution of
the URE; Section § 6 presents the interpretation of the above quantities in the reduced graph.

Finally in Sections 7 and 8, two applications are described, for digital circuits and (max,+) linear

systems respectively. In Appendix § A and § B, we consider the related problems of scheduling
and sequential executions.

2 Basic Models

From now on, we consider URE of dimension 1. More precisely, we consider the set of variables

Xi(n), i ∈ V, n ∈ Z and the equations

Xi(n) = Fi

(

Xj(n − γ), (j, γ) ∈ ∆i

)

, n ∈ Z , (2)

where the sets ∆i are finite subsets of V × Z.

A system of URE is constructive if given the values of the “negative” variables Xi(n), n 6 0

(initial data), there exists an ordering of the equations such that, ∀i,∀n > 0, all the variables

present in the right hand side of the equation defining Xi(n) can be computed before Xi(n).

Equivalently, the constructivity assumption can be written as follows:

For each cycle (i1, γ1), . . . , (ip, γp), ip+1 = i1 such that (ij+1, γj+1) ∈ ∆ij , j ∈ {1, . . . , p} then
∑p

j=1 γj > 0.

Remark 2.1. Under the constructivity assumption, Farkas Lemma states that it is possible to

come back to Equation (1) with all the sets ∆i included in V × N, using a simple renumbering

of the variables (i.e. Xi(n) := Xi(n + ci) for some constants ci ∈ Z independent of n). This

renumbering actually amounts to a retiming of the system. This notion will be studied in details
in Section 6.1.

From now on, the system S that we consider is always assumed to be constructive. We present
two equivalent ways of describing S: the dependence graph and the reduced graph.

Example 2.2. The illustrative examples in this section correspond to the system:















X1(n) = F1(X3(n − 1))
X2(n) = F2(X1(n − 2))
X3(n) = F3(X2(n),X4(n − 2))
X4(n) = F4(X3(n − 1),X4(n − 1)).

(3)

2.1 Dependence graph

We introduce the graph D of the dependences between the variables Xi(n).
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Definition 2.3 (dependence graph). The dependence graph associated with a system of URE

is the graph D with (V ×Z) as the set of nodes. There is an arc from the node (i, n) to the node

(j,m) if Xj(m) = Fj(Xi(n), . . . ) or equivalently if (i,m − n) ∈ ∆j (notation: (i, n) → (j,m)).

The n-th column in D is the set of nodes {(i, n), i ∈ V }. The i-th line in D is the set of nodes

{(i, n), n ∈ Z}. In the following, we will refer to nodes (i, n), n 6 0, as negative nodes and nodes

(i, n), n > 0, as positive nodes.

It is immediate from the definition of an URE that D is 1-periodic, i.e.

(i, n) → (j,m) ⇐⇒ (i, n + 1) → (j,m + 1) .

The constructivity assumption implies that the graph D is acyclic. We have represented in
Figure 1 the dependence graph corresponding to the system of Example 2.2.

-1 0 1 2 Columns· · ·

4

3

2

Lines

1

Figure 1: Dependence graph associated with the system S of Equation (3).

The dependence graph appears under various forms and names in the literature, for example:
developed graph, PERT graph, unfolded process graph or activity network.

2.2 Reduced graph

Since the dependence graph D is 1-periodic, it can be folded into a reduced graph R.

Definition 2.4 (Reduced graph).

The reduced graph is an arc valued graph R = (V,E,Γ). The set of nodes is V and there is an

oriented arc e ∈ E from i to j if

∃γ ∈ Z s.t. (i, γ) ∈ ∆j . (4)

This arc is valued with the delay Γ(e) = γ. If there exist several delays γ verifying condition

(4), E contains several arcs between the nodes i and j, with corresponding values. Furthermore,

we consider the functions Fi, i ∈ V , to be associated with the nodes of R.

There is an arc from i to j in E, if and only if there are arcs from the line (i, .) to the line (j, .)

in the dependence graph. The system S is constructive if and only if the sum of the delays along
any circuit in R is strictly positive.
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Figure 2: Reduced graph associated with the system S of Equation (3).

The reduced graph associated with the system S of Example 2.2 is represented in Figure 2. The
delays γ associated with the arcs are depicted in boxes.
Reduced graphs appear in the literature under the following names: computation graph, Syn-
chronous Data Flow graphs, process graphs or uniform graphs.

It should be clear from the definitions that there is a one to one correspondence between the
three models. Indeed, a system can be given by its reduced graph as well as its dependence
graph or system of equations.

2.3 Recycled assumption

In the following (Sections § 4,5,7 and 8), we will only study a special case of URE, where the

computation of the variable Xi(n) cannot be done before the computation of Xi(n − 1). This

case appears naturally in task graphs (see § 8) and in other applications. This constraint can be

modeled by imposing a dependence between Xi(n − 1) and Xi(n), for all i and n. Formally, it

results in having (i, 1) ∈ ∆i,∀i, for the system of URE. Equivalently, it results in having a self

loop with delay one (hence the name recycled) at each node of R, or in having arcs between the

nodes (i, n) and (i, n + 1) in D. Such arcs will be called recycling arcs in the sequel. Figure 3

depicts an example of a recycled system.

32
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Figure 3: Recycled reduced graph and recycled dependence graph.
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2.4 Connectedness

We say that a system of URE is (strongly) connected if the graph R is (strongly) connected. In

the remainder of the paper, we will always consider systems of connected (but not necessarily

strongly connected) URE.

In fact, we will see that, for a recycled connected URE and for games M1,M2 and M3 (to

be defined below), a valid computation with a minimal number of memory locations requires

all its memories at each instant. It implies that the minimal number of memories necessary
to compute a non-connected recycled URE is the sum of the minimal numbers of memories
necessary to compute the different connected components independently.

3 Synchronous Executions

We want to minimize the memory size required in the synchronous computation of a system S.
Among the related problems that have been studied in the field of URE, we can mention the
basic scheduling problem and the sequential computations. These questions and their relation
with the one considered in the paper are discussed in the Appendices § A and § B.

3.1 Pebble games

Let us work with an URE and its associated dependence graph D as defined in § 2.1. We want

to compute iteratively all the variables Xi(n), n ∈ N. At each step, the variables which are

necessary to carry out the computations have to be stored in some memory locations. Our
general objective will be to solve the following problem:

What is the minimal number of memory locations

needed to compute all the variables Xi(n)?

We give a description of this problem in terms of a pebble game. A pebble game is played on a
graph. At each step, a finite number of pebbles are located on the nodes of the graph, with at
most one pebble per node. The position of the pebbles evolves by adding or removing pebbles
according to some rules.
Different variants of pebble games have been used in the literature to model memory allocation

problems, see for example [21, 25]. A pebble corresponds to a memory location and puting a

pebble on a node corresponds to the computation of the variable associated with the node and
its storage into the memory. Removing a pebble from a node corresponds to erasing this data
from the memory.
Now, we give a more formal definition of the pebble game in our framework. Here, the graph
considered is the dependence graph D of an URE.

Definition 3.1 (configuration). A configuration is a finite subset of V × Z, the set of nodes

of D. A configuration represents the position of the pebbles at some stage of the game. There is
at most one pebble per node.

Definition 3.2 (execution, successful execution, step). An execution of the pebble game

is a sequence of configurations e = {A(t), t ∈ N}, such that for all t, the configuration A(t + 1)

can be obtained from A(t) through the rules of the pebble game. The passage from A(t − 1) to
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A(t) is called the step t of the game. An execution of the game is successful if all positive nodes

receive a pebble during the execution, i.e. for all (i, n) ∈ V × N, ∃ t ∈ N, s.t. (i, n) ∈ A(t).

In the following, we will always consider successful executions and refer to them simply as

executions. An execution corresponds to a computation of all the variables {Xi(n), i ∈ V, n ∈ N}.

The number of pebbles used by an execution e = {A(t), t ∈ N} is:

P(e)
def
= sup

t∈N

|A(t)| , (5)

where |A(t)| represents the cardinal of A(t). Our general objective is redefined below. It will be

referred to as the Problem MinPeb.

Problem 1 (MinPeb). Determine mine P(e) and an execution eo such that P(eo) = mine P(e).

In the following, we define several sets of rules, each of them defining a different pebble game.
The different sets of rules, called M1,M2 and M3, correspond to different computation models

for the URE and are related to different notions of cuts and delays (see § 4 and § 5). Also, their

relevance will be justified by the applications given in § 7 and § 8. We use the expressions ‘set
of rules Mi’ or ‘game Mi’ indifferently.

M1 : Synchronous Execution. The set of rules M1 is:

• (R1) (starting rule) Initially, a finite number of pebbles are put on negative nodes only,

with at least one pebble on column 0: A(0) ⊂ V × Z
−, A(0) ∩ (V × {0}) 6= ∅;

• (R2) (playing rule) one step of the game consists in any number of moves of type (R3),

followed by any number of moves of type (R4);

• (R3) (adding pebbles) put a pebble on an empty node (i, n). At step t, this is possible

if and only if each infinite oriented path (see Definition 4.1) ending in (i, n) intersects

A(t − 1);

• (R4) (removing pebbles) remove a pebble from a node.

Remark 3.3. Comments of rule (R2).

Note that our definition of P(e) considers only the number of pebbles at the end of the step

and not in intermediate stages (after (R3) and before (R4) for example). It corresponds to the

assumption that all the moves done in one step can be performed simultaneously. This is why
this is called a synchronous execution. This remark also applies to games M2 and M3.

Remark 3.4. Comments on rule (R3).

Rule (R3) may look cumbersome since one may put a pebble on a node which is very far to

the right from the current position of the pebbles. Its intuitive meaning for the calculation in
a system of URE is the following one: at the beginning of step t, the variables which are in

memory are the ones corresponding to A(t− 1). A new pebble can be put on a node (i, n) if the

corresponding variable Xi(n) can be computed given the variables in memory. This does not say

that this computation has to be direct. It may be done using the variables in memory and the
appropriate compositions of the initial functions Fi. Since the initial functions are arbitrary,
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no notion of the “complexity of a function” is used here. Hence the the function obtained by
composition of a finite number of initial functions can be considered just as yet another arbitrary
function and its computation does not require any additional memory.
However, it seems reasonable to consider that function compositions should have a ‘cost’, not
in terms of space as mentioned above, but in terms of time. A step of the game may have a
duration which depends on the “complexity” of the compositions. The discussion of this aspect
of the problem is postponed until the Appendix, see § A.2.

We illustrate rule M1 on the example of Figure 4. We have represented a small part of

the dependence graph of the URE: X1(n) = F1(X1(n − 1),X2(n − 1),X3(n − 1)),Xi(n) =

Fi(Xi−1(n),X1(n − 1),X2(n − 1),X3(n − 1)) for i = 2, 3.

t + 1columns

step t + 2step t + 1

t

Figure 4: Rule M1. Three pebbles are needed.

At step 0, we have three pebbles on nodes (i, 0), i = 1, 2, 3 (rule (R1)). At step 1, it follows

from rule (R3), that a pebble can be put on any positive node. For instance, let us consider

node (2, 1). The associated variable can be computed as follows:

X2(1) = F2

(

F1 (X1(0),X2(0),X3(0)) ,X1(0),X2(0),X3(0)
)

.

By keeping the original pebbles untouched, we can use one additional pebble to mark all the
nodes one by one. In this way, we obtain a succesful execution using four pebbles. It is however
possible to do better.
Consider the following execution, illustrated in Figure 4. After step t−1, assume there are three

pebbles on nodes (i, t − 1), i = 1, 2, 3. At step t, we can put simultaneously three pebbles on

nodes (i, t) and we remove the initial pebbles (rule (R3) used three times followed by rule (R4)

applied three times). At step t + 1, we put the three pebbles on nodes (i, t + 1) and so on. The

number of pebbles needed by this execution is three.

Game M1 can be seen as a model of computation of an URE where several synchronous proces-
sors are used in parallel during the computations. These processors can access the same memory

locations at the same time. More precisely, this is a model of a CREW-PRAM (Concurrent Read

Exclusive Write-Parallel Random Access Memory, see for instance Reif [22]) computation of the

URE. The number of processors needed at one step is equal to the number of moves of type

(R3) (i.e. the number of computations realized). For more details, see § A.2
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M2 : Synchronous Regular Execution. The rules of M2 are obtained by restricting M1

as follows.

• (R1) Unchanged;

• (R2b) (playing rule) same as before with the additional restriction that configurations

must be 1-periodic, i.e. A(t + 1) = A(t) + 1, where

(i, n) ∈ A(t) + 1 ⇐⇒ (i, n − 1) ∈ A(t) ; (6)

• (R3) unchanged;

• (R4) unchanged.

The example of Figure 4 was also verifying the set of rules M2. To see that M1 and M2 are

indeed different, let us consider the example of Figure 5. It corresponds to the URE X1(n) =

F1(X2(n − 1)),X2(n) = F2(X1(n)).

(I)

(II)

n n + 1 n + 2

Figure 5: Rule M1 (I) and rule M2 (II).

In Figure 5 (I), only one pebble is needed under rule M1. The corresponding execution verifies

rule (R2) (game M1) but not rule (R2b) (game M2). In Figure 5 (II), two pebbles are needed.

The corresponding execution verifies rule (R2b). The computations are performed according to

the following patterns :

a. Rule M1 (Figure 5 (I)).

– step t : X2(n) = F2(X1(n));

– step t + 1 : X1(n + 1) = F1(X2(n));

– step t + 2 : X2(n + 1) = F2(X1(n + 1)) . . .

b. Rule M2 (Figure 5 (II)).

– step t : (X1(n + 1),X2(n + 2)) (F1 ◦ F2(X1(n)), F2 ◦ F1(X2(n + 1)));

– step t + 1 : (X1(n + 2),X2(n + 3)) = (F1 ◦ F2(X1(n + 1)), F2 ◦ F1(X2(n + 2))) . . .
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Note that in the execution under rule M2, we have to perform the function compositions F2 ◦F1

and F1 ◦ F2. In § A.2, we discuss the ‘cost’ of function compositions.

Game M2 corresponds to the same computational model as game M1, which is the CREW-

PRAM model. The difference is that in an execution of M2, the variables in A(t) are obtained

from the ones in A(t − 1) by always applying the same operator. This is interesting for im-

plementation purposes. A non-regular execution of M1 would be practically very intricate to
implement since each step would be essentially different. Another advantage of an execution
of M2 is that the number of memory locations needed to carry out the calculations is easy to

compute: it is equal to |A(t)| (independent of t).

M3 : Synchronous One-Pass Execution. The rules of M3 are obtained by restricting the
ones of M2 as follows.

• (R1) Unchanged;

• (R2c) (playing rule) same as (R2b) with the following additional restriction. Each node in

D must be computed only once during the whole execution.

• (R3) unchanged;

• (R4) unchanged.

In rule (R2c), the important point is the difference that exists between computing a node and

keeping the result into the memory.

1

2

1

2

(I)

(II)

step t + 1step t

step t step t + 1

n n + 1 n + 2

Figure 6: Rule M2 (I) and rule M3 (II).

Let us consider the example of Figure 6 (I). Each node on line 1 is computed twice, whereas

each node on line 2 is computed only once. Let us detail this. Node (1, n + 2) is computed at

step t (it is needed as an auxiliary for the computation of node (2, n + 2)) but it is not kept into

memory. Node (1, n+2) is then computed a second time at step t+1. On the other hand, node

(2, n + 2) is computed at step t and is kept into the memory. It does not have to be computed

a second time at step t + 1, as the computed value is just moved from one register to another.

10



In Figure 6 (I), we have an example of an execution satisfying rule M2 but not M3. On the

other hand, in Figure 6 (II), we have an execution which verifies rule M3. The corresponding

computation pattern is :

• Rule M3 (Figure 6 (II)).

– step t : (X1(n + 1),X2(n + 1)) = (F1(X1(n),X2(n)), F2( F1(X1(n),X2(n)),X2(n) );

– step t+1 : (X1(n+2),X2(n+2)) = (F1(X1(n+1),X2(n+1)), F2(F1(X1(n+1),X2(n+

1)),X2(n + 1) ) . . .

The computational model corresponding to game M3 is still the CREW-PRAM model. Rule

(R2c) may look cumbersome but it actually corresponds to a natural notion for the applications

to be detailed later on.

Notations In the following, we use the notations :

• E : the set of all possible (synchronous) executions under rule M1.

• RE : the set of all possible executions under rule M2. Elements of RE will be called
regular executions.

• ORE : the set of all possible executions under rule M3. Elements of ORE will be called
one-pass regular executions.

Since the rules are increasingly restrictive, we have ORE ⊂ RE ⊂ E .

4 Cuts in the Dependence Graph and their Relation with M1,M2

From now on, it is always implicitly assumed that the system under study is recycled, see § 2.3.
In this section, we concentrate on games M1 and M2.

We introduce the notions of cuts and consecutive cuts in a dependence graph. We show that

cuts (resp. consecutive cuts) are closely related to executions of the pebble game under game

M1 (resp. game M2).

We show that there always exists a minimal cut which is consecutive (Lemma 4.7). It will allow

us to prove Theorem 4.11, the main result of the section:

min
e∈RE

P(e) = min
e∈E

P(e) = min
C cut of D

|C| ,

where the notations are defined in § 3.1. As a direct consequence, we show in § 4.3 that Problem
MinPeb can be solved with a polynomial algorithm for games M1 and M2.

4.1 Definitions

Let us recall some classical definitions of graph theory, all defined on the dependence graph D.

For further references, see [9, 14] for example.

Definition 4.1 (path). A path is a sequence of nodes and arcs in D of the form · · · → (i0, n0) →

(i1, n1) → (i2, n2) → · · · → (ik, nk) → · · · . A path is bi-infinite if it contains an infinite number

of negative nodes and an infinite number of positive nodes.

11



A non consecutive cut A consecutive cut

Figure 7: Consecutive and non consecutive cuts.

Definition 4.2 (cut). A cut C is a set of nodes in D such that any bi-infinite path contains at

least one node of C. A cut with a minimal number of nodes is called a minimal cut.

Definition 4.3 (flow). A flow is a set of bi-infinite paths such that any two paths do not share

any node. A flow containing a maximal number of paths is called a maximal flow. A flow F is

1-periodic if we have: the arc (i, n) → (j,m) belongs to F if and only if (i, n + 1) → (j,m + 1)

belongs to F .

The most classical notion of cut involves arcs rather than nodes and a flow is a set of paths
which do not share arcs rather than nodes. However a simple transformation, each node being
replaced by two nodes connected by an arc, would allow us to go back to the original definitions.

Definition 4.4 (section). A section S in D is a set of nodes with exactly one node per line,

S = {(i, ni), i ∈ V }.

Note that since D is recycled, a cut contains at least one node per line. Using this property, one
can define the left and right sections of a cut.

Definition 4.5 (left, right section). The left (resp. right) section Cw, with w for west,

(resp. Ce, with e for east) of a finite cut C is the set of nodes (i, n) in C such that the nodes

(i, n − h), h > 0 (resp. (i, n + h), h > 0) do not belong to C.

Definition 4.6 (consecutive cut). A cut C in D is consecutive if on each line of D, C con-

tains only consecutive nodes, i.e.:

For all i ∈ V , (i, n) ∈ C and (i, n + 1) 6∈ C ⇒ (i, n + k) 6∈ C,∀k > 0.

Examples of consecutive and non-consecutive cuts are displayed in Figure 7.

Lemma 4.7. There exists a minimal cut of D which is a minimal consecutive cut.

Proof. Let C be a minimal consecutive cut. We will prove that C is a minimal cut. First, we

prove that there are no arcs from Cw to Ce + k, k > 2 (where (i, n) ∈ Ce + k iff (i, n− k) ∈ Ce).
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C

Cr + 1Cl

Figure 8: Graph G made from the right and left sections of C

Let us assume that there exists such an arc, that we denote by (i, n) → (j,m). By 1-periodicity,

there is an arc between nodes (i, n − 1) and (j,m − 1). Now consider the bi-infinite path

· · · → (i, n − 3) → (i, n − 2) → (i, n − 1) → (j,m − 1) → (j,m) → (j,m + 1) → · · ·

It does not intersect C which is a contradiction.
We consider the sub-graph G of D made of the nodes Cw ∪ (Ce + 1) and the arcs between Cw

and Ce +1 in D, see Figure 8. We recall that a cut in a finite graph G is a set of nodes such that,
when removed from G, there is no arc remaining. The set Cw is a cut in G. Let ∆ be a cut in G

of minimal size. We have |∆| 6 |Cw|. If |∆| < |Cw| then (C\Cw)∪∆ would be a consecutive cut

in D strictly smaller than C, which would contradict the fact that C is a minimal consecutive

cut. Therefore, we have |∆| = |Cw|.

An adapted version of a famous “minimax” theorem first proved by König (1931) states that we

can find |∆| node-disjoint arcs in G. Since |∆| = |Cw| = |Ce + 1|, these arcs define a one to one

mapping φ from Cw to Ce + 1. From φ, we construct a flow in C in the following way. Select

all the arcs of the form ((i, n) + k) → (φ(i, n) + k) for all (i, n) ∈ Cw and all k ∈ Z. These arcs

form a 1-periodic flow F in D of size |C|.

Let Cm be a minimal cut in D. Since F is formed by node-disjoint paths, Cm must contain at

least |F| nodes, |Cm| > |F| = |C|. We conclude that |Cm| = |C|.

This lemma is interesting by its own. In particular, it gives a proof of the minimax theorem

(which exists in many versions) for an infinite 1-periodic and recycled graph.

Corollary 4.8. The size of the minimal cut is equal to the size of the maximal flow in D.
Furthermore, there exists a maximal flow F in D which is 1-periodic.

4.2 Cuts and pebbles

Lemma 4.9. Let C be a finite consecutive cut. There is a regular execution e ∈ RE such that
C is a configuration of e.

Proof. Let C be a consecutive cut in D. We want to prove that it is possible to have A(t) = C

and A(t+1) = C +1 (note that C +1 = (C\Cw)∪ (Ce +1)). It is enough to prove that for each

node (i, n) in Ce + 1, there is no infinite path P terminating in (i, n) that does not intersect the

cut. But if such a path could be found, then the bi-infinite path P ∪ {(i, n + h), h ∈ N} would

not intersect C. It would contradict the fact that C is a cut.
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Figure 9: Two counter-examples.

The converse of Lemma 4.9 is not true: a configuration of a regular execution need not be a

consecutive cut. This is illustrated on Figure 9-(a). Also note that there are non-consecutive

cuts which are not configurations of a regular execution, as illustrated in the example of Figure

9-(b). In this example, the node (2, n + 2) belongs to C + 1 but cannot be computed using only

variables in C (as it depends on (3, n) for example). Therefore, the cut C can not belong to a

regular execution.

Lemma 4.10. A configuration of any execution e ∈ E is a finite cut in D. Conversely, let C be
a finite cut in D. There is an execution e ∈ E such that C is a configuration of e.

Proof. Let A(t) be the t-th configuration of some execution e belonging to E . All the configu-

rations of e are finite by definition. Therefore the total number of nodes that received a pebble
up to step t is finite.

Now, assume that A(t) is not a cut. By definition, there exists a bi-infinite path P which does

not have any node in A(t). According to rule (R3) of game M1, no node on P will receive a

pebble during the execution, after step t. Combining this and the fact that the total number of
nodes that received a pebble up to step t is finite, only a finite number of positive nodes on P
receive a pebble during the execution e. This contradicts the fact that e has to put pebbles on
all nodes.
Let us prove the converse result. Let C be a finite cut. Let e = {A(t), t ∈ N} be any regular

execution of game M1. Such executions exist (see Lemma 4.9). Let N be the set of positive

nodes (i, n) such that there exists an infinite path ending in (i, n) and which does not intersect

C. As C is a cut, N is finite. Let T = sup{t | (N ∪ C) ∩ A(t) 6= ∅}. Note that T is finite since

{A(t)} is regular and N is finite. We define ẽ = {Ã(t)} as follows:

Ã(t) =











⋃t
n=0 A(n) if t 6 T,

C if t = T + 1,

A(t − 1) if t > T + 1 .

Let us show that ẽ is an execution of M1. We have C ⊂
⋃T

n=0 A(n), therefore, it is possible

to set Ã(T + 1) = C. By definition of T , A(T + 1) does not intersect N , therefore, we can set

Ã(T + 2) = A(T + 1). Finally, ẽ contains all nodes in {A(t), t ∈ N} and therefore all positive

nodes.
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We are now ready to state the main result of this section which states that, within all executions
in E , regular executions are dominant for Problem MinPeb.

Theorem 4.11. Let us consider a recycled system of URE. We play the pebble game on its
associated dependence graph D under rules M1 and M2. We have

min
e∈RE

P(e) = min
e∈E

P(e) = min
C cut of D

|C| .

In words, there exists a regular execution which requires a minimal number of pebbles, this
number being equal to the size of a minimal cut.

Proof. It is a direct consequence of Lemmas 4.10, 4.9 and 4.7. First, note that all configurations
are cuts, according to Lemma 4.10. Let C be a consecutive cut of minimal size, which exists by
Lemma 4.7. By Lemma 4.9, C is a configuration of a regular execution.

Theorem 4.11 has several interesting corollaries. First, it allows one to focus on regular execu-
tions since no fancy irregular execution of the URE can be done with fewer pebbles. Then, it
provides a polynomial method to find an optimal execution as shown in § 4.3.

4.3 Complexity results for M1 and M2

Proposition 4.12. Let R = (V,E,Γ) be the reduced graph associated with a recycled system

of URE with non-negative delays. We set ΓA =
∑

e∈E Γ(e). For games M1 and M2, Problem

MinPeb can be solved using an algorithm having a complexity O
(

Γ2
A|V |2

)

.

If the system of URE has negative delays, it is possible to go back to non-negative delays (see

Remark 2.1) and apply Proposition 4.12 to the new system.

In order to prove Proposition 4.12, we are going to compute a maximal flow in D and then apply

Corollary 4.8. If we want to use the algorithm of Ford and Fulkerson [9] to compute a maximal

flow, we need first to restrict ourselves to a finite graph.
We call span of a cut the difference between the largest and the smallest of the numberings of
columns containing a node of the cut.

A slice of D of dimension n is defined as the subgraph of D having nodes {(i, k), i ∈ V, 0 6

k 6 n} ∪ {T,B} where T (Top) and B (Bottom) are two special nodes. There is an arc

T → (i, k), 0 6 k 6 n, if ∃(j, l), l < 0, such that there is an arc (j, l) → (i, k) in D. There is an

arc (i, k) → B, 0 6 k 6 n, if ∃(j, l), l > n, such that there is an arc (i, k) → (j, l) in D.

If a consecutive minimal cut spans over less than n columns, then D and a slice of dimension n

have the same minimal consecutive cut (the special nodes T and B are not allowed to belong

to the cut). So it is important to determine, or at least to bound, the span of a consecutive

minimal cut.

Lemma 4.13. If all the delays are non-negative, the span of a minimal consecutive cut is smaller

than the total sum of the delays in R, i.e. smaller than ΓA =
∑

e∈E Γ(e).

Proof. Let C be a minimal consecutive cut and let F be a maximal 1-periodic flow, see Corollary
4.8.
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The associated maximal 1-periodic flow, see Corollary 4.8, F is a set of paths in D. First, these

paths cover all the nodes in D. Indeed, by the 1-periodicity of F , if a node (i, n) is not in F ,

then the whole line (i, .) is not in F , but this means that the bi-infinite path {(i, n), n ∈ Z} can

be added to the flow F and this contradicts the maximality of F .

Let P1 be any path in F . It follows from the 1-periodicity of F that P1 is periodic. Let

i0, i1, · · · , il1 , i0, i1, . . . be the successive lines visited by the path P1. Let (i0, n) and (i0, n + k1)

be the consecutive nodes visited by the path P1 on line (i0, .). Using the 1-periodicity of F , the

total number of paths intersecting lines i0, i1, · · · , il1 in F is k1. It implies that the cardinal of

C over the lines i0, i1, · · · , il1 is exactly k1 (Corollary 4.8). Assume that the span of C on lines

i0, i1, · · · , il1 is strictly greater than k1. Then there exists a column, say n, not intersecting C

and such that on some of the lines {i0, i1, · · · , il1}, C is on the ‘right’ of column n and on some

others C is on the ‘left’ of column n. Let l be such that C is on the ‘right’ of n at line il and

on the ‘left’ at line il+1. There exists an arc of the type (il, n) → (il+1, n + h), h > 0 (the delays

n

il

il+1

are non-negative) in the flow F . Then the path {(il, n− u), (il+1, n + h + v), u, v ∈ N} does not

intersect the cut C, see the Figure 4.3. This is a contradiction. We conclude that the span of C
over the lines i0, i1, · · · , il1 is smaller than k1. By definition of R, there exists a circuit L1 in R

containing the nodes i0, i1, · · · , il1 and of total delay k1.

The path P1 and all its shifts are in the flow F and contain all the nodes in the lines i0, i1, · · · , il1 .

If i0, i1, · · · , il1 do not cover all the lines, a new path P2 in F not intersecting the lines i0, i1, · · · , il1
ranges over different lines, say il1+1, il1+2, · · · , · · · , il2 , and defines a circuit L2 in R similarly.

The span of C on the lines il1+1, · · · , il2 is smaller than k2, the total delay of circuit L2. We apply

the same argument until all lines in D are covered. This defines a set H of circuits partitioning
the nodes of R.

We build a new multi-graph G starting with R and where each circuit in H is merged into one

single node. The graph G has |H| nodes and the arcs of G correspond to the arcs of R which do

not belong to any circuit in H. Considering two nodes in G, say L1 and L2, the span of C over
lines i0, · · · , il2 can be choosen to be smaller than k1 + k2 + d, where d is the maximum delay on

all arcs between the nodes L1 and L2 in G. Overall, the cut C can be choosen to have a span
which is smaller than the sum of the delays on all the circuits in H plus the sum of the delays
on all the arcs in G . No delay is counted twice in this upper bound. Therefore, the total span
of C is smaller than the total sum of the delays in R.

Proof of Proposition 4.12. A slice of D of size ΓA has the same minimal consecutive cut as D
itself. The computation of the maximal flow in a finite slice can be done using the augmenting

path algorithm, see [9, 14]. Starting with a 1-periodic flow (the recycled lines) and maintaining

the 1-periodicity throughout the construction yields a maximal 1-periodic flow. The complexity

of this construction of the maximal flow is O(Γ2
A|V |2). By Corollary 4.8, it provides the size

of a minimal cut in D. Furthermore, a standard procedure provides a minimal consecutive cut
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starting from a maximal flow (with a complexity O(ΓA|V |)). Using Lemma 4.9, an execution of

game M2 (or M1) using a minimal number of pebbles, is obtained from the minimal consecutive
cut.

For the game M3, the problem MinPeb is solved by working on the reduced graph. A polynomial
algorithm is given in § 6.5.

5 Compatible Cuts and their Relation with M3

We introduce the notion of compatible cuts. It enables us to show Theorem 5.5, the main result
of the section, which is the analog of Theorem 4.11:

min
e∈ORE

P(e) = min {|C|, C compatible cut of D} .

Let us introduce some new definitions.

Definition 5.1 (crossings). We say that an arc crosses a section S = {(i, ni), i ∈ V } from

left to right if it is an arc of the form (i, ni − h) → (j, nj + l) with h > 0 and l > 1. An arc

(i, ni + l) → (j, nj − h) crosses S from right to left if l > 1 and h > 0.

Definition 5.2 (compatible section, compatible cut). A section in D is compatible if no

arc crosses the section from right to left. A consecutive cut is said to be compatible if its right
section is compatible.

Roughly speaking a compatible cut is a consecutive cut which agrees with the dependence
relations in the system of URE. Compatible cuts are connected to one-pass executions through
the next two lemmas.

Lemma 5.3. Let C be a compatible cut. There is a one-pass regular execution e ∈ ORE such
that C is a configuration of e.

Proof. Let C be a compatible cut. Since C is consecutive by definition, Lemma 4.9 tells us that

C is a configuration of a regular execution which can be written as e = {C + t, t ∈ N}. Suppose

that e is not one-pass. This means that there exists a node, say (j,m) which is computed twice

in e.
Let us assume that node (j,m) receives a pebble at step t0 and that this pebble is removed at

step t1, t1 > t0. By regularity of the execution e, node (j,m) will not be used at step t > t1 + 1.

Indeed, a node in C + t only depends on variables in C + t − 1 or ‘below’.

Now assume that node (j,m) is used at step t < t0 to compute another node, say (i, n). The

path (j,m) → (i, n) crosses the right section of C + t from right to left. Therefore it contains

an arc that crosses the right section of C + t from right to left. This contradicts the fact that C
is compatible.

Lemma 5.4. The configuration of a one-pass regular execution is a compatible cut.

Proof. Let e = {C + t, t ∈ N} be a one-pass regular execution. First, C is a cut by Lemma

4.10. Next, C is consecutive. Indeed, if C is not consecutive on line i, then each variable Xi(n)

receives a pebble at least twice in e, and a fortiori this means it is computed at least twice.
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It remains to show that C is compatible. Assume that C is not compatible. Then, there

exists a node (i, n) belonging to the right section of C + t, a positive integer k and a node

(j,m) ∈ (C + t + k)\(C + t) such that the arc (j,m) → (i, n) belongs to D. But this implies

that in the execution e, the computation of Xj(m) is performed twice: once as an auxiliary

computation at step t to compute Xi(n) and once at step t + k. This contradicts the fact that

e is one-pass.

Theorem 5.5. Let us consider a recycled system of URE. We play the pebble game on its
associated dependence graph D under rules M3. We have

min
e∈ORE

P(e) = min {|C|, C compatible cut of D} .

Proof. It is an immediate corollary of Lemmas 5.3 and 5.4.

Minimal compatible cutMinimal (non-compatible) cut

Figure 10: Non compatible and compatible cuts.

It can be that no minimal consecutive cut in D is compatible. This is the case in Figure 10
where the minimal compatible cut contains 5 nodes while there is a minimal consecutive cut of
size 4.
Therefore, rule M3 requires more memory in general than rule M2.

6 Delays in the Reduced Graph

In the previous sections, we have investigated the relations between executions of a system of
URE and cuts in the dependence graph. In this section, we connect these two notions with
values of the delays in the reduced graph.

Let us consider a system of URE S with variables {Xi(n), i ∈ V, n ∈ Z} and a regular execution

e = {A(t), t ∈ N} of the system. We introduce the modified system S̃ with variables {X̃i(n), i ∈

V, n ∈ Z} and the execution ẽ = {Ã(t), t ∈ N} defined as follows:

ci = max{n ∈ Z
− | (i, n) ∈ A(0)}

X̃i(n) = Xi(n + ci)

Ã(t) = {(i, n) s.t. (i, n + ci) ∈ A(t)}
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Figure 11: Retimed reduced graph and dependence graph.

The above definition is such that the right section of Ã(0) is S0 = {(i, 0), i ∈ V }. Viewed on

the dependence graphs, the passage from S to S̃ corresponds to a shift of the lines. Viewed on
the reduced graphs, it corresponds to a retiming, i.e. a modification of the value of the delays,
while preserving the graph topology.

We show (Lemma 6.6 and 6.7) that the total number of delays in R̃ is closely related to regular

executions. As a consequence, we obtain a polynomial algorithm to solve Problem MinPeb under
rule M3, see § 6.5.

6.1 Retiming

Definition 6.1 (retiming). Let R be the reduced graph of a system of URE. A retiming of R

is a node function r : V → Z which specifies a new graphe Rr, with the same nodes and arcs as

R. The value of the delay on an arc e = (i, j) in Rr is equal to Γr(e) = Γ(e) + r(i) − r(j).

The notion of retiming is classical in digital circuits (see [17] and § 7, where we provide a detailled

discussion of its usefulness in this context ) and in Petri nets, where it corresponds to the firing

of transitions (see § 8).

In the example of Figure 11, the new values of the delays correspond to a retiming r such that

r(1) = 1, r(2) = 1 and r(3) = 0.

Retiming may create negative delays as in Figure 11.

Lemma 6.2. Two retimings r and r′ yield the same value of the delays in a connected graph R

if and only if there exists a constant h ∈ Z such that ∀i ∈ V, r(i) = r′(i) + h.

Proof. First, if r(i) = r′(i)+h for all i ∈ V , then on any arc e = (i, j), Γr(e) = Γ(e)+r(i)−r(j) =

19



Γ(e)+r′(i)−r′(j) = Γr′(e). Conversely, if Γr′(e) = Γr(e), then r(i) = r′(i)+h and r(j) = r′(j)+h

for some h ∈ Z. As R is connected, the constant h is the same for all the nodes in V .

The question that arises now is what is the notion corresponding to retiming in the system of
URE S and in the dependence graph D? To answer this question, let us consider the graph
Dr associated with the retimed reduced graph Rr. This dependence graph can be constructed
directly from D by shifting the lines as described in Lemma 6.3.

Lemma 6.3. A retiming r in R corresponds to a transformation fr between D and Dr defined
by:

fr : D → Dr

(i, n) → (i, n − r(i))

The transformation fr is an isomorphism of graphs, meaning that there is an arc between u and

v in D iff there is one between fr(u) and fr(v) in Dr. It will also be called a retiming of D.

Proof. By definition of D, there is an arc from (i, n) to (j,m) in D if the delay in R on arc (i, j)

is γ = m − n. The delay in Rr on arc (i, j) is γr = γ + r(i) − r(j) = (m − r(j)) − (n − r(i)).

It implies that there is an arc between (i, n − r(i)) and (j, n − r(j)) in Dr. Therefore, fr is an

isomorphism between D and Dr.

We recall that the notion of section was introduced in Definition 4.4. We associate with a
retiming r in R, the section Sr = {(i, r(i)), i ∈ V } in D.

Lemmas 6.2 and 6.3 tell us that two retimings r and r′ are similar (in the sense that they yield

the same value of the delays) if and only if they are associated with two sections Sr and S′
r

with Sr = Sr′ + h, for some h ∈ Z. This relation enables us to define a parallelism relation

between sections in D as well as between retimings in R. We say that section Sr (resp. retiming

r) is equivalent to section Sr′ (resp. retiming r′) if Sr = Sr′ + h, for some h ∈ Z. In the

following, we will always consider one arbitrary section among the equivalence class and call it
the section associated with the retiming r, for instance S0 corresponds to the equivalence class

of {(i, 0), i ∈ V }.

6.2 Counting the delays

Given a graph R = (V,E,Γ), we define the total number of delays of R as follows

ΓA(R) =
∑

i∈V

∑

(j,γ)∈∆i

γ . (7)

It corresponds to the number of delays appearing in the graphical representation of the reduced
graph R as defined in § 2.2. See for example the graph R on Figure 12.

Given a graph R = (V,E,Γ), another quantity of interest is the following one

ΓB(R) =
∑

j∈V

max{γ | ∃i s.t. (j, γ) ∈ ∆i} . (8)

When the delays are positive (∀e ∈ E,Γ(e) > 0), ΓB corresponds to the total number of delays

(ΓA) in a modified reduced graph obtained by performing a forward splitting of the nodes. In
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the context of digital circuits, this is also called register sharing, see § 7.2. Here is, given under
the form of an algorithm, the formal construction of the Forward Splitting algorithm.

Algorithm 6.4 (Forward Splitting).

Input: Reduced graph R = (V,E,Γ) with Γ > 0, functions associated with the nodes: {Fi, i ∈

V }.

1. Set V ′ = V and E′ = ∅. Associated functions F ′
i = Fi, i ∈ V .

2. For all node v ∈ V , let δ be the maximum delay on all the output arcs of v.

• Set v0 = v.

• If δ > 0, create δ new nodes in V ′, called v1, · · · , vδ. Set F ′
vi

= Id, the

identity function, for i = 1, . . . , δ.

• For each arc e = (v, u) ∈ E with delay Γ(e) = γ, create an arc e′ = (vγ , u)

in E′ with delay Γ′(e′) = 0.

• Add the arcs (vi, vi+1), 0 6 i 6 δ − 1, in E′, with delay Γ′ = 1.

Output: Split reduced graph R′ = (V ′, E′,Γ′) with Γ′ > 0, functions associated with the nodes:

{F ′
i , i ∈ V }.

It is important to remark that the split graph R′ is not necessarily recycled, as opposed to R.
We come back to this point in § 6.4.
The following proposition, easy to prove, justifies the Forward Splitting operation.

Proposition 6.5. Let R be a reduced graph with positive delays and R′ the associated split
graph.

(i)- The associated systems of URE S and S ′ have the same behavior. More precisely, borrowing

the notations of the algorithm, we have

∀v ∈ V, n ∈ Z, X ′
v(n) = Xv(n) and ∀vi ∈ V ′ \ V, n ∈ Z, X ′

vi
(n) = Xv(n − i) .

(ii)- Furthermore, we have

ΓB(R) = ΓA(R′) = ΓB(R′) . (9)

Note that in order for Equation (9) to make sense, it is necessary to extend the definitions of

ΓA and ΓB to non-recycled graphs.

In Figure 12, R′ is the Forward Splitting of R. In the split graph, there are two “dummy”

nodes (associated with the identity function), represented by black dots. We have ΓA(R) = 8

and ΓB(R) = ΓA(R′) = ΓB(R′) = 5.
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Figure 12: A reduced graph and the associated split graph.

6.3 Delays, cuts and pebbles

Given a section S = {(i, ni), i ∈ V } in D, we define the cut C(S) in the following way.

C(S)
def
= {(i, n), i ∈ V, n 6 ni | ∃j ∈ V,m > nj , (i, n) → (j,m)} . (10)

The cut C(S) is consecutive and its right section is S. Furthermore, if any node is removed from

the left section of C(S), then it is not a cut anymore.

In a cut C, a node (i, n) ∈ C is redundant if C\{(i, n)} is a cut. Any consecutive cut C with no

redundant node on its left section is characterized by its right section S only. More precisely, it

verifies C = C(S).

We are now ready to state the relations between delays in R and consecutive cuts in D.

Lemma 6.6. (i)- The number of delays ΓB(R) is equal to the cardinal of C(S0). (ii)- Let r be

a retiming of R and Sr an associated section in D. Then the number of delays ΓB(Rr) is equal

to the cardinal of the cut C(Sr) in D (resp. C(S0) in Dr).

Proof. The isomorphism fr transforms the section Sr in D into the section S0 in Dr. Hence (ii)

is implied by (i). Let us work on graph D. We are going to prove that ΓB(R) = |C(S0)|. We

consider a node i of R. Let m = max{γ | ∃j, (i, γ) ∈ ∆j} (we have m > 1 as (i, 1) ∈ ∆i) and

let j be such that (i,m) ∈ ∆j . There is an arc in D from (i,−m) to (j, 0) and no arc from a

node on the ‘left’ of (i,−m) (and on line i) to a node on the ‘right’ of S0. Hence C(S0) contains

the nodes (i,−m+1), · · · , (i, 0) on line i. The same argument repeated on each line finishes the

proof.

We recall that the arcs crossing a section from right to left and from left to right are defined in
Definition 5.1.

Lemma 6.7. (i)- The number of delays ΓA(R) is equal to the number of arcs crossing S0 from

left to right minus the number of arcs crossing it from right to left. (ii)- Let r be a retiming of

R and Sr an associated section in D. The number of delays ΓA(Rr) is equal to the number of

arcs in D (resp. Dr) crossing section Sr (resp. S0) from left to right minus the number of arcs

crossing Sr (resp. S0) from right to left.
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Proof. For the same reason as in Lemma 6.6, it is enough to prove (i). Let (i, j) be an arc of R

with delay γ > 0. In D, this arc induces exactly γ arcs crossing S0 from left to right, the arcs:

(i,−γ + 1) → (j, 1) · · · (i,−1) → (j, γ − 1), (i, 0) → (j, γ) .

Similarly, an arc (i, j) with delay γ < 0 induces exactly −γ arcs crossing S0 from right to left:

(i, 1) → (j, γ + 1) · · · (i,−γ − 1) → (j,−1), (i,−γ) → (j, 0) .

The same argument applied to all the lines finishes the proof.

The notion of compatible cut introduced in Definition 5.2 has a very natural interpretation in
terms of delays.

Lemma 6.8. Let r be a retiming of R and Sr an associated section in D. The retimed reduced

graph Rr has only non-negative delays if and only if the cut C(Sr) is compatible in D (equiv.

the cut C(S0) is compatible in Dr).

Proof. If Rr has only non-negative delays, the argument used in the proof of Lemma 6.7 shows

that all the arcs crossing Sr in D, cross it from left to right. It implies that the cut C(Sr) is

compatible. The converse result is proved by contradiction, using again the proof of Lemma
6.7.

In Figure 13 (this example is the same as the one of Figure 10), we have represented the retimed

reduced graphs associated with two sections (cuts) of D. One of them is compatible and the

other one is not compatible.

6.4 Summary

In § 4.2, we have established the relations between executions of the pebble game and cuts in
the dependence graph. In § 6.3, we have established the relations between cuts and delays. As
a by-product, we obtain the relations between delays and pebble configurations.

More precisely, let e = {A(t), t ∈ N} be an execution such that A(t) is a consecutive and non-

redundant (see p. 22) cut for all t. Note that we did not assume that e is regular. With the

configurations A(t), we associate a retiming r(t) and a reduced graph Rr(t) as follows:

r(t)i = max{ni | (i, ni) ∈ A(t)} .

We have the following situations:

• If the execution e belongs to E , the configurations A(t) may have different shapes at each

step. Then, the reduced graphs Rr(t) may have changing values for the delays.

• For an execution e belonging to RE , the configurations are just shifted between two steps.
It implies that the reduced graphs Rr(t) are all identical, with a fixed value of the delays.

• Finally, an execution e belonging to ORE corresponds to identical reduced graphs Rr(t)

with fixed and non-negative values of the delays.
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Figure 13: Compatible and non compatible cuts, non-negative and negative delays.

In the following table, we provide a summary of the main relations established so far between
executions of a system of URE, cuts in D and delays in R.

Games Executions Cuts in D Delays in R
M1 execution in E arbitrary cut changing delays
M2 regular execution, RE consecutive cut fixed delays
M3 one-pass reg. exec., ORE compatible cut non-negative fixed delays

A general remark is that the main theoretical results, Theorems 4.11 and 5.5, apply only to
recycled graphs. Using them, we have been able to solve Problem MinPeb for an initial graph
which is recycled. However, the solution proposed involves the construction of an associated
graph, which is not recycled. It is not a problem as we do not need to apply Theorems 4.11 or
5.5 on this associated graph.

6.5 Complexity results for M3

Proposition 6.9. Let R = (V,E,Γ) be the reduced graph associated with a recycled system

of URE. Under game M3, Problem MinPeb can be solved using an algorithm of complexity

O(|E|2 log |V | + |V ||E| log2 |V |).

Proof. As detailed above, there is a one-to-one correspondence between minimal one-pass regular
executions and retimed reduced graphs with non-negative delays.
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In Leiserson and Saxe, § 8 of [17], an algorithm is given to solve the following problem: find a re-

timed reduced graph Rr with only non-negative delays and minimizing ΓB(Rr). It is a minimum-

cost flow algorithm; it provides an explicit solution and its complexity is O(|E|2 log |V | +

|V ||E| log2 |V |). Using Lemma 5.3 and 6.6, the cut C(Sr) is compatible and the execution

{C(Sr) + t, t ∈ N} is one-pass regular and solves Problem MinPeb under rules M3 according to

Theorem 5.5.

The algorithm of [17] was developed in the context of digital circuits, see § 7. An efficient

implementation of this algorithm can be found in Shenoy and Rudell [24].

7 Application 1 : Registers in Circuit Design

In this section we will show how the previous results relate to the problem of register mini-
mization in digital circuits. The interest of the relation is two-fold. First, algorithms developed
for digital circuits can be used to get optimal executions of a system of URE, see the previous
section. Second, we will show that the results proved so far enable to prove some new results
for recycled digital circuits, see Theorem 7.4 below.

7.1 Definition of a circuit

A digital circuit is constituted by functional gates, wires and registers. More precisely , (i)- a

functional element computes an output data from one or several input data. For example, in the

case of a logical circuit, the functional elements will be boolean logical gates (AND, OR,. . . );

(ii)- A wire between element i and element j enables to transfer the output data of i which

becomes an input data for j; (iii)- A register corresponds to a storage facility, or a memory cell

of finite size. If there are p registers between elements i and j, it enables to keep in memory the
last p values computed by the element i.

The model of the behavior of the system is the following. There is a global clock for the system.
Between two clock ticks, here are the operations taking place.

• Functional element : (1)- receive the input data from upstream registers or elements; (2)-

compute a new output data; (3)- send the output data to downstream registers or elements.

• Register : (1)- transmit the stored data downstream to another register or a functional

element; (2)- remove the stored data; (3)- receive and store a new data from upstream

from another register or a functional element.

Between two clock ticks, these operations are performed at all functional elements and registers.

Let Xi(n) be the n-th variable computed at element i. Since registers are finite size memory

cells, the variables Xi(n) can only take a finite number of values. The set of all these possible

values is denoted by W.

After n clock ticks, for each element i, the variables {Xi(m),m 6 n} have been computed. The

number of registers on a wire between i and j corresponds to the number of variables Xi(n− k)

which need to be still in the memory in order to carry on the computation of the variables

Xj(n + m),m > 0.

25



It follows from the previous description that a digital circuit can be viewed as the reduced graph
R of some system of URE. The functional elements of the circuit correspond to the nodes of R,
the wires to the arcs and the registers to the delays. The computation operation corresponding
to the functional element i is denoted by Fi to be consistent with previous notations. In the
remainder of the section, we will use indifferently the terminology of digital circuits and the one
of reduced graphs. We consider only constructive circuits, i.e. circuits whose associated URE is
constructive, and recycled circuits, i.e. circuits whose associated reduced graph is recycled.

The specificity of digital circuits (with respect to general reduced graphs) is that only non-

negative registers (delays) have a physical meaning.

In Figure 14, we have represented the flow of data between clock ticks in a digital circuit. The
graphical convention is consistent with the one of reduced graphs.
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i

i
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Xi(n)

Xi(n − 1)

Xi(n + 1)

Xi(n − 1)

Xi(n − 2) Xj(n − 1)

Xj(n + 1)

Xj(n)

Xi(n)

Figure 14: Digital circuit computing Xj(n) = Fj(Xi(n − 2), . . . ).

7.2 Minimizing the number of registers

We consider Problem MinReg which is classical in circuit design, see for instance Leiserson and

Saxe [17], § 8.

Problem 2 (MinReg). Given a recycled circuit, find a new circuit preserving the functional

behavior and having a minimal number of registers.

To make this statement precise, we have to define rigorously the functional behavior and the
number of registers of a circuit.

Let {Xi(n), i ∈ V, n ∈ Z} and {X̃i(n), i ∈ Ṽ , n ∈ Z} be the variables computed by the original

and the new circuits respectively. The preservation of the functional behavior means that we
have:

∀i ∈ V, ∃u ∈ Ṽ , ∃ci ∈ Z s.t. ∀n ∈ Z, Xi(n) = X̃u(n + ci) . (11)

Registers can be viewed as delays in a reduced graph and the number of registers of a circuit

R is the quantity ΓA(R) defined in Section § 6.2. Now, starting from a circuit R, we can

always perform the Forward Splitting algorithm 6.4 to obtain a circuit R′. As an illustration,

consider the example given in Figure 12. The Forward Splitting algorithm is called register

sharing in the context of circuits, see [17].
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The Problem MinReg is directly connected with the notions introduced in § 4 and § 5. It enables

us to propose some complements to the results of [17] for the special case of recycled circuits.

In [17], Leiserson and Saxe define a notion of retiming which is exactly the one of Definition

6.1. They restrict their attention to legal retimings, as they are the only ones to have a physical
meaning for circuits.

Definition 7.1. A retiming r is legal if Rr has only non-negative delays.

An example of legal retiming is given in Figure 15. If we perform register sharing on the original

circuit (Figure 15-a), we would obtain a circuit with six registers. After a legal retiming and

register sharing, we have only five registers (Figure 15-c).
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Figure 15: Reducing the number of registers using legal retiming and register sharing.

Leiserson and Saxe prove that retiming and register sharing preserve the functional behavior

of the circuit (this is also a direct consequence of Lemma 6.3 and Proposition 6.5). Then they

propose an algorithm to compute the optimal legal retiming and also the optimal legal retiming
when register sharing is allowed, see § 6.5.
However the question whether other circuit transformations can be used to get a circuit with
even fewer registers remains to be answered.

Let us consider the best possible retiming in the original circuit without restricting ourselves

to legal retimings. It corresponds to the choice of a minimal consecutive (but not necessarily
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compatible) cut in the associated dependence graph D, see § 6.4. In the corresponding reduced

graph, there may be some negative delays that cannot represent registers. However, it is possible
to perform some appropriate modifications to go back to positive delays. It is done by duplicating
some nodes in the circuit.

The Duplicate algorithm takes as input a graph R = (V,E,Γ) and produces a new graph

R′ = (V ′, E′,Γ′),Γ′ > 0. In the description to follow, we use the notion of delays on paths: if P

is an oriented path in R then the delay of P is the sum of all the delays on the arcs of P .

Algorithm 7.2 (Duplicate).

Input: Reduced graph R = (V,E,Γ), functions associated with the nodes: {Fi, i ∈ V }.

1. Set V ′ = V and E′ = ∅. Associated functions F ′
i = Fi, i ∈ V .

2. For each node v in V , let k(v) be the minimum delay of all paths in R starting

in v.

• Set v0 = v.

• If k(v) < 0, then create |k(v)| additional nodes in V ′, v1, · · · , v|k(v)|, with

associated functions, F ′
vi

= Fv.

3. For each arc (u, v) ∈ E with delay Γ(u, v) = γ, create in E′ all the arcs of

type (umax(0,j−γ), vj) with delay max(0, γ − j) for all 0 6 j 6 max(0, k(v)).

Output: reduced graph R′ = (V ′, E′,Γ′), Γ′ > 0. Associated functions {F ′
i , i ∈ V ′}.

For each node v ∈ V , k(v) is finite and is reached on a finite path since the constructivity of R

implies that all circuits in R have a strictly positive delay.

The following proposition justifies the use of the Duplicate algorithm.

Proposition 7.3. Let S and S ′ be the systems of URE associated with R and R′ respectively.

(i)- S and S′ have the same functional behavior. More precisely, borrowing the notations of the

Duplicate algorithm, we have

X ′
vj

(n) = Xv(n + j), ∀vj ∈ V ′,∀n ∈ Z ; (12)

(ii)- we have ΓB(R) = ΓB(R′).

Proof. The proof of (i) follows directly from the construction rules of R′. Consider (12), spe-

cialized to j = 0, we get X ′
v0

(n) = Xv(n). The original circuit is embedded in the new circuit.

As for (ii), note that all the arcs exiting a duplication node (of type vj, j > 0) have a zero delay.

As for the new arcs from the nodes of type v0, they all have delays smaller than or equal to the
delays of the arcs of the original graph. The original arcs are kept with their original delays

unchanged. We conclude that ΓB(R) = ΓB(R′).

It is important to remark that the reduced graph R′ (hence the associated system of URE)

obtained by duplication is not recycled anymore.
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We illustrate the algorithm Duplicate on an example. The circuit of Figure 16-a is obtained

from the one of Figure 15-a by performing a non-legal retiming. By applying the Duplicate

algorithm, we obtain the circuit of Figure 16-b, where node 1 has been duplicated into nodes 10

and 11.
Now, after performing register sharing, the resulting circuit has only 4 registers (see Figure 16-

c). The minimal number of registers we could get with only legal retimings and register sharing

was 5, see Figure 15-c.

We now state the general result.

Theorem 7.4. Let us consider a recycled digital circuit. When the functions computed at each
node are general, a circuit with the same functional behavior and a minimal number of registers

can be obtained by performing solely the three following operations (in this order):

1. General retiming; 2. Duplicate algorithm; 3. Forward Splitting algorithm (register shar-

ing).

Proof. Let us consider a recycled graph R = (V,E,Γ) (associated dependence graph D). We

realize the following operations: 1. Perform the optimal general retiming, to obtain a graph R1.
2. Apply the Duplicate algorithm to R1 to obtain the graph R2.

3. Transform the graph R2 into R3 by applying the Forward Splitting algorithm.

Let us detail the first operation. We find a minimal consecutive cut C of D (Proposition 4.12).

Let {(i, r(i)), i ∈ V } be the right section of C. We define the retimed graph R1 = Rr. Using

Lemma 6.6, ΓB(R1) is equal to the cardinal of C.
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The three operations preserve the functional behavior of the circuit, see Lemma 6.3, Propositions

6.5 and 7.3. Furthermore, as a consequence of Proposition 7.3 and Equation (9), we have

ΓB(R1) = ΓB(R2) = ΓA(R3). We conclude that ΓA(R3) = |C|. It remains to be proved that

there exists no other circuit, having the same functional behavior as R, and with fewer registers
than R3.

We consider R′ = (V ′, E′,Γ′) another circuit which has the same functional behavior as R. Let

D′ be the dependence graph associated with R′. The preservation of the functional behavior

implies that the set of nodes in D is included in the set of nodes in D′. The mapping of the

nodes of D onto D′ that preserves the functional behavior is denoted by φ. By definition,

Xi(n) = X ′
φ(i)(φ(n)), if the node (i, n) in D is mapped on the node (φ(i), φ(n)) = φ(i, n) in D′.

We consider a minimal cut C of D. In D′, we suppose that there exists a cut C ′ such that

|C ′| < |C|. We can assume that in D′, we have φ(C) on the ‘left’ of C ′ and φ(C + k) on the

‘right’ of C ′, by choosing k large enough.

We recall that W denotes the finite set of possible values for a variable Xi(n). In the dependence

graph D, there exists a flow (node-disjoint paths) from C to C + k of size |C| (Corollary 4.8). It

implies that there is a general dependence between the variables attached to C and the variables

attached to C + k, which can be put under the form of a general function F : W |C| → W |C|. In

particular, the functions Fi in Equation (2) can be chosen such that F is bijective. For example,

choose Fi(Xj(n − γ), . . . ) = Xj(n − γ) if the arc (j, n − γ) → (i, n) belongs to the flow. In this

case, the function F is merely a permutation of the coordinates.

Now let us consider the graph D′, using the existence of the cut C ′, the function F can be

decomposed as F : W |C| → W |C′| → W |C|. As W is finite, it contradicts the fact that F can be
bijective.

The smallest cut C ′ in D′ is at least as large as C. Finally, by using Lemma 6.6, we conclude

that ΓA(R′) > ΓB(R′) = |C ′| > |C| = ΓA(R3).

As recalled above, in Leiserson and Saxe [17], only legal retimings were considered. In Theorem

7.4, by considering all possible retimings, we were able to obtain a circuit with less registers,
and even a minimal number of registers. However, in doing so, we obtain a circuit with a pos-
sibly larger number of functional elements. Hence, the practical interest of Theorem 7.4 also
needs to be discussed in terms of the compared costs of functional elements and registers. In
fact, the number of functional elements is increased both by the Duplicate and by the Forward

Splitting algorithms. On the one hand, in the Forward Splitting case, only “dummy func-

tions” are added. In the context of circuits, they consist in simple wire connections and do not
perform any operation so that they should be very cheap to implement. On the other hand,
in the Duplicate case, the added elements are equivalent to some of the original functional

elements. Hence they could be more expensive to implement.

7.3 Summary and complexity

The transformations done to a circuit in order to obtain an equivalent circuit with the minimal
number of registers can be summarized by the following scheme.
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optimal forward

retiming duplicate splitting

R −→ R1 −→ R2 −→ R3

Γ(R1) ∈ Z
E1 Γ(R2) ∈ N

E2 Γ(R3) ∈ {0, 1}E3

ΓB(R1) minimal ΓB(R2) = ΓB(R1) ΓA(R3) = ΓB(R2)

Corollary 7.5. Let us consider a recycled digital circuit. A new circuit solving Problem MinReg

can be obtained with an algorithm of complexity O(ΓA(R)2|V |2 + |V |3).

Proof. In the proof of Theorem 7.4, the algorithms used to go from R to R1, from R1 to R2

and from R2 to R3 are all polynomial, and R3 is a solution to the Problem MinReg.

To obtain R1, we apply the algorithm of Proposition 4.12 whose complexity is O(Γ2
A|V |2). To

obtain R2, we apply the Duplicate algorithm 7.2, whose complexity is O(|V |3 + ΓA|E|). Let

us justify this complexity. The first step consists in computing the quantities k(u), u ∈ V . It

is equivalent to the search of a minimal weight path in a weighted graph. This can be done

using Floyd algorithm with a complexity O(|V |3), see for instance Gondran and Minoux [14],

Chapters 2 and 3. Let M = maxv∈V (0,−k(v)). From the constructiveness, it follows that M

has to be smaller than ΓA. Now, the second step of the algorithm consists in creating at most

M |V | nodes and M |E| arcs. The complexity of this step is at most O(ΓA|E|).

To obtain R2, we apply the Forward Splitting algorithm 6.4. In this algorithm, we create at

most ΓB nodes and |E| arcs, which accounts for a complexity O(ΓB + |E|).

Corollary 7.5 is interesting as it is not straightforward to extend the original algorithm of Leis-

erson and Saxe (for legal retimings, see § 6.5) to general retimings.

8 Application 2 : Task Graphs Evaluation

Task graphs are widely used in the modeling and analysis of parallel programs and architectures,

see [1]. Yet, the performance evaluation of task graphs is difficult in general.

The term task graphs covers a wide variety of models, with the following common feature:
each task depends on a finite number of tasks, and can be executed only when all the tasks it
depends on are completed. Here, we consider repetitive task graphs which are bi-infinite task

graphs generated by the periodic replication of a given finite task graph (with set of nodes V ),

see [3].

Let us denote by Xi(n), i ∈ V, n ∈ Z, the epoch when the n-th occurence of task i is completed.

Let the sets ∆i, i ∈ V, describe the dependences between tasks. The variables Xi(n) are given

by a recursion of the following form:

Xi(n) = max
(j,γ)∈∆i

(Xj(n − γ) + σj,i,γ(n)), i ∈ V, n ∈ Z, σj,i,γ(n) ∈ R . (13)

We will present the optimization problem which arises in the fast parallel computation of the
evolution equations of task graphs, and apply the preceding results to solve it.
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8.1 Max-Plus recurrences

The evolution equations (13) can be viewed as both a specialization and a generalization of a

system of URE. On the one hand, the functions have a specific form, implying only the operations
max and +. On the other hand, the functions depend on n. We call a “Max-Plus Recurrence”

(MPR), an equation of the form (13). From now on, we assume that the MPR is constructive

and recycled, i.e. that ∀i, (i, 1) ∈ ∆i. It is a natural assumption for task graphs as it means that

the n-th occurence of a task can not start before the completion of the (n − 1)-th occurence of

the same task.
The (max,+) formalism is a convenient tool to work with MPR. We briefly introduce it.

Definition 8.1. The (max,+) semiring Rmax is the set R ∪ {−∞}, equipped with the two oper-

ations max and +, denoted respectively by ⊕ and ⊗ (a⊕ b = max(a, b) and a⊗ b = a + b). The

elements −∞ and 0 are the neutral elements of the laws ⊕ and ⊗ respectively.

For matrices of appropriate sizes, we define (A⊕B)ij = Aij ⊕Bij = max(Aij , Bij), (A⊗B)ij =
⊕

l Ail ⊗ Blj = maxl(Ail + Blj), and for a scalar a, (a ⊗ A)ij = a ⊗ Aij = a + Aij . When no

confusion is possible, we abbreviate A ⊗ B to AB.

We can rewrite Equation (13) with the previously defined notations. Let X(n) be the column

vectors of coordinates Xi(n) and let A(γ, n) be the matrix with coordinates A(γ, n)ij = σj,i,γ(n)

if (j, γ) ∈ ∆i and A(γ, n)ij = −∞ otherwise. Now let U = {γ | ∃i, j s.t. (j, γ) ∈ ∆i} and

γ = maxU γ. We have

X(n) =
⊕

γ∈U

A(γ, n) ⊗ X(n − γ) . (14)

This is a linear system in the (max,+) semiring.

Representation of order one A standard step in the analysis of linear systems is the trans-

formation of a recurrence like (14) into an “equivalent” system of order 1, such as (15), where

X̃(n), X̃(n − 1) ∈ R
Ṽ
max and A(n − 1) ∈ R

Ṽ ×Ṽ
max .

X̃(n) = A(n − 1) ⊗ X̃(n − 1) . (15)

The system in Equation (15) is “equivalent” to the original one if it preserves the functional

behavior, meaning that ∀i ∈ V, ∃u ∈ Ṽ , ∃ci ∈ Z s.t. ∀n ∈ Z, Xi(n) = X̃u(n + ci). We say that

the system in (15) is an order one representation of the original one.

Assume that all the delays γ in (14) are greater or equal to 1. Then the transformation can be

done by setting

X̃i|V |+j(n) = Xj(n − i), i = 0, . . . , γ − 1, j ∈ V .

In this case, the dimension of the order 1 representation is |Ṽ | = |V |γ. We will see below

that an order 1 representation can be obtained without any assumption on the delays (except

constructivity).

We can now define the main problem to be addressed in this section:

Problem 3 (MinSize). Given a recycled MPR, find an equivalent MPR of order 1 and of

minimal dimension.
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For strictly positive delays, it follows from the discussion above that the minimal dimension is

at most equal to |V |γ. We will see that in general it is much lower. Problem MinSize is very

natural. A practical motivation for it is provided in next section.

Remark 8.2. In Problem MinSize, the optimality of the size of the representation should be
understood as the best possible that can be obtained without making assumptions on the value

of the numbers σi,j,γ(n). When these numbers are constant and known, this knowledge may be

exploited to obtain a minimal realization in the sense of linear system theory [20, 10], which is

normally smaller than ours. Finding a minimal realization is a difficult problem, and algorithms
are known only in very specific cases. A deeper investigation of the relations between the two
approaches is an interesting direction for further research.

8.2 Parallel evaluation of MPR

The evaluation of a MPR consists in computing all the variables X(n). We assume that we want

to perform this evaluation using a parallel machine. If we have an order 1 representation of the
system, a possible and efficient algorithm is the parallel prefix principle: as the multiplication of

matrices in (max,+) is associative, it is possible to divide the computation of A(n)⊗ · · · ⊗A(1)

into smaller products A(p) ⊗ · · · ⊗ A(q) which may be computed by different processors.

The number of operations required to compute the variables up to X(n) on a CREW-PRAM

machine with P processors is O(ℓ3(n/P +log(P ))), where ℓ is the size of the matrix of the linear

system. Since n and P are fixed parameters, the complexity is minimized by having an order 1
representation of the MPR of minimal dimension.

8.3 Reduced graphs

As for any system of URE, we can associate a reduced graph R = (V,E,Γ) to a given MPR. To

each node i ∈ V , we associate the sequences {σj,i,γ(n), n ∈ Z}, (j, γ) ∈ ∆i.

We will show that the solution to Problem MinSize is a matrix of dimension minr ΓB(Rr), r ∈

Z
V . This result seems to be new.

We transform any reduced graph by the following procedure. For each node in the reduced

graph, we create new (dummy) nodes and new arcs in a tree-like fashion, as in Figure 17, such

that each arc in the new reduced graph has a delay at most one. The added dummy nodes are

recycled (the recyclings are not shown on the figure).

More formally, the transformation can be done using the algorithm Forward Splitting-II

described below. We use the notation u• to denote the set of successor arcs of u. It is not
assumed that the delays are positive.

Algorithm 8.3 (Forward Splitting-II).

Input: Recycled reduced graph R = (V,E,Γ). Sequences {σj,i,γ(n), n ∈ Z}.

1. We set V ′ = V,E′ = ∅.

2. For all node u ∈ V , let δ(u) = maxa∈u• Γ(a). As the graph is recycled, we

have δ(u) > 1.

If δ(u) = 1 then u and u• remain unchanged.

If δ(u) > 1, then
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Figure 17: Forward Splitting-II of a reduced graph.

• in E′, set u0 = u and create δ(u)−1 recycled nodes u1, · · · , uδ(u)−1. Create

the arcs ai = (ui, ui+1) with delay Γ′(ai) = 1 for i = 0, . . . , δ(u) − 2. The

sequences associated with nodes ui, i > 0 are: {σ′
ui,ui+1,1(n), n ∈ Z} = 0.

• For each arc (u, v) in E with delay γ,

– if γ 6 1 then create in E′ the arc (u0, v0) with delay γ and sequence

{σ′
u0,v0,γ(n)} = {σu,v,γ(n)}

– else create in E′ the arc (uγ−1, v0) with delay 1 and sequence

{σ′
u0,vγ−1,1(n)} = {σu,v,γ(n)}

Output: Recycled reduced graph R′ = (V ′, E′,Γ′). Sequences {σ′
u,v,γ(n), n ∈ Z}.

The new reduced graph has a maximum delay per arc equal to 1.

Proposition 8.4. We use the notations defined in the above algorithm.

(i)- The reduced graph R′ has the same functional behavior as the original graph R:

X ′
ui

(n) = Xu(n − i),∀u ∈ V,∀n ∈ Z . (16)

(ii)- The number of nodes in R′ is |V ′| = ΓB(R).

Proof. Point (i) follows directly from the algorithm. Let us prove point (ii). Using the notations

of Algorithm 8.3, in the new reduced graph, we have δ(u) nodes (u0, u1, · · · , uδ(u)−1), for each

node u in R. The total number of node in R′ is
∑

u∈R δ(u) = ΓB(R).

Proposition 8.4 is already an improvement over the standard representation as we obtain an

order 1 MPR of dimension ΓB(R) instead of γ|V |. Another improvement consists in finding first

a retiming r of the graph such that ΓB(Rr) is minimized.

To fix the notations, let R = (V,E,Γ) be the original reduced graph and R1 = (V,E,Γ1) be a

retimed reduced graph minimizing ΓB. We perform the Forward Splitting-II algorithm on

R1 to get a new graph R̃ = (Ṽ , Ẽ, Γ̃) with all delays smaller or equal to one.

Some of the delays of Γ̃ might be negative. However, we prove that it is still possible to get an

order 1 representation of dimension |Ṽ | of the MPR associated with R̃. We denote by a• the

ending node of an arc a ∈ Ẽ.

34



Lemma 8.5. Let {X̃i(n), i ∈ Ṽ , n ∈ Z} be the variables associated with R̃. We have

X̃(n) = B(n) ⊗ X̃(n − 1), (17)

with Bij(n) = maxπ∈Πj,i

∑

a∈π∩Ẽ σa,Γ̃(a)(n− m(a, π)), where Πj,i is the set of all the paths from

j to i in R̃ with total delay equal to one and m(a, π) is the total delay on the path π from a• to

node i.

Proof. The first stage of the proof consists in showing that all paths ending in node i have a
total delay at least 1 provided they are long enough. Let π be a path ending in i. The length

(number of nodes) of π is denoted by l(π). Let h be the sum of the negative delays in R̃:

h =
∑

a∈Ẽ min(0, Γ̃(a)). Assume that l(π) > (−h + 2)|Ṽ |. Therefore, the path π must contain

at least −h + 2 cycles. By constructivity, each cycle has a total delay which is strictly positive.

The set of cycles contained in π is denoted C(π). Then,

Γ̃(π) =
∑

p∈π

Γ̃(p)

=
∑

p∈C(π)

Γ̃(p) +
∑

p∈π\C(π)

Γ̃(p) > |C(π)| + h > 2 .

All the paths in Πj,i have a length smaller than (−h + 2)|Ṽ |. Since the graph R̃ is finite, then

Πj,i is a finite set.

Now, the equation on variables X̃i(n) in R̃ can be written as

X̃i(n) = max
(j,γ)∈∆̃i

(X̃j(n − γ) + σ̃j,i,γ(n))

= max
(j,γ)∈∆̃i,γ=1

(X̃j(n − 1) + σ̃j,i,1(n)) ∨ max
(j,γ)∈∆̃i,γ60

(X̃j(n − γ) + σ̃j,i,γ(n))

In the latest equation, we replace all the variables X̃j(n− γ), γ 6 0, by their value until getting

only variables of the type X̃j(n − γ), γ = 1. By using the distributivity of + with respect to

max, we get Equation (17).

Using the results of the previous sections, and in particular Theorems 4.11 and 7.4 and Lemma
6.6, we obtain the following theorem.

Theorem 8.6. Given a recycled MPR, its associated MPR of order 1 and of minimal size

(Problem MinSize), has the same size as the minimal cut in the dependence graph of the MPR.

Proof. We provide a sketch of the proof, which is an adaptation of the one of Theorem 7.4. There,
we used in a critical way the existence of a finite set W of possible values for the variables in

a digital circuit. In a MPR, the variables take their value in R ∪ {∞}, but on the other end,

the function involved are all (max,+)-linear. Hence, we adapt the argument of Theorem 7.4 as

follows.
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We have to prove that a (max,+) linear function from R
|C| to R

|C| (|C| being the size of the

minimal cut in the dependence graph D) where the coefficients σijk(n) are arbitrary may not

be further reduced.
Let C = {(i1, n1), · · · , (i|C|, n|C|)} be a minimal cut in D and let {Xij (nj), j = 1, · · · , |C|} be

the corresponding set of variables. Now, choose an integer k large enough such that C and C +k

do not share any node. There exists |C| node-disjoint paths in D from C to C + k. Let FC be

the flow constituted by these paths. On each one of these paths, choose all the σ variables to
be equal to 0. On all the arcs between C and C + k which do not belong to those paths, set the

σ variable to be smaller than −maxj,k |Xij (nj) − Xik(nk)|. Let (il, nl + k) be the successor on

(C + k) of (ij , nj) following the flow FC . We have Xil(nl + k) = Xij (nj).

The set {Xij (nj + k), j = 1, · · · , |C|} is formed by independent variables for all k and cannot

be reduced. The corresponding matrices B(n) are permutation matrices (i.e. there exists a

permutation σ such that Bσ(j),j = 0 and Bij = −∞ for i 6= σ(j)). The remainder of the

argument follows Theorem 7.4.

8.4 Summary and complexity

A summary of the algorithm to find a solution to problem MinSize is given by the following
scheme.

reduced optimal forward

graph retiming splitting II Lemma 8.5
MPR −→ R −→ R1 −→ R2 −→ MPR’

order k Γ(R1) ∈ Z
E1 Γ(R2) 6 1 order 1

dim. |V | ΓB(R1) minimal |V2| = ΓB(R1) dim. |V2|

Corollary 8.7. Let us consider a recycled MPR. An order 1 representation solving Problem
MinSize can be obtained with an algorithm of polynomial complexity to obtain graph R2 and

pseudo-polynomial complexity to construct matrix B(n).

Proof. This is a sketch of the proof. Let R = (V,E,Γ). The graph R1 is obtained using the

algorithm of Proposition 4.12 whose complexity is O(ΓA(R)2|V |2). The graph R3 is obtained by

applying the Forward Splitting-II Algorithm. In this algorithm, we create at most ΓB(R2)

nodes and ΓB(R2) + |E| arcs. Its complexity is at most ΓB(R2) + |E|. The computation of

an element of matrix B(n) defined in Lemma 8.5 is NP-complete (reduction of knapsack with

multiplicities). However, it can be obtained with pseudo-polynomial complexity using dynamic

programming techniques (similar to knapsack).

Given an initial reduced graph R, Problem MinReg in § 7 and Problem MinSize in § 8 are solved

using the same graph R̃, which is the retimed graph of R minimizing ΓB. However, the exact
solutions of Problems MinReg and MinSize are obtained by performing two different type of

transformations on R̃, yielding two different graphs, say Rreg and Rsize.

In general Rreg does not provide a solution to Problem MinSize (it does not have a minimal

number of nodes) and Rsize does not provide a solution to Problem MinReg (it does not have a

minimal number of registers). To check this, consider for instance the graph of Figure 12 and
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apply the Forward Splitting-II algorithm to it. We conclude that the problems MinReg and

MinSize are different, although related.

8.5 Event graphs

Event Graphs, a subclass of Petri nets, are commonly used to model Discrete Event Systems,

see [2, 19]. The graphical formalism for Event Graphs is close but different from the one of

reduced graphs, see Figure 18.

2
2 1

0 1

2 3

1

4
1

3

4

1

2

(b)(a)

Figure 18: Transformation of a reduced graph (a) into a Petri net (b).

In the case of a Timed Recycled Event Graph, the dynamic can be represented by a Max-Plus

Recurrence like in (13) with σi,j,γ(n) = φi(n) + hi,j , φi(n) > 0, hi,j > 0. Since the variables

σi,j,γ(n) are not general, the MPR of order one given by Theorem 8.6 may not be minimal. For

example, the removal of implicit places may reduce the dimension of an order 1 representation.
Let us also mention that preliminary results on the Problem MinSize for Event Graphs were

proved in [4, 11, 13], precisely the existence of an order 1 representation of dimension ΓA(R)

(> ΓB(R)).

9 Conclusion and Perspectives

Let us summarize the main results obtained. We restricted our attention to recycled systems of
URE. We proved that the optimal solutions for Problem MinPeb are the same for games M1

and M2, Theorem 4.11. On the other hand, an optimal solution for game M3 may be strictly
bigger than one for the games M1 and M2, see the example of Figure 10.
There exists polynomial algorithms to solve Problem MinPeb for the games M1, M2 and M3,
see § 4.3 and § 6.5. These results have been applied to minimize the number of registers in a

digital circuit and to minimize the size of a (max,+) recurrence.

To complete the picture, it would be nice to extend all the previous results to the non-recycled
case. The key results which would make everything else easy to generalize are of two types.
Results related to cuts, see § 4.1, and results linking cuts and regular configurations, see § 4.2.

For example, is it possible to find a minimal cut which is consecutive (generalization of Lemma

4.7)? Can we find a minimal consecutive cut which is a regular configuration (generalization of

Lemma 4.9)? We are currently investigating these different issues.
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[5] P. Chretienne. Les Réseaux de Petri Temporisés. PhD thesis, Université Paris VI, Paris,
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A Appendix: Scheduling Problems

The problem of organizing efficient computations for URE on parallel computers has been consid-
ered by several authors. However, the investigations have often been oriented towards speeding
up the execution with no or little consideration for memory requirements. We quickly describe
the main results in this area as a way to put our approach in perspective.

A.1 Definition of a schedule

Assume that at time 0, the strictly negative variables Xi(n), n < 0, are known. Assume also

that each computation of a variable is done in one time unit.

Definition A.1 (schedule). We define a schedule as a set of instants {ti(n), i ∈ V, n ∈ N}

such that ti(n) > tj(n − γ) + 1 if (j, γ) ∈ ∆i (with the convention ti(n) = 0,∀i ∈ V,∀n < 0).

The instant ti(n) is necessarily larger than the length (number of arcs) of a longest path in D

from column -1 to (i, n). A schedule is said to be as soon as possible (‘asap’) if ti(n) is exactly

equal to the length of the longest path from column -1 to (i, n).

A first question that has been addressed is:

What is the number of processors required to carry out
a computation as soon as possible?

This number is often called the degree of parallelism of the URE. In general, the solution is given

by the size of the maximal anti-cliques (instead as the minimal cuts of the present paper) in the

dependence graph.

Once this question is settled and provided a sufficient number of processors is available (i.e.

larger than the degree of parallelism of the system), another problem is to characterize the

‘asap’ schedule. This is often called the basic scheduling problem. For the ‘asap’ schedule, it has

been proved, see [5, 6, 2], that:

∃N,∀n > N, ti(n) = λin + di(n) , (18)

where λi ∈ R
+ and di(n), n > N , is a periodic real function. The real maxi λi is called the

cycle time of the system. A schedule satisfying (18) is said to be linear. For systems of higher

dimension (i.e. when K = Z
p, p > 1, in Equation (1)), there are some partial results on how to

approximate the as soon as possible schedule using linear schedules, see [7, 8].

When the number of available processors is fixed and less than the degree of parallelism of

the URE, finding an optimal schedule (i.e. a schedule such that limn maxi ti(n)/n is minimal)

becomes NP-hard, see [15].

All the results mentioned above are more or less related to the problem of minimizing the
number of processors used. On the other hand, in this paper, we considered the dual problem:
how many memory locations are necessary to carry out the computation of an URE, the number
of processors being unlimited.
First, we should say that, in general, a computation ‘asap’ requires a lot of memory. It may
not even be bounded when the reduced graph R is connected but not strongly connected. This
makes the alternative of using a smaller memory size attractive. Second, the usual time-space
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trade-off tells us that some interesting results can be expected to arise when minimizing the
memory size.

We have shown in the previous sections how to obtain executions using a minimal memory size.
In general the schedules associated with these minimal-memory executions are not ‘asap’. A
natural question to ask is whether they are very far from the ‘asap’ execution or not.
For minimal-memory executions, the number of processors needed to carry out the computations
will in general be greater than the degree of parallelism. A second natural question is whether
it is very far from the degree of parallelism or not. These two questions are now investigated.

A.2 Number of processors and linearity of the schedule

In games M1,M2 and M3, rules (R2), (R2b) or (R2c) do not limit a priori the number of moves

of type (R3) which are feasible in one step. It corresponds to a computational model where the

number of processors available is not limited. However, one can notice a posteriori that the total
number of processors needed in the computation is bounded by the maximal number of pebbles

P(e) used during the execution e. Hence, the number of processors needed to implement an

execution solving Problem MinPeb is kept under control.

In mimimal-memory executions, in a single step, we have to compose several of the functions Fi

defining the URE to compute the new variables, see § 3.1.
To take into account the ‘cost’ of function composition, we give to each step a duration. We

assume that step t lasts l(t) units of time, where l(t) is the length of the longest path in D joining

a node of A(t − 1) to a node of A(t) and containing no other node in A(t − 1). Note that l(t)

is also the length of the longest chain of function compositions performed during step t. This is
consistent with the assumption that each function computation requires one unit of time. With
this convention, we can now define the schedule associated with a synchronous execution.

Definition A.2. Let e = {A(t), t ∈ N} be an execution of game M1 (or M2 or M3), and let

l(t), t ∈ N, be the time duration of step t. Then the schedule of e, {τi(n), i ∈ V, n ∈ N} is defined

by

τi(n) =
T

∑

t=0

l(t), where T = inf{t | (i, n) ∈ A(t)} .

One verifies easily that this is indeed a schedule according to Definition A.1. Let us justify
Definition A.2. Within one step, the computations are done in parallel. The duration of one step
is the one of the longest computation done in the step. After each step, there is a synchronization
barrier which makes the duration of the execution to be the sum of the durations of the steps.

One important point is that τi(n) denotes a time instant and not a step of the game. Indeed,

there might be a big difference between the time instant and the step at which nodes are

computed. Here is an illustration for game M1 (see also the discussion following Figure 4 in §

3.1). The initial pebbles remain untouched through the whole execution. An additional pebble

is used to mark successively all the positive nodes. In such a case, marking a node on column

n takes one step and Ω(n) units of time. Marking all the nodes up to column n requires Ω(n)

steps and Ω(n2) units of time. The schedule associated with this execution is quadratic.

We proved that minimal-memory executions can always be choosen to be regular, Section § 4.

It implies that all steps have a constant duration l(t) = l. Moreover, exactly one new variable is
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computed on each line of D at each step. It implies that the schedule is linear with cycle time
l. Therefore, the linear schedules are dominant for our problem. We conclude that the loss in
time efficiency, when compared with ‘asap’ executions, is kept under control.

Among regular executions, one-pass regular executions (game M3) are dominant in terms of

execution time, since they never “lose” time by computing the same variable twice. However,
as seen in Section § 6, they may require more memory than general regular executions.

To summarize, when compared with ‘asap’ executions, minimal-memory executions may lose a
bit in terms of numbers of processors needed and execution speed but may gain a lot in terms
of memory size. They provide new insights on the trade-offs between time and space in the
computation of a system of URE.

B Appendix: Sequential Executions

In Section § 3.1, we introduced different variants of pebble games. All these games allow si-
multaneous moves of the pebbles. Here is another one, defined by rule M4, which is close to

the ones defined in [21, 23]. Here, pebbles are put on the nodes one at a time when all direct

predecessors already have a pebble.

B.1 Definition of a sequential game

M4 : Sequential Execution Rules

• (R1) (initial position) A(0) ⊂ V × Z
−, A(0) ∩ (V × {0}) 6= ∅;

• (R2d) (playing rule) one step of the game consists in using rule (R3b) at most once followed

by any number of moves of type (R4);

• (R3b) (adding pebbles) a pebble can be put on an empty node if all the direct predecessors

of this node have a pebble;

• (R4) (removing pebbles) remove a pebble from a node.

Let us consider the example of Figure 19. It corresponds to the same URE as in Figure 4.

n n + 1

step t step t + 1 step t + 2

2

1

3

Figure 19: Sequential rule M4. Five pebbles are needed.

Here is a possible execution. At step 0, there are pebbles on the nodes (1, 0), (2, 0) and (3, 0),

so that (R1) is satisfied. After step t, suppose that there are three pebbles on the nodes
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(1, n), (2, n) and (3, n) respectively. At step t + 1, we can put a pebble on node (1, n + 1) since

all its predecessors (i, n) have a pebble (rule (R3b)). At step t + 2, we put a pebble on node

(2, n + 1). At step t + 3, we put a pebble on node (3, n + 1) and we remove the pebbles on

nodes (i, n) since they are not needed anymore (rule (R3b) then rule (R4) three times). Then,

we reiterate the previous three steps.
It is impossible to use fewer pebbles. The minimal number of pebbles required to compute the
graph under rule M4 is five, to be compared with the three pebbles needed under rules M1 or
M2.

As for the computational model of the game, M4 corresponds to performing sequential com-
putations. It is relevant if we want to model the computation of the URE using a sequential
computer which has a single processor and makes a single computation at each step. The re-
moval of pebbles being a “passive” operation, several such manipulations are allowed in a single

step (the data is not actually removed from the memory, it will just be overwritten the next

time this memory location is used).

In game M4, a single processor is used. Furthermore, any reasonable execution will compute

exactly one new node at each step. Hence, the associated schedule is linear with cycle time |V |.

Remark B.1. Game M4 can be adapted to be played on a finite binary tree (for more details,

see the proof of Proposition B.2). In this case, the minimal number of pebbles is known as the

Strahler’s number. This number appears in various fields ranging from hydrology and combina-

torics to molecular biology. For a nice survey paper, the reader is referred to Viennot [25].

B.2 Complexity results for M4

Under game M4, the problem of determining the minimal number of pebbles to compute a gen-

eral directed acyclic graph (Problem MinPeb-DAG) was proved to be NP-complete by Sethi [23].

We prove a similar result for the Problem MinPeb, by showing that an instance of MinPeb-DAG
can be embedded into an instance of MinPeb.

Proposition B.2. Let D be the dependence graph associated with a system of URE. Solving
Problem MinPeb for game M4 is NP-hard. For the subclass of recycled URE, the same problem
is still NP-hard.

Proof. First we need to define more precisely what is the pebble game M4 on a DAG. Let V
be the set of nodes of a DAG G. A configuration is a subset of V and an execution is a finite

sequence of configurations {AG(t), t = 0, . . . , L} (where L is the length of the execution). An

execution is successful if all the nodes V receive a pebble during the execution. Rules (R2d),

(R3b) and (R4) remain the same. Rule (R1) is modified as follows: (R1b) (initial and final

position) AG(0) = AG(L) = ∅.

Given a DAG G with set of nodes V , we construct a dependence graph D with set of nodes V ×Z

in the following way. If there is an arc between nodes i and j in G, then for all k ∈ Z, we put an

arc between nodes (i, k) and (j, k) and an arc between nodes (i, k) and (j, k + 1). We also add

the recycling arcs in D ((i, k) → (i, k + 1),∀i ∈ V,∀k ∈ Z). An example is given in Figure 20.

Starting from an execution of the pebble game on G, {AG(t), t = 0, . . . , L}, we construct an

execution of the pebble game on D, {A(t), t ∈ N}, as follows. The initial configuration is

A(0) = {(i, 0), i ∈ V }. When a pebble is added on node i in G, we add a pebble on node (i, 1)
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Figure 20: Embedding of an arbitrary DAG in a dependence graph.

in D. When a pebble is removed from node i in G, we remove a pebble from node (i, 0) in D. It

follows that at step L, we have A(L) = {(i, 1), i ∈ V }. Then, we complete the execution {A(t)}

by repeating the same steps periodically, i.e. A(t + kL) = A(t) + k,∀t, k ∈ N (see (6)). If the

execution in G uses p pebbles, the execution in D requires p + |V | pebbles.

Conversely, from an execution of the game on D, we construct an execution of the game on G

in the following way. By definition, we have A(0) ⊂ {V × Z
−}. We set AG(0) = ∅. When a

pebble is added on node (i, 1), a pebble is added on node i. When a pebble is removed from

node (i, 0), a pebble is removed from node i. If the execution in D uses P pebbles, the execution

in G requires less than P − |V | pebbles.

One can see that the above transformations map optimal executions into optimal executions

(optimal in the sense of Problems MinPeb and MinPeb-DAG). Hence, the minimal number of

pebbles needed in D is the minimal number of pebbles needed in G plus the number of nodes of

G. Therefore, the NP-completeness of the problem for DAG, Sethi [23], implies that the problem

for dependence graphs is at least NP-complete, i.e. NP-hard.

Proposition B.2 contrasts with the results proved for games M1, M2 and M3, for which a
minimal-memory execution was obtained in polynomial time, in the recycled case. See § 4.3

(games M1 and M2) and § 6.5 (game M3).

Remark B.3. Let us consider the dependence graph of Figure 20. The execution described in
the proof of Proposition B.2 solves Problem MinPeb with a number of pebbles which evolves
as: 5, 7, 6, 7, 6, 5, . . . . The number of pebbles used during an optimal execution is not always
constant. Hence, if we consider a non-connected URE, it is not true that the minimal number of
pebbles needed is equal to the sum of the minimal number of pebbles needed for each connected
component independently. This contrasts with the situation for games M1,M2 and M3, see §
2.4.
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