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Closed form solutions for symmetriwater �lling gamesEitan Altman∗ , Konstantin Avrahenkov† , Andrey Garnaev‡Thème COM � Systèmes ommuniantsProjets MAESTRORapport de reherhe n° 6254 � July 2007 � 23 pagesAbstrat: We study power ontrol in optimization and game frameworks. In the opti-mization framework there is a single deision maker who assigns network resoures and inthe game framework users share the network resoures aording to Nash equilibrium. Thesolution of these problems is based on so-alled water-�lling tehnique, whih in turn usesbisetion method for solution of non-linear equations for Lagrange multiplies. Here we pro-vide a losed form solution to the water-�lling problem, whih allows us to solve it in a �nitenumber of operations. Also, we produe a losed form solution for the Nash equilibrium insymmetri Gaussian interferene game with an arbitrary number of users. Even though thegame is symmetri, there is an intrinsi hierarhial struture indued by the quantity of theresoures available to the users. We use this hierarhial struture to perform a suessiveredution of the game. In addition, to its mathematial beauty, the expliit solution allowsone to study limiting ases when the rosstalk oe�ient is either small or large. We providean alternative simple proof of the onvergene of the Iterative Water Filling Algorithm. Fur-thermore, it turns out that the onvergene of Iterative Water Filling Algorithm slows downwhen the rosstalk oe�ient is large. Using the losed form solution, we an avoid thisproblem. Finally, we ompare the non-ooperative approah with the ooperative approahand show that the non-ooperative approah results in a more fair resoure distribution.Key-words: wireless networks, power ontrol, symmetri water-�lling game, Nash equi-librium, prie of anarhyThis work was supported by BioNets European projet and by joint RFBR and NNSF Grant no.06-01-39005.
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Solution analytique des jeux de water-�lling symétriquesRésumé : Nous étudions le ontr�le de puissane dans le adre de l'optimisation et danselui de la théorie des jeux. Dans le premier, il y a un seul agent qui assigne les ressouresdu réseau tandis que dans le deuxième, les utilisateurs se partagent les ressoures du réseauselon l'équilibre de Nash. La solution de es problèmes est basée sur la méthode du water-�lling. On alule des multipliateurs de Lagrange en utilisant une méthode de bisetionpour resoudre des équations non linéaires. Nous fournissons ii une solution analytique auproblème du water-�lling, qui nous permet de le résoudre en un nombre �ni d'opérations.En outre, nous produisons une solution analytique de l'équilibre de Nash dans le adre de lathéorie des jeux. Nous étudions un jeu symétrique en terme d'interférene ave un nombrearbitraire d'utilisateurs. Quoique le jeu soit symétrique, il y a une struture hiérarhiqueinduite par la quantité des ressoures disponibles pour les utilisateurs. Nous utilisonsette struture pour e�etuer une rédution suessive du jeu. En plus de son éléguenemathématique, la solution analytique permet d'étudier des as limites quand le oe�ientd'interférene est petit ou grand. Nous fournissons une preuve simple de la onvergenede l'algorithme itératif de water-�lling (l'algorithme de meilleur réponse). Il s'avère quela onvergene de l'agorithme est ralentie quand le oe�ient d'interférene est prohe del'unité. En utilisant la solution analytique, nous pouvons éviter e problème. Aussi, nousomparons l'approhe non oopérative à l'approhe oopérative et montrons que l'approhenon oopérative fournit une distribution des ressoures plus équitable.Mots-lés : réseaux sans �ls, ontr�le de puissane, jeu water-�lling symétrique, équilibrede Nash, oût de l'anarhie



Closed form solutions for symmetri water �lling games 31 IntrodutionIn wireless networks and DSL aess networks the total available power for signal transmis-sion has to be distributed among several resoures. In the ontext of wireless networks, theresoures may orrespond to frequeny bands (e.g. as in OFDM), or they may orrespondto apaity available at di�erent time slots. In the ontext of DSL aess networks, theresoures orrespond to available frequeny tones. This spetrum of problems an be on-sidered in either optimization senario or game senario. The optimization senario leadsto �Water Filling Optimization Problem� [3, 6, 14℄ and the game senario leads to �WaterFilling Game� or �Gaussian Interferene Game� [8, 11, 12, 15℄. In the optimization senario,one needs to maximize a onave funtion (Shannon apaity) subjet to power onstraints.The Lagrange multiplier orresponding to the power onstraint is determined by a non-linearequation. In the previous works [3, 6, 14℄, it was suggested to �nd the Lagrange multiplierby means of a bisetion algorithm, where omes the name �Water Filling Problem�. Herewe show that the Lagrange multiplier and hene the optimal solution of the water �llingproblem an be found in expliit form with a �nite number of operations. In the multiuserontext, one an view the problem in either ooperative or non-ooperative setting. If aentralized ontroller wants to maximize the sum of all users' rates, the ontroller will faea non-onvex optimization problem with many loal maxima [13℄. On the other hand, inthe non-ooperative setting, the power alloation problem beomes a game problem whereeah user pereives the signals of the other users as interferene and maximizes a onavefuntion of the noise to interferene ratio. A natural approah in the non-ooperative set-ting is the appliation of the Iterative Water Filling Algorithm (IWFA) [16℄. Reently, theauthors of [10℄ proved the onvergene of IWFA under fairly general onditions. In thepresent work we study the ase of symmetri water �lling game. There is an intrinsi hier-arhial struture indued by the quantity of the resoures available to the users. We usethis hierarhial struture to perform a suessive redution of the game, whih allows us to�nd Nash equilibrium in expliit form. In addition, to its mathematial beauty, the expliitsolution allows one to �nd the Nash equilibrium in water �lling game in a �nite numberof operations and to study limiting ases when the rosstalk oe�ient is either small orlarge. As a by-produt, we obtain an alternative simple proof of the onvergene of theIterative Water Filling Algorithm. Furthermore, it turns out that the onvergene of IWFAslows down when the rosstalk oe�ient is large. Using the losed form solution, we anavoid this problem. Finally, we ompare the non-ooperative approah with the oopera-tive approah and onlude that the ost of anarhy is small in the ase of small rosstalkoe�ients and that the the deentralized solution is better than the entralized one withrespet to fairness. Appliations that an mostly bene�t from deentralized non-ooperativepower ontrol are ad-ho and sensor networks with no prede�ned base stations [4, 9, 7℄. Aninterested reader an �nd more referenes on non-ooperative power ontrol in [2, 8℄. Wewould like to mention that the water �lling problem and jamming games with transmissionosts have been analyzed in [1℄.The paper is organized as follows: In Setion 2 we reall the single deision maker setup ofthe water �lling optimization problem and provide its expliit solution. Then in Setions 3-7RR n° 6254



4 Altman, Avrahenkov & Garnaevwe formulate multiuser symmetri water �lling game and haraterize its Nash equilibrium,also we give an alternative simple proof of the onvergene of the iterative water �llingalgorithm and suggest the expliit form of the users' strategy in the Nash equilibrium. InSetion 8 we on�rm our �nding with the help of numerial examples and ompare thedeentralized approah with the entralized one.2 Single deision makerFirst let us onsider the power alloation problem in the ase of a single deision maker. Thesingle deision maker (also alled �user� or �transmitter�) wants to send information using nindependent resoures so that to maximize the Shannon apaity. We further assume thatresoure i has a �weight� of πi.Possible interpretations:(i) The resoures may orrespond to apaity available at di�erent time slots; we assumethat there is a varying environment whose state hanges among a �nite set of states
i ∈ [1, n], aording to some ergodi stohasti proess with stationary distribution
{πi}

n
i=1. We assume that the user has perfet knowledge of the environment state atthe beginning of eah time slot.(ii) The resoures may orrespond to frequeny bands (e.g. as in OFDM) where one shouldassign di�erent power levels for di�erent sub-arriers [14℄. In that ase we may take

πi = 1/n for all i.The strategy of user is T = (T1, . . . , Tn) with∑n

i=1 πiTi = T̄ , Ti ≥ 0, πi > 0 for i ∈ [1, n]and T̄ > 0. As the payo� to user we take the Shannon apaity
v(T ) =

n
∑

i=1

πi ln
(

1 + Ti/N
0
i

)

,where N0
i > 0 is the noise level in the sub-arrier i.We would like to emphasize that this generalized desription of the water-�lling probleman be used for power alloation in time as well as power alloation in spae-frequeny.Following the standard water-�lling approah [3, 6, 14℄ we have the following result.Theorem 1 Let Ti(ω) =

[

1/ω − N0
i

]

+
for i ∈ [1, n] and HT (ω) =

∑n

i=1 πiTi(ω). Then
T (ω∗) = (T1(ω

∗), . . . , Tn(ω∗)) is the unique optimal strategy and its payo� is v(T (ω∗))where ω∗ is the unique root of the equation
H(ω) = T̄ . (1)In the previous studies of the water-�lling problems it was suggested to use numerial(e.g., bisetion) method to solve the equation (1). Here we propose an expliit form approahfor its solution. INRIA



Closed form solutions for symmetri water �lling games 5Without loss of generality we an assume that
1/N0

1 ≥ 1/N0
2 ≥ . . . ≥ 1/N0

n. (2)Then, sine H(·) is dereasing, we have the following result:Theorem 2 The solution of the water-�lling optimization problem is given by
T ∗

i =











(

T̄ +
k
∑

t=1

πt(N
0
t − N0

i )
)/(

k
∑

t=1

πt

)

, i ≤ k,

0, i > k,where k an be found from the following ondition:
ϕk < T̄ ≤ ϕk+1,where

ϕt =

t
∑

i=1

πi(N
0
t − N0

i ) for t ∈ [1, n].Thus, ontrary to the numerial (bisetion) approah, in order to �nd an optimal resourealloation we need to exeute only a �nite number of operations.3 Symmetri water �lling gameLet us now onsider a multi-user senario. Spei�ally, we onsider L users who try to sendinformation through n resoures so that to maximize their transmission rates. The strategyof user j is T j = (T j
1 , . . . , T j

n) subjet to
n
∑

i=1

πiT
j
i = T̄ j , (3)where T̄ j > 0 for j ∈ [1, L]. The element T j

i is the power level used by transmitter j whenthe environment is in state i. The payo� to user j is given as follows:
vj(T 1, . . . , T L) =

n
∑

i=1

πi ln

(

1 +
αj

iT
j
i

N0
i + gi

∑

k 6=j αk
i T k

i

)

,where N0
i is the noise level and gi ∈ (0, 1) and αj

i are fading hannel gains of user j when theenvironment is in state i. These payo�s orrespond to Shannon apaities. The onstraint(3) orresponds to the average power onsumption onstraint. This is an instane of theWater Filling or Gaussian Interferene Game [8, 11, 12, 15, 16℄. In the important partiularases of OFDM wireless network and DSL aess network, πi = 1/n, i = 1, ..., n.RR n° 6254



6 Altman, Avrahenkov & GarnaevWe will look for a Nash Equilibrium (NE) of this problem. The strategies T 1∗,. . . ,T L∗onstitute a NE, if for any strategies T 1,. . . ,T L the following inequalities hold:
v1(T 1, T 2∗, . . . , T L∗) ≤ v1(T 1∗, T 2∗ . . . , T L∗),

· · ·

vL(T 1∗, . . . , T (L−1)∗, T L) ≤ vL(T 1∗, . . . , T (L−1)∗, T L∗).For �nding NE of suh game usually the following numerial algorithm is applied. First, astrategy of L− 1 users (say, user 2,. . . , L) are �xed. Then, the best reply of user 1 is foundsolving the Water Filling optimization problem. Then, the best reply of user 2 on thesestrategies of the users is found solving the optimization problem and so on. It is possible toprove that under some assumption on fading hannel gains this sequene of the strategiesonverge to a NE [10℄.In this work we restrit ourselves to the ase of symmetri game with equal rosstalkoe�ients. This situation an for example orrespond to the senario when the usersare situated at about the same distane from the base station. Namely, we assume that
α1

i = . . . = αL
i and gi = g for i ∈ (0, 1). So, in our ase the payo�s to users are given asfollows

vj(T 1, . . . , T L) =

n
∑

i=1

πi ln

(

1 +
T j

i

N0
i + g

∑

k 6=j T k
i

)

,where N0
i = N0/αi, i ∈ [1, n] and without loss of generality we an assume that the hannelsare arranged in suh a way that the inequalities (2) hold. We would like to emphasize thatthe dependane of N0

i on i allows us to model an environment with varying transmissiononditions.For this problem we propose a new algorithm of �nding the NE. The algorithm is basedon losed form expressions and hene it requires only a �nite number of operations. Also,explaining this algorithm we will prove that the game has the unique NE under assumptionthat g ∈ (0, 1).Sine vj is onave on T j, the Kuhn-Tuker Theorem implies the following theorem.Theorem 3 (T 1∗, . . . , T L∗) is a Nash equilibrium if and only if there are non-negative ωj,
j ∈ [1, L] (Lagrange multipliers) suh that

∂

∂T j
i

vj(T 1∗, . . . , T L∗) =
1

T j∗
i + N0

i + g
∑

k 6=j

T k∗
i

{

= ωj for T j∗
i > 0,

≤ ωj for T j∗
i = 0.

(4)It is lear that all ωj are positive.The assumption that g < 1 is ruial for uniqueness of equilibrium as it is shown in thefollowing proposition. INRIA



Closed form solutions for symmetri water �lling games 7Proposition 1 For g = 1 the symmetri water �lling game has in�nite number (ontinuum)of Nash equilibria.Proof. Suppose that (T 1∗, . . . , T L∗) is a Nash equilibrium. Then, by Theorem 3, thereare non-negative ωj , j ∈ [1, L] suh that
1
/(

N0
i +

L
∑

k=1

T k∗
i

)

{

= ωj for T j∗
i > 0,

≤ ωj for T j∗
i = 0.Thus, ω1 = . . . = ωL = ω. So, T 1∗

i , . . . , T L∗
i , i ∈ [1, n] have to be any non-negative suhthat

L
∑

k=1

T k∗
i = πi[1/ω − N0

i ]+,and
n
∑

i=1

πiT
k∗
i = T̄ k for k ∈ [1, L],where ω is the unique positive root of the equation

n
∑

i=1

[1/ω − N0
i ]+ =

L
∑

k=1

T̄ k.It is lear that there are in�nite number of suh strategies. For example, if T a∗
i and T b∗

i ,
i ∈ [1, n] (a 6= b) is the one of them and T a∗

k , T b∗
k > 0 and T a∗

k , T b∗
m > for some k and m.Then, it is lear that the following strategies for any small enough positive ǫ are also optimal:

T̃ a∗
i =











T a∗
i for i 6= k, m,

T a∗
i + ǫ for i = k,

T a∗
i − ǫπk/πm for i = m,

T̃ b∗
i =











T b∗
i for i 6= k, m,

T b∗
i − ǫ for i = k,

T b∗
i + ǫπk/πm for i = m.This ompletes the proof of Proposition 1.4 A reursive approah to the symmetri water �llinggameLet ω1,. . . , ωL be some parameters whih in the future will at as Lagrangian multiplies. Us-ing these parameters we introdue some auxiliary notations. Assume that these parametersRR n° 6254



8 Altman, Avrahenkov & Garnaevare arranged as follows (this assumption does not redue the generality of our forthomingonlusions):
ω1 ≤ . . . ≤ ωL. (5)Also denote

ω̄ = (ω1, . . . , ωL).Introdue the following auxiliary sequene:
tr =

1

1 − g





1 + (r − 1)g

ωr
− g

r
∑

j=1

1

ωj



 for r ∈ [1, L].It is lear that by (5)
tr+1 =

1 + (r − 1)g

1 − g

(

1

ωr+1
−

1

ωr

)

+ tr ≤ tr.Thus,
tL ≤ tL−1 ≤ . . . ≤ t1,and

1

ωr+1
−

1

ωr
=

1 − g

1 + (r − 1)g
(tr+1 − tr). (6)Hene, for j ∈ [k + 1, L] we have:

1

ωk
−

1

ωj
=

j−1
∑

r=k

1 − g

1 + (r − 1)g
(tr − tr+1). (7)Then, sequenes {ωr} and {tr} has the following reurrent relations:

1

ω1
= t1,

1

ω2
= (1 − g)t2 + gt1,

1

ωr+1
=

1 − g

1 + (r − 1)g
tr+1 +

r
∑

j=2

(1 − g)g

(1 + (j − 1)g)(1 + (j − 2)g)
tj + t1,

(8)where r ≥ 1. If we know sequene {tr} we an restore sequene {ωr}. Thus, these twosequenes are equivalent.Introdue one more auxiliary sequene as follows:
τk
r =

1

1 − g





1 + (L − 1 − r + k)g

ωk
− g

L−r+k
∑

j=1

1

ωj



 ,

INRIA



Closed form solutions for symmetri water �lling games 9where r ∈ [k, L], k ∈ [1, L]. There is a simple relation between sequenes {ωk} and {tk} and
{τk

r }:
τk
L = tk, (9)and

τk
r =

1 + (L − 1 − r + k)g

1 − g

(

1

ωk
−

1

ωL−r+k

)

+ tL−r+k. (10)So, by (7), olleting terms whih depends on tk we obtain
τk
r = bk,rtk + Ak,r , (11)where

bk,r =
1 + (L − 1 − r + k)g

1 + (k − 1)g
,and

Ak,r = g

L−r+k−1
∑

j=k+1

1 + (L − 1 − r + k)g

(1 + (j − 1)g)(1 + jg)
tj −

g

(1 + (L − 2 − r + k)g
tL−r+k.Thus, Ak,r depends only on {tj} with j > k.Finally introdue the following notation:(a) for N0

i < tL

T k
i (ω̄) =

1

1 + (L − 1)g
(τk

k − N0
i ),(b) tL+k+1−r ≤ N0

i < tL+k−r where r ∈ [k + 1, L]

T k
i (ω̄) =

1

1 + (L − 1 − r + k)g
(τk

r − N0
i ),() for tk ≤ N0

i

T k
i (ω̄) = 0.For others ombinations of relations between ωj, j ∈ [1, L], T k

i are de�ned by symmetry.By Theorem 3 we have the following result.Theorem 4 Eah Nash equilibrium is of the form (T 1(ω̄), . . . , T L(ω̄)).The next lemma provides a nie relation between L and L−1 person games whih showsthat the introdution of a new user into the game leads to a bigger ompetition for thebetter quality hannels meanwhile users prefer to keep the old struture of their strategiesfor worse quality hannels.
RR n° 6254



10 Altman, Avrahenkov & GarnaevLemma 1 Let (T 1,L(ω1, . . . , ωL), . . . , T L,L(ω1, . . . , ωL)) given by Theorem 4 (here we addedthe seond super-sript index in the notation of the strategies in order to emphasize that thestrategies depend on the number of users). Then, we have
T k,L

i (ω1, . . . , ωL) =







τk
k − N0

i

1 + (L − 1)g
for N0

i < tL,

T k,L−1
i (ω1, . . . , ωL−1) for tL ≤ N0

i ,where k ∈ [1, L − 1] and
T L,L

i (ω1, . . . , ωL) =







tL − N0
i

1 + (L − 1)g
for N0

i < tL,

0 for tL ≤ N0
i .5 A water-�lling algorithmIn this setion we desribe a version of the water-�lling algorithm for �nding the NE andsupply a simple proof of its onvergene based on some monotoniity properties.Let

Hk(ω̄) =

n
∑

i=1

πiT
k
i (ω̄) for k ∈ [1, L].To �nd a NE we have to �nd ω̄ suh that

Hk(ω̄) = T̄ k for k ∈ [1, L]. (12)It is lear that Hk(ω̄) has the following properties, olleted in the next Lemma, whihfollow diretly from the expliit formulas of the NE.Lemma 2 (i) Hk(ω̄) is nonnegative and ontinuous, (ii) Hk(ω̄) is dereasing on ωk, (iii)
Hk(ω̄) → ∞ for ωk → 0, (iv) Hk(ω̄) = 0 for enough big ωk, say for ωk ≥ 1/N0

1 , (v) Hk(ω̄)is non-inreasing by ωj where j 6= k.This properties give a simple proof of the onvergene of the following iterative water�lling algorithm for �nding the NE.Let ωk
0 for all k ∈ [1, L] be suh that Hk(ω̄0) = 0, for example ωk

0 = 1/N0
1 . Let ωk

1 = ωk
0for all k ∈ [2, L] and de�ne ω1

1 suh that H1(ω̄1) = T̄ 1. Suh ω1
1 exists by Lemma 2(i)-(iii).Then, by Lemma 2(i),(v) Hk(ω̄0) = 0 for k ∈ [2, L]. Let ωk

2 = ωk
1 for all k 6= 2 and de�ne ω2

2suh that H2(ω̄2) = T̄ 2. Then, by Lemma 2(i),(v) Hk(ω̄0) = 0 for k > 2 and Hk(ω̄0) ≤ T̄ kfor k = 1 and so on. Let ωk
L = ωk

L−1 for all k 6= L and de�ne ωL
L suh that HL(ω̄L) = T̄ L.Then, by Lemma 2(i),(v) Hk(ω̄L) ≤ T̄ k for k 6= L and so on. So we have non-inreasingpositive sequene ωk. Thus, it onverges to an ω̄∗ whih produes a NE.

INRIA



Closed form solutions for symmetri water �lling games 116 Existene and uniqueness of the Nash equilibriumIn this setion we will prove existene and uniqueness of the Nash equilibrium for L personsymmetri water-�lling game. Our proof will have onstrutive harater whih allows us toprodue an e�etive algorithm for �nding the equilibrium strategies.First note that there is a monotonous dependene between the resoures the users anapply and Lagrange multipliers.Lemma 3 Let (T 1(ω̄), . . . , T L(ω̄)) be a Nash equilibrium. If
T̄ 1 ≥ . . . ≥ T̄ L (13)then (5) holds.Proof. The result immediately follows from the following monotoniity property impliedby expliit formulas of the Nash equilibrium, namely, if ωi < ωj then Hi(ω̄) > Hj(ω̄).Without loss of generality we an assume that (13) holds. Thus, by Lemma 3, (5) alsoholds.Let ω̄ be the positive solution of (12). Then, by Lemma 3, the relation (5) holds. To�nd ω̄ we have to solve the system of non-linear equations (12). It is quite bulky system andit looks hard to solve. We will not solve it diretly. What we will do we express ω1,. . .ωLby t1, . . . , tL, substitute these expression into (12). The transformed system will have atriangular form, namely

H̃L(tL) = T̄ L,

H̃L−1(tL−1, tL) = T̄ L−1,

· · ·

H̃1(t1, . . . , tL−1, tL) = T̄ 1.

(14)The last system, beause of monotoniity properties of H̃k on tk, an be easily solved. Nowwe an move on to onstrution of H̃L(tL), . . . , H̃1(t1, . . . , tL−1, tL). First we will onstrut
H̃L(tL) and �nd the optimal tL. Note that,

HL(ω̄) =
∑

N0
i
<tL

πiT
L
i (ω̄) =

=
1

1 + (L − 1)g

∑

N0
i
<tL

πi(τ
L
L − N0

i )

=
1

1 + (L − 1)g

∑

N0
i
<tL

πi(t
L − N0

i ) = H̃L(tL).It is lear that H̃L(·) is ontinuous in (0,∞), H̃L(τ) = 0 for τ ≤ N0
1 , H̃L(+∞) = +∞ and

H̃L(·) is stritly inreasing in (N0
1 ,∞). Then, there is the unique positive tL∗ suh that

H̃L(tL∗ ) = T̄ L. (15)RR n° 6254



12 Altman, Avrahenkov & GarnaevNow we move on to onstrution of H̃L−1(tL−1, tL) and �nding the optimal tL−1. Note that
τL−1
L = tL−1 and by (7) and (10), we have

τL−1
L−1 = τL−1

L +
g

1 − g

(

1

ωL−1
−

1

ωL

)

= tL−1 +
g

1 + (L − 2)g
(tL−1 − tL)

=
1 + (L − 1)g

1 + (L − 2)g
tL−1 −

g

1 + (L − 2)g
tL.Thus,

HL−1(ω̄) =
∑

N0
i
<tL

πiT
L−1
i (ω̄) +

∑

tL≤N0
i
<tL−1

πiT
L−1
i (ω̄) =

=
1

1 + (L − 1)g

∑

N0
i
<tL

πi(τ
L−1
L−1 − N0

i ) +
1

1 + (L − 2)g

∑

tL≤N0
i
<tL−1

πi(τ
L−1
L − N0

i )

=
1

1 + (L − 1)g

∑

N0
i
<tL

πi

(1 + (L − 1)g

1 + (L − 2)g
tL−1 −

g

1 + (L − 2)g
tL − N0

i

)

+
1

1 + (L − 2)g

∑

tL≤N0
i
<tL−1

πi(t
L−1 − N0

i )

= H̃L−1(tL−1, tL).It is lear that H̃L−1(·, tL∗ ) is ontinuous and inreasing in (tL∗ ,∞), H̃L−1(∞, tL∗ ) = +∞ and
H̃L−1(tL∗ , tL∗ ) = H̃L(tL∗ ) = T̄ L ≤ ¯T L−1. So, there is the unique positive tL−1

∗ suh that
H̃L−1(tL−1

∗ , tL∗ ) = T̄ L. (16)Next we onstrut H̃k(tk, . . . , tL−1, tL) and �nd the optimal tk where k ∈ [1, L− 2]. By (9)and (9), we have
Hk(ω̄) =

∑

N0
i
<tL

πiT
k
i +

L
∑

r=k+1

∑

tL+k+1−r≤N0
i
<tL+k−r

πiT
k
i

=
1

1 + (L − 1)g

∑

N0
i

<tL

πi(τ
k
L − N0

i ) +

L
∑

r=k+1

∑

tL+k+1−r≤N0
i
<tL+k−r

πi(τ
k
r − N0

i )

1 + (L − 1 − r + k)g

=
1

1 + (L − 1)g

∑

N0
i

<tL

πi(b
k,ktk + Ak,k − N0

i )

+

L
∑

r=k+1

∑

tL+k+1−r≤N0
i
<tL+k−r

πi(b
k,rtk + Ak,r − N0

i )

1 + (L − 1 − r + k)g

= H̃k(tk, tk+1, . . . , tL). INRIA



Closed form solutions for symmetri water �lling games 13It is lear that H̃k(·, tk+1
∗ , . . . , tL∗ ) is ontinuous and inreasing in (tk+1

∗ ,∞), H̃k(∞, tk+1
∗ , . . . , tL∗ ) =

+∞ and by Lemma 1 H̃k(tk+1
∗ , tk+1

∗ , . . . , tL∗ ) = H̃k+1(tk+1
∗ , . . . , tL∗ ) = T̄ k+1 ≤ T̄ k. So, thereis the unique positive tk∗ suh that̃

Hk(tk∗ , t
k+1
∗ , . . . , tL∗ ) = T̄ k. (17)Thus, we have proved the following result:Lemma 4 Solution of the system (12) is equivalent to solution of the triangular system(14). This system has the unique solution whih an be found sequentially from tL down to

t1, applying either the bisetion method or the expliit sheme suggested in Setion II. Theoptimal Lagrangian multipliers an be reonstruted from {tr} by (8).Finally we also have the following result:Theorem 5 The symmetri water �lling game has the unique Nash equilibrium (T 1(ω̄∗), . . . , T
L(ω̄∗)),where ω̄∗ is given by Lemma 4.Note that although the payo�s have symmetri form, the equilibrium strategies, beauseof triangular form of system (14), have hierarhial struture indued by di�erene in powerlevels available to the users. Namely, the user who has to transmit with smaller averagepower onsumption, in our ase it is user L, ats �rst. He assigns his optimal strategiesas if there is no other users at all but taking into aount the total number of users andfading hannels gains. Then, the turn to at is given to user L − 1. He takes into aountonly the behavior of the user L with smaller average power onsumption than he has, thetotal number of users and fading hannels gains and so on. The last user who onstrutsthe equilibrium strategy is user 1 with the largest available power resoure.7 Closed form solution for L person gameIn this setion for the ase of L users we show how Theorem 5 and Lemma 4 an be used toonstrut NE in losed form.Assume that T̄ 1 > . . . > T̄ L. We will onstrut the optimal strategies T L∗, . . . , T 1∗sequentially.Step for onstrution of T L∗. Sine H̃L(·) is stritly inreasing we an �nd an integer

kL suh that
H̃L(N0

kL) < T̄ L ≤ H̃L(N0
kL+1).or from the following equivalent onditions:

ϕL
kL < T̄ L ≤ ϕL

kL+1,where
ϕL

k =
1

1 + (L − 1)g

k
∑

i=1

πi(N
0
k − N0

i ),RR n° 6254



14 Altman, Avrahenkov & Garnaevfor k ≤ n, and ϕL
n+1 = ∞. Then, sine H̃L(tL∗ ) = T̄ L, we have that

tL∗ =
(1 + (L − 1)g)T̄ L +

∑kL

i=1 πiN
0
i

∑kL

i=1 πi

.Thus, the optimal strategy of user L is given as follows
T L∗

i =

{ 1
1 + (L − 1)g

(tL∗ − N0
i ) if i ∈ [1, kL],

0 if i ∈ [kL + 1, n].Step for onstrution of T (L−1)∗. Sine tL−1
∗ is the root of the equation H̃L−1(·, tL∗ ) =

T̄ L−1 there is kL−1 suh that kL−1 ≥ kL and N0
kL−1+1 ≥ tL−1

∗ > N0
kL−1 . Thus,

tL−1
∗ =

(

T̄ L−1 +
1

1 + (L − 2)g

kL−1

∑

i=kL+1

πiN
0
i

+
1

1 + (L − 1)g

kL

∑

i=1

πi(
gt∗L

1 + (L − 2)g
+ N0

i )
)

/( 1

1 + (L − 2)g

kL−1

∑

i=1

πi

)

.Here and bellow we assume that∑y

x 1 = 0 for y < x. So, kL−1 ≥ kL an be found as follows:(i) kL−1 = kL if T̄ L−1 ≤ ϕL−1
kL−1+1,(ii) otherwise kL−1 is given by the ondition:

ϕL−1
kL−1 < T̄ L−1 ≤ ϕL−1

kL−1+1
,where

ϕL−1
k =

k
∑

i=kL+1

πi

1 + (L − 2)g
(N0

k − N0
i )

+

kL

∑

i=1

πi

1 + (L − 1)g

×

(

1 + (L − 1)g

1 + (L − 2)g
N0

k − N0
i −

g

1 + g
tL−1
∗

)

,for k ∈ [kL−1 + 1, n] and ϕL−1
n+1 = ∞.

INRIA



Closed form solutions for symmetri water �lling games 15Thus, the optimal strategy T (L−1)∗ of user L − 1 is given by
T

(L−1)∗
i =







































tL−1
∗

1 + (L − 2)g

−

g

1 + g
tL∗ + N0

i

1 + (L − 1)g
, i ∈ [1, kL],

1
1 + (L − 2)g

(tL−1
∗ − N0

i ), i ∈ [kL + 1, kL−1],

0, i ∈ [kL−1 + 1, n].Step for onstrution of T M∗ where M < L. We have already onstruted T L∗, . . . ,
T (M+1)∗ and now we are going to onstrut T M∗. Sine tM∗ is the root of the equation
H̃M (·, tM+1

∗ , . . . , tL∗ ) = T̄ M there is kM suh that kM ≥ kM+1 and N0
kM+1 ≥ tM∗ > N0

kM .Thus,
tM∗ =

(

T̄ M +
1

1 + (L − 1)g

kM
∑

i=1

πi(A
k,k − N0

i )

+

L
∑

r=M+1

kp−1

∑

i=kp+1

πi(A
p,r − N0

i )

1 + (L − 1 − r + p)g
)

/( 1

1 + (M − 1)g

kM

∑

i=1

πi

)

.So, kM ≥ kM+1 an be found as follows:(i) kM = kM+1 if T̄ M ≤ ϕM
kM +1,(ii) otherwise kM is given by the ondition:

ϕM
kM < T̄ M ≤ ϕM

kM +1where
ϕM

k =
1

1 + (L − 1)g

k
∑

i=1

πi(b
k,kN0

k + Ak,k − N0
i )

+

L
∑

r=M+1

kp−1

∑

i=kp+1

πi(b
p,rN0

k + Ap,r − N0
i )

1 + (L − 1 − r + p)g
.

RR n° 6254



16 Altman, Avrahenkov & GarnaevThus, the optimal strategy of user L is given as follows
T M∗

i =































τM
M − N0

i

1 + (L − 1)g
, i ∈ [1, kL],

τM
r − N0

i

1 + (L − 1 − r + M)g
, i ∈ [kr + 1, kr−1],

r ∈ [M + 1, L]

0, i ∈ [kM + 1, n].In partiular for two and three person games (L = 2 and L = 3) we have the followingresults.Theorem 6 Let T̄1 > T̄2. Then, the Nash equilibrium strategies are given by
T 1∗

i =















t1∗ −
gt2∗ + N0

i
1 + g if i ∈ [1, k2],

t1∗ − N0
i if i ∈ [k2 + 1, k1],

0 if i ∈ [k1 + 1, n],

T 2∗
i =

{

1
1 + g (t2∗ − N0

i ) if i ∈ [1, k2],

0 if i ∈ [k2 + 1, n],where(a) k2, t2∗ are given by
t2∗ =

(1 + g)T̄ 2 +
∑k2

i=1 πiN
0
i

∑k2

i=1 πi

,

k2 an be found from the ondition
ϕ2

k2 < T̄ 2 ≤ ϕ2
k2+1,where

ϕ2
k =

1

1 + g

k
∑

i=1

πi(N
0
k − N0

i ),for k ≤ n, and ϕ2
n+1 = ∞,(b) k1 and t1∗ are given by

t1∗ =

T̄ 1 +

k1

∑

i=k2+1

πiN
0
i +

1

1 + g

k2

∑

i=1

πi(gt∗2 + N0
i )

k1

∑

i=1

πi

,

k1 ≥ k2 an be found as follows: INRIA



Closed form solutions for symmetri water �lling games 17(i) k1 = k2 if T̄ 1 ≤ ϕ1
k2+1(ii) otherwise k1 is given by the ondition:

ϕ1
k1 < T̄ 1 ≤ ϕ1

k1+1,where
ϕ1

k =
k
∑

i=k2+1

πi(N
0
k − N0

i )

+
1

1 + g

k2

∑

i=1

πi

(

(1 + g)N0
k − N0

i − gt2∗
)for k ∈ [k2 + 1, n], and ϕ1

n+1 = ∞.Theorem 7 Let T̄1 > T̄2 > T̄3. Then, the Nash equilibrium strategies are given by
T 1∗

i =



































t1∗ −
gt2∗

1 + g −

gt3∗
1 + g

+ N0
i

1 + 2g if i ∈ [1, k3],

t1∗ −
gt2∗ + N0

i
1 + g if i ∈ [k3 + 1, k2],

t1∗ − N0
i if i ∈ [k2 + 1, k1],

0 if i ∈ [k1 + 1, n],

T 2∗
i =























t2∗
1 + g −

g

1 + g
t3∗ + N0

i

1 + 2g if i ∈ [1, k3],

1
1 + g (t2∗ − N0

i ) if i ∈ [k3 + 1, k2],

0 if i ∈ [k2 + 1, n],

T 3∗
i =

{

1
1 + 2g (t3∗ − N0

i ) if i ∈ [1, k3],

0 if i ∈ [k3 + 1, n],where(a) k3, t3∗ are given by
t3∗ = ((1 + 2g)T̄ 3 +

k3
∑

i=1

πiN
0
i )/(

k3
∑

i=1

πi),

ϕ3
k3 < T̄ 3 ≤ ϕ3

k3+1,and
ϕ3

k =
1

1 + 2g

k
∑

i=1

πi(N
0
k − N0

i ),RR n° 6254



18 Altman, Avrahenkov & Garnaevfor k ≤ n, and ϕ3
n+1 = ∞,(b) k2, t2∗ are given by

t2∗ =
(

T̄ 2 +
1

1 + g

k2

∑

i=k3+1

πiN
0
i +

1

1 + 2g

k3

∑

i=1

πi(
gt3∗

1 + g
+ N0

i )
)/( 1

1 + g

k2

∑

i=1

πi

)

,(i) k2 = k3 if T̄ 2 ≤ ϕ2
k3+1,(ii) otherwise k2 is given by the ondition:

ϕ2
k2 < T̄ 2 ≤ ϕ2

k2+1and
ϕ2

k =

k
∑

i=k3+1

πi

1 + g
(N0

k − N0
i ) +

k3

∑

i=1

πi

(

1

1 + g
N0

k −
N0

i + gt3∗/(1 + g)

1 + 2g

)

.for k ∈ [k3 + 1, n] and ϕ2
n+1 = ∞() k1, t1∗ are given by

t1∗ =
(

T̄ 1 +
k1

∑

i=k2+1

πiN
0
i +

k2

∑

i=k3+1

πi

gt2∗ + N0
i

1 + g
+

k3

∑

i=1

πi

( gt2∗
1 + g

+

gt3∗
1 + g

+ N0
i

1 + 2g

))/

k1

∑

i=1

πi.So, k1 ≥ k2 an be found as follows:(i) k1 = k2 if T̄ 1 ≤ ϕ1
k2+1,(ii) otherwise k1 is given by the ondition:

ϕ1
k1 < T̄ 1 ≤ ϕ1

k1+1where
ϕ1

k =
k
∑

i=k2+1

πi(N
0
k − N0

i ) +
k2

∑

i=k3+1

πi

(

N0
k −

gt2∗ + N0
i

1 + g

)

+
k3

∑

i=1

πi

(

N0
k −

gt2∗
1 + g

−

gt3∗
1 + g

+ N0
i

1 + 2g

)

.8 Numerial examplesLet us demonstrate the losed form approah by numerial examples. Take n = 5, N0
i =

κi−1, κ = 1.7, πi = 1/5 for i ∈ [1, 5]. We onsider the ases 1, 2 and 3 users senari.Single user senario. Let T̄ = 5. Then, by Theorem 2 as the �rst step we alulate ϕtfor t ∈ [1, 5]. In our ase we get (0, 0.14, 0.616, 1.8298, 4.58108). Thus, we have k = 5 andthe optimal water-�lling strategy is T ∗ = (7.771, 7.071, 5.881, 3.858, 0.419) with payo� 1.11.INRIA



Closed form solutions for symmetri water �lling games 19Two users senario. Let also g = 0.9, T̄ 1 = 5, T̄ 2 = 1. Then, by Theorem 6 as the�rst step we alulate ϕ2
t for t ∈ [1, 5]. In our ase we get (0, 0.074, 0.324, 0.963, 2.411).Thus, k2 = 4 and t2∗ = 5.001. Then we alulate ϕ1

t for t = 5. In our ase we get 6.994052.Thus, k1 = 4 and t1∗ = 0.010. Therefore, we have the following equilibrium strategies
T 1∗ = (7.106, 6.737, 6.111, 5.046, 0) and T 2∗ = (2.106, 1.737, 1, 111, 0.0462, 0) with payo�s0.801 and 0.116, respetively.Three users senario. Let us introdue the third player with the average power onstraint
T̄ 3 = 0.5. Then, by Theorem 7 we an �nd that T 1∗ = (6.419, 6.169, 5.744, 4.900, 1.769),
T 2∗ = (1.861, 1.611, 1.186, 0.342, 0) and T 3∗ = (1.142, 0.892, 0.467, 0, 0) are equilibriumstrategies with payo�s 0.728, 0.113 and 0.055, respetively.The equilibrium strategies of all three ases are shown in Figure 1. When a new useromes into ompetition, it leads to a bigger rivalry for using good quality hannels and itresults in the situation when bad quality hannels turn out to beome more attrative forusers than they were when there were smaller number of users.

Figure 1: Optimal strategies for 1, 2 and 3 user gamesWe have run IWFA, whih produed the same values for the optimal strategies andpayo�s. However, we have observed that the onvergene of IWFA is slow when g ≈ 1.In Figure 2, for the two users senario, we have plotted the total error in strategies ||T 1
k −

T 1∗||2 + ||T 2
k − T 2∗||2, where T i

k are the strategies produed by IWFA on the k-th iterationand T i∗ are the Nash equilibrium strategies. Our approah instantaneously �nds the NashRR n° 6254



20 Altman, Avrahenkov & Garnaevequilibrium for all values of g. Also, it is interesting to note that by Theorems 6 and 7 thequantity of hannels as well as the hannels themselves used by weaker user (with smallerresoures) is independent from the behavior of the stronger user (with larger resoures). Ofourse, eah user alloates his/her resoures among the hannels taking into aount theopponent behavior.In Figures 3 and 4, we ompare the non-ooperative approah with the ooperativeapproah. Spei�ally, we ompare the transmission rates and their sum under Nash equi-librium strategies and under strategies obtained from the entralized optimization of the sumof users' rates. The main onlusions are: the ost of anarhy is nearly zero for g ∈ [0, 1/4]and then it grows up to 22% when g grows from 1/4 to 1; the user with more resouresgains signi�antly more from the entralized optimization. Hene, the non-ooperative ap-proah results in a more fair resoure distribution. In Figure 4 we plot the total transmissionrate under Nash equilibrium strategies and under strategies obtained from the entralizedoptimization for the ases of 2 and 3 users. As expeted the introdution of a new userinreases the ost of anarhy. Furthermore, in the ase of the entralized optimization withthe introdution of a new user the total rate inreases, and on ontrary in the game settingthe total rate dereases.
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22 Altman, Avrahenkov & Garnaevri water �lling games have been provided. Namely, now one an alulate optimal/equilibriumstrategies with a �nite number of arithmeti operations. This was possible due to the intrin-si hierarhial struture indued by the quantity of the resoures available to the users. Wehave also provided a simple alternative proof of onvergene for a version of iterative water�lling algorithm. It had been known before that the iterative water �lling algorithm on-verges very slow when the rosstalk oe�ient is lose to one. For our losed form approahpossible proximity of the rosstalk oe�ient to one is not a problem. We have shown thatwhen the rosstalk oe�ient is equal to one, there is a ontinuum of Nash equilibria. Fi-nally, we have demonstrated that the prie of anarhy is small when the rosstalk oe�ientis small and that the deentralized solution is better than the entralized one with respetto fairness.Referenes[1℄ E. Altman, K. Avrahenkov, A. Garnaev, �A jamming game in wireless networks withtransmission ost�. in Pro. of NET-COOP 2007. Leture Notes in Computer Siene,v.4465, pp.1-12, 2007.[2℄ E. Altman, K. Avrahenkov, G. Miller and B. Prabhu, �Disrete power ontrol: ooper-ative and non-ooperative optimization�, in Proeedings of IEEE INFOCOM 2007. Anextended version is available as INRIA Researh Report no.5818.[3℄ T. Cover and J. Thomas, Elements of Information Theory, Wiley, 1991.[4℄ W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, �Energy-e�ient ommuni-ation protool for wireless mirosensor networks,� in Pro. of the 33rd Annual HawaiiInternational Conferene on System Sienes, v.2, Jan. 2000.[5℄ A. Garnaev, Searh Games and Other Appliations of Game Theory, Springer, 2000.[6℄ A.J. Goldsmith and P.P. Varaiya, �Capaity of fading hannels with hannel side infor-mation�, IEEE Trans. Information Theory, v.43(6), pp.1986-1992, 1997.[7℄ T. J. Kwon and M. Gerla, �Clustering with power ontrol,� in Pro. IEEE Military Com-muniations Conferene (MILCOM'99), v.2, Atlanti City, NJ, USA, 1999, pp.1424�1428.[8℄ L. Lai and H. El Gamal, �The water-�lling game in fading multiple aess hannels�,submitted to IEEE Trans. Information Theory, 2005.[9℄ C. R. Lin and M. Gerla, �Adaptive lustering for mobile wireless networks,� IEEE JSAC,v.15, no.7, pp.1265�1275, 1997.[10℄ Z.-Q. Luo and J.-S. Pang, �Analysis of iterative water�lling algorithm for multiuserpower ontrol in digital subsriber lines�, EURASIP Journal on Applied Signal Pro-essing, 2006. INRIA
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