
HAL Id: inria-00166610
https://hal.inria.fr/inria-00166610

Submitted on 7 Aug 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Region Tracking Algorithms on Laser Scanning Devices
Applied to Cell Traffic Analysis

Aymeric Perchant, Tom Vercauteren, Fabien Oberrietter, Nicolas Savoire,
Nicholas Ayache

To cite this version:
Aymeric Perchant, Tom Vercauteren, Fabien Oberrietter, Nicolas Savoire, Nicholas Ayache. Region
Tracking Algorithms on Laser Scanning Devices Applied to Cell Traffic Analysis: Region Tracking
Algorithms on Laser Scanning Devices Applied to Cell Traffic Analysis. IEEE International Sympo-
sium on Biomedical Imaging: From Nano to Macro (ISBI’07), Apr 2007, Arlington, United States.
�10.1109/ISBI.2007.356838�. �inria-00166610�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50367266?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00166610
https://hal.archives-ouvertes.fr


REGION TRACKING ALGORITHMS ON LASER SCANNING DEVICES APPLIED TO CELL
TRAFFIC ANALYSIS

Aymeric Perchant1, Tom Vercauteren1,2, Fabien Oberrietter1, Nicolas Savoire1, Nicholas Ayache2

1 Mauna Kea Technologies, 9 rue d’Enghien, Paris, France
2 Asclepios Laboratory, INRIA, 2004 Route des Lucioles, 06902 Sophia-Antipolis, France

ABSTRACT

In vivo and in situ confocal images are often distorted
by motion artifacts and soft tissue deformations. To measure
small amplitude phenomena on this type of images, we have
to compensate for those artifacts. We present in this paper a
Region Of Interest (ROI) tracking algorithm specialized for
confocal imaging using a scanning device. Two different al-
gorithms are presented: one based on the motion artifacts, and
one based on affine registration. One typical application of
this tool is developed: the blood velocity estimation inside a
capillary on a moving organ. These first results show that the
method permits accurate estimations of blood cell velocities
even in presence of motion artifacts.

Index Terms— Tracking, in vivo confocal imaging, mo-
tion analysis, velocity measurement.

1. INTRODUCTION

Scanning imaging devices are becoming a standard tool to
perform in vivo and in situ imaging both in research appli-
cations on living animals [1, 2, 3] and in the clinical setting
[4, 5]. These new imaging technologies allow the acquisition
and visualization of microscopic images at the cellular reso-
lution in any part of the living body and in real time. The
resulting video sequences can be used for visualization and
quantification. The quest for noninvasiveness (organs should
be neither touched nor removed) can lead to an instable mo-
tion of the tissue with respect to the imaging device. This
can result in both motion artifacts and possible misquantifica-
tions. Both the miniaturization and the access difficulties are
responsible for these possible motion artifacts.

A high frame rate can compensate for the resulting distor-
tions in some cases. When the frame rate cannot be increased,
motion artifacts appear on each frame of the video sequence.
Because the acquisition device is a scanning device, these ar-
tifacts result in geometric distortions. Previous work has been
done on the correction of these motion artifacts when creating
larger images using video mosaicing techniques [6]. Follow-
ing this work, we address in this paper the case when the user
wants to focus on a small region in the living tissue that is
difficult to stabilize. For instance in vivo and in situ acquisi-

tion on the liver, the bladder or even the heart can be unstable.
Such organs receive a growing interest among biologists to
assess pharmaco-kinetics parameters of molecules, to screen
the changing morphology of the anatomy, or to measure bio-
distribution parameters.

Due to the very specific type of images generated by in
vivo confocal microscopy, classical image stabilization and
registration techniques such as the one presented in [7, 8, 9]
could not be directly applied here. As a result, we developed
a dedicated ROI tracking tool that takes into account the char-
acteristics of in vivo confocal microscopy, and enables an au-
tomatic registration, analysis and quantification of an image
sequence.

Cell traffic in micro vessels is an important research field
in cellular biology and molecular imaging. Numerous algo-
rithms have been developed to assess cell motion, or blood
flow (e.g. [10, 11]). To our knowledge there has been no
attempt to perform blood flow velocity measurement on a se-
quence acquired in vivo with global tissue motion. This appli-
cation illustrate the usefulness of the region of interest (ROI)
tracking we propose.

In all the examples proposed hereafter, we used a Cellvizio
developed by Mauna Kea Technologies (MKT) which is a
complete fibered confocal microscope with a lateral and axial
resolution comparable with a standard confocal microscope.
It is based on the combination of 1) a flexible optical micro-
probe consisting in a bundle of tens of thousands of fiber op-
tics, which overall dimensions are compatible with the ac-
cessory channel of a standard endoscope, 2) a proximal laser
scanning unit, which combines the functions of light illumi-
nation, signal detection, robust and rapid scanning, and 3)
a control and acquisition software providing real-time image
processing.

Section 2 presents two algorithms to perform the tracking
of a given ROI. The first one is based on the motion artifact
compensation, and the second one on affine registration. Sec-
tion 3 illustrates the application of the tracker on blood cell
traffic measurement on a moving region. Section 4 concludes
about the work presented herein.



2. REGION OF INTEREST TRACKER

Two algorithms were developed that include either explicitly
or implicitly motion distortion compensation.

2.1. Scanning Artifacts and Motion Distorsions

An interesting point of scanning imaging devices is that the
output image is not a representation of a given instant, but a
juxtaposition of points acquired at different times. Instead of
motion blur, we get geometric distortions, e.g. a circle is dis-
torted into an ellipse. During a rigid motion translation of a
given object in the field of view, the transformation in image
coordinates is a translation composed with a skew transfor-
mation [11]. This feature has been successfully used for red
blood cell velocimetry on single images [11] and mosaicing
of live video confocal images [6].

The scanning device we used has a fast horizontal scan-
ning, and a slow vertical scanning. We showed in [11] that
we could assume that the horizontal scanning has an infinite
speed, and that the vertical scanning is described by the verti-
cal position of the scanned point: ys(t) = vy.t, with vy = Ay

ts

where Ay is the vertical amplitude, and ts the vertical scan-
ning time, and t the time.

2.2. Motion Compensation Algorithm

Let us suppose that the motion between two contiguous frames
is a translation at speed η̃ = [η̃x, η̃y]. A scanned line with ver-
tical position y, will be sampled at the time t(y) = t(0) + y

vy
.

During the scanning, a point p = [x, y] ∈ I in the image ref-
erence plane will be sampled at position pd = [xd, yd] in the
object reference plane. We note η = η̃

vy
the normalized speed

for the frame scanning. The position of pd is:{
xd = x + (t(x)− t(0))η̃x = x + (y/vy)η̃x = x + ηxy,

yd = y + (t(y)− t(0))η̃y = y + (y/vy)η̃y = (1 + ηy)y.

For a given frame k, this linear transformation is noted vk.
Each point p of a frame Ik is mapped to a reference space co-
ordinate system by the transformation fk : p → pref . Thus,
we have:

fk(p) = rk ◦ vk(p),
with rk a rigid transformation. Between two frames j and k,
the transformation is given by:

fj,k(p) = v−1
j ◦ r−1

j ◦ rk ◦ vk = v−1
j ◦ rj,k ◦ vk.

The estimation of the velocities is done using only the transla-
tion part of the rj,k. This velocity is used in the following al-
gorithm to compensate for the scanning distorsions. For each
contiguous frames the following steps are performed:
1) estimation of the translation using a 2D normalized cross
correlation,
2) estimation of the velocity from the translation,
3) computation of the distortion transformation,

Fig. 1. Tracking a selected ROI on tumor vasculature acquired
in vivo. The upper frame is the reference frame, the other rows
represent the frames 11 and 15 at from a 200 frame sequence.
The tracked ROIs are shown on the left column with the cor-
responding warped region on the right column.

4) optimization of the rigid transformation.

Fig. 1 shows an example of ROI tracking using the mo-
tion compensation algorithm. On the second row, a typical
scanning distorsion is visible. On the last row, the transfor-
mation is a composition of a scanning distorsion, and a rigid
transformation with a rotation.

2.3. Affine Registration Algorithm

Using Cellvizio device, the handheld probe can freely glide
along a soft tissue, while keeping contact with it. Thus, the
transformation may be composed with a possible rotation, or
even a little scaling when the tissues are compressed. In this
section, we choose to represent the transformation due to the
laser scanning confocal device by an affine transformation.

To ensure a faster convergence in an optimization scheme,
we initialized each transformation by the best translation found
by a normalized cross correlation. For each frame, we choose
to minimize the sum of squared differences:

∑
p ‖I(p) −

Ik(T a
k (p))‖2, with T a

k the affine transformation for frame k.
The optimization scheme was chosen to be fast and effi-

cient. The ESM (Efficient Second order Minimization) [12]



provides excellent results in real time robotic applications.
We have adapted it to use an affine transformation instead of
a projective one. The main advantage of the algorithm is to be
a true second order optimization scheme with the complexity
of a first order optimization scheme such as Gauss-Newton.
Of course, other optimizers could be used.

Fig. 2 shows a result of the affine registration algorithm.

3. APPLICATION TO CELL TRAFFIC ANALYSIS

The ROI tracking was used to assess cell traffic in a capil-
lary. The aim is to measure the blood velocity in a capillary.
The user can select manually a rectangular ROI on the im-
age. Fig. 2 shows the tracking of this region on a sequence
acquired with a hand-held probe on a tumoral skin xenograft
on a living mouse. Vessels were stained using dextran fluo-
rescein from Invitrogen.

Fig. 2. ROI tracking using affine transformations: 4 frames
from the same sequence are displayed with the registered
ROI. Complete sequence includes 237 frames.

Using the tracking, we resampled each frame to compose
a stabilized sequence. Three frames of this sequence of 5
seconds (acquired at 12 Hz) are presented in Fig. 3.

On the temporal mean frame of the stabilized sequence,
we have segmented the vessels using a 2D adaptation of the
multi-scale tubular vessel detection algorithm of Krissian et
al. [13]. We used this adaptation on the same type of images
in [1]. The upper left frame of Fig. 3 shows the result of the
detection: the medial axis and the vessel borders. The mean
vessel diameter is 10.7µm, which is roughly the size of a red
blood cell.

The medial axis of the vessel in the ROI displayed in
Fig. 3 was used to extract the vessel intensity in the center
line. Two temporally contiguous lines are displayed in Fig. 4.
The normalized cross correlation of these two lines are dis-
played in Fig. 5 together with the mean value of the correla-
tion for all the pairs of contiguous frames. Fig. 6 shows the
estimation of the velocity of the blood in the capillary.

Fig. 3. Upper-left: vessel detection on the temporal mean
frame after stabilization. Other images: three contiguous
frames of the stabilized sequence (12 Hz). Blood velocity
was acquired on the medial axis segment [AB].

0 10 20 30 40 50 60
3000

3500

4000

4500

5000

Position (micron)

Im
ag

e 
In

te
ns

ity

Fig. 4. The medial axis intensity of the same vessel on two
contiguous frame. The correlation of the two signals is visi-
ble.

−15 −10 −5 0 5 10 15 20

−0.2

0

0.2

0.4

0.6

0.8

Position (micron)

N
or

m
al

iz
ed

 C
ro

ss
 C

or
re

la
tio

n

Fig. 5. The normalized cross correlation of the lines of Fig. 4
(plain line), with the mean value of the correlation for all the
sequence (dashed line).

The range of velocities that we can address depends on
the scanning period, and the amplitude. Typical values on the
device we used are 12 Hz frame rate, with a field of view of
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Fig. 6. Velocities computed using the correlation method on
the registered ROI. The dashed line indicates the mean value
of the velocities.

0.5× 0.6 mm2, and a 3.5 µm resolution. The velocity preci-
sion is given by the minimum translation observable between
two frames: δv = 0.012 mm/s. The velocity interval com-
puted using a maximum detectable translation of half the hor-
izontal field of view is [0, 3.6] mm/s. The same device can
perform fast scanning at a frequency up to 200 Hz with the
same resolution by reducing the vertical field of view. The
velocity interval in this case is maximal when the vessel is
horizontal: [0, 60] mm/s with a precision of 0.2 mm/s.

4. CONCLUSION

We presented a framework to accurately measure blood ve-
locity inside a small capillary on a moving region of interest
in a field of view. The region of interest is stabilized and
resampled using a specialized tracking algorithm. Two ver-
sions of this algorithms were proposed based either on a spe-
cific scanning distortion estimation, or a global affine trans-
formation. The motion compensation algorithm has stronger
constraints, but is faster than the affine registration. The best
algorithm will probably be application dependant. The two
algorithms are currently beeing compared for performance
evaluation. On the presented cell traffic application, a region
was stabilized, and the capillaries were detected using tubu-
lar model-based segmentation. The medial axis signal level
was extracted from the image. The spatio-temporal corre-
lation was finally used to estimate the blood velocity in the
capillary. Now that the feasibility of the framework has been
proved, the next step is the validation on both numerical and
real data.
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sité Paris V, Paris, France. Images in Fig. 2 and 3 are courtesy of
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