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Distributions quasi-stationnairesomme les mesures de entralité pour des graphes rédutibleRésumé : Une marhe au hasard peut être utilisée omme mesure de entralité d'un grapheorienté. Cependant, si le graphe est rédutible la marhe au hasard sera absorbée dans un quelquesous-ensemble de noeuds et ne visitera jamais le reste du graphe. Dans Google PageRank, leproblème a été résolu par l'introdution des sauts aléatoires uniformes ave une ertaine probabilité.Jusqu'à présent, il n'y a auun ritère lair pour le hoix de e paramètre. Nous proposonsd'utiliser la mesure de entralité sans paramètre qui est basée sur la notion de la distributionquasi-stationnaire. Nous analysons les quatre mesures et onluons qu'elles produisent presque lemême lassement de noeuds. Les nouvelles mesures de entralité peuvent être appliquées dans leontext de la détetion de spam pour déteter les �link farms� et dans le ontext de la reherhed'image pour trouver des albums photo.Mots-lés : mesure de entralité, marhe au hasard, graphe orienté, distribution quasi-stationnaire,PageRank, graphe du Web, link farm



Quasi-stationary distributions as entrality measures 31 IntrodutionRandom walk an be used as a entrality measure of a direted graph. An example of randomwalk based entrality measures is PageRank [21℄ used by searh engine Google. PageRank is usedby Google to sort the relevant answers to user's query. We shall follow the formal de�nition ofPageRank from [18℄. Denote by n the total number of pages on the Web and de�ne the n × nhyperlink matrix P suh that
pij =







1/di, if page i links to j,
1/n, if page i is dangling,
0, otherwise, (1)for i, j = 1, ..., n, where di is the number of outgoing links from page i. A page with no outgoinglinks is alled dangling. We note that aording to (1) there exist arti�ial links to all pages froma dangling node. In order to make the hyperlink graph onneted, it is assumed that at eah step,with some probability c, a random surfer goes to an arbitrary Web page sampled from the uniformdistribution. Thus, the PageRank is de�ned as a stationary distribution of a Markov hain whosestate spae is the set of all Web pages, and the transition matrix is

G = cP + (1 − c)(1/n)E,where E is a matrix whose all entries are equal to one, and c ∈ (0, 1) is a probability of followinga hyperlink. The onstant c is often referred to as a damping fator. The Google matrix G isstohasti, aperiodi, and irreduible, so the PageRank vetor π is the unique solution of thesystem
πG = π, π1 = 1,where 1 is a olumn vetor of ones.Even though in a number of reent works, see e.g., [5, 6, 8℄, the hoie of the damping fator

c has been disussed, there is still no lear riterion for the hoie of its value. The goal of thepresent work is to explore parameter-free entrality measures.In [5, 7, 15℄ the authors have studied the graph struture of the Web. In partiular, in [7, 15℄it was shown that the Web Graph an be divided into three priniple omponents: the GiantStrongly Conneted Component, to whih we simply refer as SCC omponent, the IN omponentand the OUT omponent. The SCC omponent is the largest strongly onneted omponent in theWeb Graph. In fat, it is larger than the seond largest strongly onneted omponent by severalorders of magnitude. Following hyperlinks one an ome from the IN omponent to the SCComponent but it is not possible to return bak. Then, from the SCC omponent one an ome tothe OUT omponent and it is not possible to return to SCC from the OUT omponent. In [7, 15℄the analysis of the struture of the Web was made assuming that dangling nodes have no outgoinglinks. However, aording to (1) there is a probability to jump from a dangling node to an arbitrarynode. This an be viewed as a link between the nodes and we all suh a link the arti�ial link.As was shown in [5℄, these arti�ial links signi�antly hange the graph struture of the Web. Inpartiular, the arti�ial links of dangling nodes in the OUT omponent onnet some parts of theOUT omponent with IN and SCC omponents. Thus, the size of the Giant Strongly ConnetedComponent inreases further. If the arti�ial links from dangling nodes are taken into aount, itis shown in [5℄ that the Web Graph an be divided in two disjoint omponents: Extended StronglyConneted Component (ESCC) and Pure OUT (POUT) omponent. The POUT omponent issmall in size but if the damping fator c is hosen equal to one, the random walk absorbs withprobability one into POUT. We note that nearly all important pages are in ESCC. We also notethat even if the damping fator is hosen lose to one, the random walk an spend a signi�antamount of time in ESCC before the absorption. Therefore, for ranking Web pages from ESCC wesuggest to use the quasi-stationary distributions [9, 22℄.It turns out that there are several versions of quasi-stationary distribution. Here we study fourversions of the quasi-stationary distribution. Our main onlusion is that the rankings provided
RR n° 6263



4 Avrahenkov, Borkar & Nemirovskyby them are very similar. Therefore, one an hose a version of stationary distribution whih iseasier for omputation.The paper is organized as follows: In the next Setion 2 we disuss di�erent notions of quasi-stationarity, the relation among them, and the relation between the quasi-stationary distributionand PageRank. Then, in Setion 3 we present the results of numerial experiments on Web Graphwhih on�rm our theoretial �ndings and suggest the appliation of quasi-stationarity basedentrality measures to link spam detetion and image searh. Some tehnial results we plae inthe Appendix.2 Quasi-stationary distributions as entrality measuresAs noted in [5℄, by renumbering the nodes the transition matrix P an be transformed to thefollowing form
P =

[

Q 0
R T

]

,where the blok T orresponds to the ESCC, the blok Q orresponds to the part of the OUTomponent without dangling nodes and their predeessors, and the blok R orresponds to thetransitions from ESCC to the nodes in blok Q. We refer to the set of nodes in the blok Q asPOUT omponent.The POUT omponent is small in size but if the damping fator c is hosen equal to one, therandom walk absorbs with probability one into POUT. We are mostly interested in the nodesin the ESCC omponent. Denote by πQ a part of the PageRank vetor orresponding to thePOUT omponent and denote by πT a part of the PageRank vetor orresponding to the ESCComponent. Using the following formula [20℄
π(c) =

1 − c

n
1

T [I − cP ]−1,we onlude that
πT (c) =

1 − c

n
1

T [I − cT ]−1,where 1 is a vetor of ones of appropriate dimension.Let us de�ne
π̂T (c) =

πT (c)

||πT (c)||1
.Sine the matrix T is substohasti, we have the next result.Proposition 1 The following limit exists

π̂T (1) = lim
c→1

πT (c)

||πT (c)||1
=

1
T [I − T ]−1

1T [I − T ]−11
,and the ranking of pages in ESCC provided by the PageRank vetor onverges to the rankingprovided by π̂T (1) as the damping fator goes to one. Moreover, these two rankings oinide forall values of c above some value c∗.Next we denote π̂T (1) simply by π̂T . Following [9, 12℄ we shall all the vetor π̂T pseudo-stationarydistribution. The ith omponent of π̂T an be interpreted as a fration of time the random walk(with c = 1) spends in node i prior to absorption. We reall that the random walk as de�ned inIntrodution starts from the uniform distribution. If the random walk were initiated from anotherdistribution, the pseudo-stationary distribution would hange.Denote by T̄ the hyperlink matrix assoiated with ESCC when the links leading outside ofESCC are negleted. Clearly, we have

T̄ij =
Tij

[T1]i
, INRIA



Quasi-stationary distributions as entrality measures 5where [T1]i denotes the ith omponent of vetor T1. In other words, [T1]i is the sum of elementsin row i of matrix T . The T̄ij entry of the matrix T̄ an be onsidered as a onditional probabilityto jump from the node i to the node j under the ondition that random walk does not leave ESCCat the jump. Let π̄T be a stationary distribution of T̄ .Let us now onsider the substohasti matrix T as a perturbation of stohasti matrix T̄ . Weintrodue the perturbation term
εD = T̄ − T,where the parameter ε is the perturbation parameter, whih is typially small. The followingresult holds.Proposition 2 The vetor π̂T is lose to π̄T . Namely,

π̂T = π̄T − π̄T

1

nT

(π̄T εD1)1T X01 + 1
T X0

1

nT

(π̄T εD1) + o(ε), (2)where nT is the number of nodes in ESCC and X0 is given in Lemma 1 from the Appendix.Proof: We substitute T = T̄ − εD into [I − T ]−1 and use Lemma 1, to get
[I − T ]−1 =

1

π̄εD1
1π̄ + X0 + O(ε).Using the above expression, we an write

π̂T =
1

T [I − T ]−1

1T [I − T ]−11
=

1
π̄T εD1

nT π̄T + 1
T X0 + O(ε)

1
π̄T εD1

nT + 1T X01 + O(ε)
=

π̄T + 1
nT

(π̄T εD1)1T X0 + o(ε)

1 + 1
nT

(π̄T εD1)1T X01 + o(ε)

=

(

π̄T +
1

nT

(π̄T εD1)1T X0 + o(ε)

)(

1 −
1

nT

(π̄T εD1)1T X01 + o(ε)

)

= π̄T − π̄T

1

nT

(π̄T εD1)1T X01 + 1
T X0

1

nT

(π̄T εD1) + o(ε).

2Sine R1 + T1 = 1 and T̄1 = 1, in lieu of π̄T εD1 we an write π̄T R1. The latter expressionhas a lear probabilisti interpretation. It is a probability to exit ESCC in one step starting fromthe distribution π̄T . Later we shall demonstrate that this probability is indeed small. We notethat not only π̄T R1 is small but also the fator 1/nT is small, as the number of states in ESCCis large.In the next Proposition 3 we provide alternative expression for the �rst order terms of π̂T .Proposition 3
π̂T = π̄T − επ̄T DH + ε1T 1

nT

(π̄T D1)H + o(ε).Proof: Let us onsider π̂T as power series:
π̂T = π̂

(0)
T + επ̂

(1)
T + ε2π̂

(2)
T + . . . .From (2) we obtain

π̂T = π̄T − π̄T

1

nT

(π̄T εD1)1T X01 + 1
T X0

1

nT

(π̄T εD1) + o(ε) =

= π̄T + ε

(

1
T X0

1

nT

(π̄T D1) − π̄T

1

nT

(π̄T D1)1T X01

)

+ o(ε),

RR n° 6263



6 Avrahenkov, Borkar & Nemirovskyand hene
π̂

(1)
T = 1

T X0
1

nT

(π̄T D1) − π̄T

1

nT

(π̄T D1)1T X01, (3)where X0 is given by (30). Before substituting (30) into (3) let us make transformations
X0 = (I − X−1D)H(I − DX−1) =

= H − HDX−1 − X−1DH + X−1DHDX−1,where X−1 is de�ned by (29). Pre-multiplying X0 by 1
T , we obtain

1
T X0 = 1

T H − π̄T (1T HD1)(π̄T D1)−1 − nT π̄T (π̄T D1)−1DH + (4)
+ nT π̄T DHD1π̄T (π̄T D1)−2.Post-multiplying X0 by 1, we obtain

X01 = X−1DHDX−11− HDX−11and hene
1

T X01 = nT π̄T DHD1(π̄T D1)−2 − 1
T HD1(π̄T D1)−1. (5)Substituting (5) and (4) into (3), we get

π̂
(1)
T = 1

T X0
1

nT

(π̄T D1) − π̄T

1

nT

(π̄T D1)1T X01 =

= 1
T H

1

nT

(π̄T D1) −
1

nT

π̄T 1T HD1− π̄T DH +

+ π̄T (π̄T DHD1)(π̄T D1)−1 − π̄T (π̄T DHD1)(π̄T D1)−1 +
1

nT

π̄T 1T HD1 =

= 1
T H

1

nT

(π̄T D1) − π̄T DH.Thus, we have
π̂

(1)
T = 1

T H
1

nT

(π̄T D1) − π̃T .

2Next, we onsider a quasi-stationary distribution [9, 22℄ de�ned by equation
π̃T T = λ1π̃T , (6)and the normalization ondition

π̃T 1 = 1, (7)where λ1 is the Perron-Frobenius eigenvalue of matrix T . The quasi-stationary distribution anbe interpreted as a proper initial distribution on the non-absorbing states (states in ESCC) whihis suh that the distribution of the random walk, onditioned on the non-absorption prior time
t, is independent of t [11℄. As in the analysis of the pseudo-stationary distribution, we take thematrix T in the form of perturbation T = T̄ − εD. INRIA



Quasi-stationary distributions as entrality measures 7Proposition 4 The vetor π̃T is lose to the vetor π̄T . Namely,
π̃T = π̄T − επ̄T DH + o(ε).Proof: We look for the quasi-stationary distribution and the Perron-Frobenius eigenvalue in theform of power series

π̃T = π̃
(0)
T + επ̃

(1)
T + ε2π̃

(2)
T + . . . , (8)

λ1 = 1 + ελ
(1)
1 + ε2λ

(2)
1 + . . . .Substituting T = T̄ − εD and the above series into (6), and equating terms with the same powersof ε, we obtain

π̃
(0)
T T̄ = π̃

(0)
T , (9)

π̃
(1)
T T̄ − π̃

(0)
T D = 1π̃

(1)
T + λ

(1)
1 π̃

(0)
T , (10)Substituting (8) into the normalization ondition (7), we get

π̃
(0)
T 1 = 1, (11)

π̃
(1)
T 1 = 0. (12)From (9) and (11) we onlude that π̃

(0)
T = π̄T . Thus, the equation (10) takes the form

π̃
(1)
T T̄ − π̄T D = 1π̃

(1)
T + λ

(1)
1 π̄T .Post-multiplying this equation by 1, we get

π̃
(1)
T T̄1− π̄T D1 = 1π̃

(1)
T 1 + λ

(1)
1 π̄T 1.Now using T̄1 = 1, (11) and (12), we onlude that

λ
(1)
1 = −π̄T D1,and, onsequently,

λ1 = 1 − επ̄T D1 + o(ε). (13)Now the equation (10) an be rewritten as follows:
π̃

(1)
T [I − T̄ ] = π̄T [(π̄T D1)I − D].Its general solution is given by

π̃
(1)
T = νπ̄T + π̄T [(π̄T D1)I − D]H,where ν is some onstant. To �nd onstant ν, we substitute the above general solution intoondition (12).

π̃
(1)
T 1 = νπ̄T 1 + π̄T [(π̄T D1)I − D]H1 = 0.Sine π̄T1 = 1 and H1 = 0, we get ν = 0. Consequently, we have

π̃
(1)
T = π̄T [(π̄T D1)I − D]H = (π̄T D1)π̄T H − π̄T DH = −π̄T DH.In the above, we have used the fat that π̄T H = 0. This ompletes the proof.

2Sine λ1 is very lose to one, we onlude from (13) and the equality επ̄T D1 = π̄T R1 thatindeed π̄T R1 is typially very small.There is also a simple relation between λ1 and π̃T .RR n° 6263



8 Avrahenkov, Borkar & NemirovskyProposition 5 The Perron-Frobenius eigenvalue λ1 of matrix T is given by
λ1 = 1 − π̃T R1. (14)Proof: Post-multiplying the equation (6) by 1, we obtain

λ1 = π̃T T1.Then, using the fat that T1 = 1− R1 we derive the formula (14).
2Proposition 5 indiates that if λ1 is lose to one then π̃T R1 is small.As we mentioned above the T̄ij entry of the matrix T̄ an be onsidered as a onditionalprobability to jump from the node i to the node j under the ondition that random walk does notleave ESCC at the jump.Let us onsider the situation when the random walk stays inside ESCC after some �nite numberof jumps. The probability of suh an event an be expressed as follows:

P

(

X1 = j|X0 = i ∧

N
∧

m=1

Xm ∈ S

)

,where ESCC is denoted by S for the sake of shortening notation and N is the number of jumpsduring whih the random walk stays in ESCC.Let us denote by T
(N)
ij the element of T N (the N th power of T) and by T

(N)
i the ith row of thematrix T N . Then

T
(N)
i = (T N )i = (TT N−1)i = TiT

N−1.Proposition 6
P

(

X1 = j|X0 = i ∧
N
∧

m=1

Xm ∈ S

)

=
TijT

(N−1)
j 1

T
(N)
i 1

. (15)Proof: see Appendix.Then, if we denote
Ť

(N)
ij = P

(

X1 = j|X0 = i ∧

N
∧

m=1

Xm ∈ S

)

,we will be able to �nd stationary distributions of Ť
(N)
ij , whih an be viewed as generalization of

π̄T . Let us now onsider the limiting ase, when N goes to in�nity.Before we ontinue let us analyze the priniple right eigenvetor u of the matrix T :
Tu = λ1u, (16)where λ1 is as in the previous setion, the Perron-Frobenius eigenvalue.The vetor u an be normalized in di�erent ways. Let us de�ne the main normalization for uas

1
T u = nT .Let us also de�ne ū as

ū =
u

π̄T u
, so that π̄T ū = 1, (17)and

ũ =
u

π̃T u
, so that π̃T ũ = 1. (18)

INRIA



Quasi-stationary distributions as entrality measures 9Proposition 7 The vetor ū is lose to the vetor 1. Namely,
ū = 1 − εHD1 + o(ε).Proof: We look for the right eigenvetor and the Perron-Frobenius eigenvalue in the form of powerseries

ū = ū(0) + εū(1) + ε2ū(2) + . . . . (19)
λ1 = 1 + ελ

(1)
1 + ε2λ

(2)
1 + . . . .Substituting T = T̄ −εD and the above series into (16), and equating terms with the same powersof ε, we obtain

T̄ ū(0) = ū(0), (20)
T̄ ū(1) − Dū(0) = ū(1) + λ

(1)
1 ū(0). (21)Substituting (19) into the normalization ondition (17), we obtain

π̄T ū(0) = 1, (22)
π̄T ū(1) = 0. (23)From (20) and (22) we onlude that ū(0) = 1. Thus, the equation (21) takes the form

T̄ ū(1) − D1 = ū(1) + λ
(1)
1 1.Pre-multiplying this equation by π̄T , we get

π̄T ū(1) − π̄T D1 = π̄T ū(1) + π̄T λ
(1)
1 1.Now using T̄1 = 1, (22) and (23), we onlude that

λ
(1)
1 = −π̄T D1,and, onsequently,

λ1 = 1 − επ̄T D1 + o(ε).Now the equation (21) an be rewritten as follows:
[

I − T̄
]

ū(1) = [(π̄T D1) I − D]1.Its general solution is given by
ū(1) = ν1 + H [(π̄T D1) I − D]1,where ν is some onstant. To �nd onstant ν, we substitute the above general solution intoondition (23).

π̄T ū(1) = νπ̄T 1 + π̄T H [(π̄T D1) I − D]1.Sine π̄T1 = 1 and π̄T H = 0, we get ν = 0. Consequently, we have
ū(1) = −HD1.In the above, we have used the fat that H1 = 0. This ompletes the proof.

2We note that the elements of the vetor ũ an be alulated by the power iteration method.
RR n° 6263



10 Avrahenkov, Borkar & NemirovskyProposition 8 The following onvergene takes plae
ũi = lim

n→∞

TiT
n−1e

λn
1

, (24)where Ti is the ith row of the matrix T .Proof:
ũ

(1)
i =

Tie

π̃T Te
=

Tie

λ1
,

ũ
(2)
i =

Tiũ
(1)

π̃T T ũ(1)
=

Ti
Te
λ1

λ1
=

TiTe

λ2
1

,

ũ
(3)
i =

Tiũ
(2)

π̃T T ũ(2)
=

TiT
2e

λ3
1

,...
2Let us onsider the twisted kernel Ť de�ned by

Ťij =
Tijuj

λ1ui

.As one an see the twisted kernel does not depend on the normalization of u. Hene, we an takeany normalization.Proposition 9 The twisted kernel is a limit of (15) as N goes to in�nity, that is
Ťij = lim

N→∞

TijT
(N−1)
j 1

T
(N)
i 1

.Proof:
TijT

(N−1)
j 1

T
(N)
i 1

= Tij

TjT
N−2

1

TiT N−11
=

Tij

λ1

TjT N−2
1

λ
N−1

1

TiT N−11

λN
1

.

lim
N→∞

TijT
(N−1)
j 1

T
(N)
i 1

=
Tij

λ1
lim

N→∞

TjT N−2
1

λ
N−1

1

TiT N−11

λN
1

=
Tij

λ1

limN→∞

TjT N−2
1

λ
N−1

1

limN→∞
TiT N−11

λN
1

.Using (24), we an write
lim

N→∞

TijT
(N−1)
j 1

T
(N)
i 1

=
Tij ũj

λ1ũi

.After renormalization, we obtain
lim

N→∞

TijT
(N−1)
j 1

T
(N)
i 1

=
Tijuj

λ1ui

.

2The twisted kernel plays an important role in multipliative ergodi theory and large deviationsfor Markov hains, see, e.g., [14℄. The matrix Ť is learly a transition probability kernel, i.e.,INRIA



Quasi-stationary distributions as entrality measures 11
Ťij ≥ 0 ∀i, j, and∑j Ťij = 1 ∀i. Also, it is irreduible if there exists an path i → j under T for all
i, j, whih we assume to be the ase. In partiular, it will have a unique stationary distribution
π̌T assoiated with it:

π̌T = π̌T Ť , (25)
π̌T 1 = 1. (26)If we assume aperiodiity in addition, Ťij an be given the interpretation of the probability oftransition from i to j in the ESCC for the hain, onditioned on the fat that it never leaves theESCC. Thus, π̌T quali�es as an alternative de�nition of a quasi-stationary distribution.Proposition 10 The following expression for π̌T holds:
π̌T = π̃Tiũi. (27)Proof: The normalization ondition (26) is satis�ed due to (18). Let us show that (25) holds aswell, i.e.

π̌Tj =

nT
∑

i=1

π̌TiŤij ,where nT is the dimension of π̌T . And for the right hand side of (27) we have
nT
∑

i=1

π̃TiũiŤij =

nT
∑

i=1

π̃Tiũi

Tij ũj

λ1ũi

=

nT
∑

i=1

π̃Tiũi

Tij ũj

λ1ũi

=
ũj

λ1
λ1π̃Tj = π̃Tj ũj .

2This suggests that π̌Ti, or equivalently π̃Tiũi, may be used as another alternative entralitymeasure. Sine the substohasti matrix T is lose to stohasti, the vetor u will be very lose to 1.Consequently, the vetor π̌T will be lose to π̃T and to π̄ as well. This shows that in the ase whenthe matrix T is lose to the stohasti matrix all the alternative de�nitions of quasi-stationarydistribution are quite lose to eah other. And then, from Proposition 1, we onlude that thePageRank ranking onverges to the quasi-stationarity based ranking as the damping fator goesto one.3 Numerial experiments and AppliationsFor our numerial experiments we have used the Web site of INRIA (http://www.inria.fr). Itis a typial Web site with about 300 000 Web pages and 2 200 000 hyperlinks. Sine the Webhas a fratal struture [10℄, we expet that our dataset is su�iently representative. Aordingly,datasets of similar or even smaller sizes have been extensively used in experimental studies of novelalgorithms for PageRank omputation [1, 16, 17℄. To ollet the Web graph data, we onstrut ourown Web rawler whih works with the Orale database. The rawler onsists of two parts: the�rst part is realized in Java and is responsible for downloading pages from the Internet, parsing thepages, and inserting their hyperlinks into the database; the seond part is written in PL/SQL andis responsible for the data management. For detailed desription of the rawler reader is referredto [3℄.As was shown in [7, 15℄, a Web graph has three major distint omponents: IN, OUT andSCC. However, if one takes into aount the arti�ial links from the dangling nodes, a Web graphhas two major distint omponents: POUT and ESCC [5℄. In our experiments we onsider thearti�ial links from the dangling nodes and ompute π̄T , π̃T , π̂T , and π̌T with 5 digits preision.We provide the statistis for the INRIA Web site in Table 1.For eah pair of these vetors we alulated Kendall Tau metri (see Table 2). The Kendall Taumetri shows how two rankings are di�erent in terms of the number of swaps whih are needed toRR n° 6263



12 Avrahenkov, Borkar & Nemirovsky
INRIATotal size 318585Number of nodes in SCC 154142Number of nodes in IN 0Number of nodes in OUT 164443Number of nodes in ESCC 300682Number of nodes in POUT 17903Number of SCCs in OUT 1148Number of SCCs in POUT 631Table 1: Component sizes in INRIA dataset

π̄T π̃T π̂T π̌T

π̄T 1.0 0.99390 0.99498 0.98228
π̃T 1.0 0.99770 0.98786
π̂T 1.0 0.98597
π̌T 1.0Table 2: Kendall Tau omparisontransform one ranking to the other. The Kendall Tau metri has the value of one if two rankingsare idential and minus one if one ranking is the inverse of the other.In our ase, the Kendall Tau metris for all the pairs is very lose to one. Thus, we an onludethat all four quasi-stationarity based entrality measures produe very similar rankings.We have also analyzed the Kendall Tau metri between π̃T and PageRank of ESCC as afuntion of damping fator (see Figure 1). As c goes to one, the Kendall Tau approahes one.This is in agreement with Proposition 1.Finally, we would like to note that in the ase of quasi-stationarity based entrality measuresthe �rst ranking plaes were oupied by the sites with the internal struture depited in Figure 2.Therefore, we suggest to use the quasi-stationarity based entrality measures to detet �link farms�and to disover photo albums. It turns out that the quasi-stationarity based entrality measureshighlights the sites with struture as in Figure 2 but at the same time the relative ranking of theother sites provided by the standard PageRank with c = 0.85 is preserved. To illustrate this fat,we give in Table 3 rankings of some sites under di�erent entrality measures. Even though theabsolute value of ranking is hanging, the relative ranking among these sites is the same for allentrality measures. This indiates that the quasi-stationarity based entrality measures help todisover �link farms� and photo albums and at the same time the ranking of sites of the other typestays onsistent with the standard PageRank ranking.

πT (0.85) π̄T π̃T π̂T π̌T

http : //www.inria.fr/ 1 31 189 105 200
http : //www.loria.fr/ 13 310 1605 356 1633
http : //www.irisa.fr/ 16 432 1696 460 757

http : //www − sop.inria.fr/ 30 508 1825 532 1819
http : //www − rocq.inria.fr/ 74 1333 2099 1408 2158

http : //www − futurs.inria.fr/ 102 2201 2360 2206 2404Table 3: Examples of sites' rankings
INRIA
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Figure 1: The Kendall Tau metri between π̃T and PageRank of ESCC as a funtion of thedamping fator.

Figure 2: The album like Web site struture
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14 Avrahenkov, Borkar & Nemirovsky4 ConlusionIn the paper we have proposed entrality measures whih an be applied to a reduible graph toavoid the absorbtion problem. In Google PageRank the problem was solved by introdution ofuniform random jumps with some probability. Up to the present, there is no lear riterion for thehoie this parameter. In the paper we have suggested four quasi-stationarity based parameter-free entrality measures, analyzed them and onluded that they produe approximately the sameranking. Therefore, in pratie it is su�ient to ompute only one quasi-stationarity based entral-ity measure. All our theoretial results are on�rmed by numerial experiments. The numerialexperiments have also showed that the new entrality measures an be applied in spam detetionto detet �link farms� and in image searh to �nd photo albums.Referenes[1℄ S. Abiteboul, M. Preda, and G. Cobena, �Adaptive on-line page importane omputation�, inProeedings of the 12 International World Wide Web Conferene, Budapest, 2003.[2℄ K. Avrahenkov, Analyti Perturbation Theory and its Appliations, PhD thesis, Universityof South Australia, 1999.[3℄ K. Avrahenkov, D. Nemirovsky, and N. Osipova. �Web Graph Analyzer Tool�. In Proeedingsof the IEEE ValueTools onferene, 2006.[4℄ K. Avrahenkov, M. Haviv and P.G. Howlett, �Inversion of analyti matrix funtions thatare singular at the origin�, SIAM Journal on Matrix Analysis and Appliations, v. 22(4),pp.1175-1189, 2001.[5℄ K. Avrahenkov, N. Litvak and K.S. Pham, �A singular perturbation approah for hoosingPageRank damping fator�, preprint, available at http://arxiv.org/abs/math.PR/0612079,2006.[6℄ P. Boldi, M. Santini, and S. Vigna, �PageRank as a funtion of the damping fator�, inProeedings of the 14 World Wide Web Conferene, New York, 2005.[7℄ A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins andJ. Wiener, �Graph struture in the Web�, Computer Networks, v. 33, pp.309-320, 2000.[8℄ P. Chen, H. Xie, S. Maslov, and S. Redner, �Finding sienti� gems with Google's PageRankalgorithm�, Journal of Informetris, v.1, pp.8�15, 2007.[9℄ J. N. Darroh and E. Seneta, �On Quasi-Stationary Distributions in Absorbing Disrete-TimeFinite Markov Chains�, Journal of Applied Probability, v. 2(1), pp.88-100, 1965.[10℄ S. Dill, R. Kumar, K. MCurley, S. Rajagopalan, D. Sivakumar, and A. Tomkins, �Self-similarity in the Web�, ACM Trans. Internet Tehnol., 2 (2002), pp. 205�223.[11℄ E.A. van Doorn, �Quasi-stationary distributions and onvergene to quasi-stationarity ofbirth-death proesses�, Advanes in Applied Probability, v. 23(4), pp. 683-700, 1991.[12℄ W.J. Ewens, �The di�usion equation and pseudo-distribution in genetis�, J.R. Statist. So.B, v. 25, pp. 405-412, 1963.[13℄ J. Kleinberg, �Authoritative soures in a hyperlinked environment�, Journal of ACM, v. 46,pp.604-632, 1999.[14℄ I. Kontoyiannis, and S. P. Meyn, �Spetral theory and limit theorems for geometrially ergodiMarkov proesses�, Ann. Appl. Probab., v. 13, no. 1, pp. 304362, 2003.
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Quasi-stationary distributions as entrality measures 15[15℄ R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tompkins and E. Upfal, �TheWeb as a graph�, PODS'00: Proeedings of the nineteenth ACM SIGMOD-SIGACT-SIGARTSymposium on Priniples of Database Systems, pp. 1-10, 2000.[16℄ A. N. Langville and C. D. Meyer, �Deeper Inside PageRank�, Internet Math., 1 (2004), pp.335�400; also available online at http://www4.nsu.edu/∼anlangvi/.[17℄ A. N. Langville and C. D. Meyer, �Updating PageRank with iterative aggregation�, in Pro-eedings of the 13th World Wide Web Conferene, New York, 2004.[18℄ A.N. Langville and C.D. Meyer, �Google's PageRank and Beyond: The Siene of SearhEngine Rankings�, Prineton University Press, 2006.[19℄ R. Lempel and S. Moran, �The stohasti approah for link-struture analysis (SALSA) andthe TKC e�et�, Computer Networks, v. 33, pp. 387-401, 2000.[20℄ C.D. Moler and K.A. Moler, �Numerial Computing with MATLAB�, SIAM , 2003.[21℄ L. Page, S. Brin, R. Motwani and T. Winograd, �The pagerank itation ranking: Bringingorder to the web�, Stanford Tehnial Report, 1998.[22℄ E. Seneta, �Non-negative matries and Markov hains�, Springer, 1973.AppendixHere we present a ouple of important auxiliary results.Lemma 1 Let T̄ be an irreduible stohasti matrix. And let T (ε) = T̄ − εD be a perturbationof T̄ suh that T (ε) is substohasti matrix. Then, for su�iently small ε the following Laurentseries expansion holds
[I − T (ε)]−1 =

1

ε
X−1 + X0 + εX1 + . . . , (28)with

X−1 =
1

π̄D1
1π̄, (29)

X0 = (I − X−1D)H(I − DX−1), (30)where π̄ is the stationary distribution of T̄ and H = (I − T̄ + 1π̄)−1 − 1π̄ is the deviation matrix.Proof: The proof of this result is based on the approah developed in [2, 4℄. The existene of theLaurent series (28) is a partiular ase of more general results of [4℄. To alulate the terms of theLaurent series, let us equate the terms with the same powers of ε in the following identity
(I − T̄ + εD)(

1

ε
X−1 + X0 + εX1 + . . .) = I,whih results in

(I − T̄ )X−1 = 0, (31)
(I − T̄ )X0 + DX−1 = I, (32)
(I − T̄ )X1 + DX0 = 0. (33)From equation (31) we onlude that

X−1 = 1µ−1, (34)
RR n° 6263



16 Avrahenkov, Borkar & Nemirovskywhere µ−1 is some vetor. We �nd this vetor from the ondition that the equation (32) has asolution. In partiular, equation (32) has a solution if and only if
π̄(I − DX−1) = 0.By substituting into the above equation the expression (34), we obtain
π̄ − π̄D1µ−1 = 0,and, onsequently,

µ−1 =
1

π̄D1
π̄,whih together with (34) gives (29).Sine the deviation matrix H is a Moore-Penrose generalized inverse of I − T̄ , the generalsolution of equation (32) with respet to X0 is given by

X0 = H(I − DX−1) + 1µ0, (35)where µ0 is some vetor. The vetor µ0 an be found from the ondition that the equation (33)has a solution. In partiular, equation (33) has a solution if and only if
π̄DX0 = 0.By substituting into the above equation the expression for the general solution (35), we obtain

π̄DH(I − DX−1) + π̄D1µ0 = 0.Consequently, we have
µ0 = −

1

π̄D1
π̄DH(I − DX−1)and we obtain (30).

2Proposition 11
P

(

X1 = j|X0 = i ∧

N
∧

m=1

Xm ∈ S

)

=
TijT

(N−1)
j 1

T
(N)
i 1Proof:

P

(

X1 = j|X0 = i ∧

N
∧

m=1

Xm ∈ S

)

=

=
P
(

X0 = i ∧ X1 = j ∧
∧N

m=2 Xm ∈ S
)

P
(

X0 = i ∧
∧N

m=1 Xm ∈ S
)Denominator:
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P
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∧
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∧
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Xm = km
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=
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N
∧
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N
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= P (X0 = i)
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