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Abstract: This report presents a method for scene flow estimation from a calibrated
stereo image sequence. The scene flow contains the 3-D displacement field of scene points,
so that the 2-D optical flow can be seen as a projection of the scene flow onto the images.
We propose to recover the scene flow by coupling the optical flow estimation in both cameras
with dense stereo matching between the images, thus reducing the number of unknowns per
image point. The use of a variational framework allows us to properly handle discontinuities
in the observed surfaces and in the 3-D displacement field. Moreover our approach handles
occlusions both for the optical flow and the stereo. We obtain a partial differential equations
system coupling both the optical flow and the stereo, which is numerically solved using an
original multi-resolution algorithm. Whereas previous variational methods were estimating
the 3-D reconstruction at time t and the scene flow separately, our method jointly estimates
both in a single optimization. We present numerical results on synthetic data with ground
truth information, and we also compare the accuracy of the scene flow projected in one
camera with a state-of-the-art single-camera optical flow computation method. Results are
also presented on a real stereo sequence with large motion and stereo discontinuities.

Key-words: scene flow, stereovision, optical flow, partial differential equations



Une méthode variationnelle d’estimation du flot de

scène à partir de séquences stéréo

Résumé : Ce rapport de recherche présente une méthode d’estimation du flot de scène à par-
tir de séquences stéréo issues d’un couple de caméras calibrées. Le flot de scène représente le
champ de déplacement 3D des points d’une scène, de telle sorte que le flot optique tradition-
nel peut être vu comme la projection de celui-ci dans les images. Nous proposons d’estimer
le flot de scène en couplant l’évaluation du flot optique dans les séquences d’images associées
à chaque caméra, à l’estimation de la correspondance stéréo dense entre les images. De plus,
notre approche évalue, en même temps que le flot de scène, les occultations à la fois en flot
optique et en stéréo. Nous obtenons au final un système d’EDP couplant le flot optique et
la stéréo, que nous résolvons numériquement à l’aide d’un algorithme multirésolution origi-
nal. Alors que les précédentes méthodes variationnelles estimaient la reconstrution 3D au
temps t et le flot de scène séparément, notre méthode estime les deux simultanément. Nous
présentons des résultats numériques sur des séquences synthétiques avec leur vérité terrain,
et nous comparons également la précision du flot de scène projeté dans une caméra avec une
méthode récente et performante d’estimation variationnelle du flot optique. Des résultats
sont présentés sur une séquence stéréo réelle, se rapportant à un mouvement non rigide et à
de larges discontinuités en flot optique et en stéréo.

Mots-clés : flot de scène, stéréovision, optique, équations aux dérivées partielles



A Variational Method for Scene Flow Estimation from Stereo Sequences 3

1 Introduction

Scene flow was introduced by Vedula et al. [19, 20] as the 3-D vector field defined on the
surfaces of a scene, describing the motion of each 3-D point between two time steps. It
can be seen as an extension of optical flow to 3-D, but optical flow can also be seen as the
projection of the 3-D scene flow onto the images, resulting in a 2-D vector field. Several
methods propose to reconstruct scene flow from the observed optical flow in one or several
cameras [20, 21], but the reconstruction step is either under- or over-constrained, and the
different cameras may give non-consistent optical flows. To overcome these problems, we use
a minimal parametrization of scene flow from the optical flow and the disparity of a stereo
image sequence (this view-dependent description of scene flow is sometimes called disparity

flow [9]). Since this parametrization is done in image space, the problem becomes close to
an optical flow estimation problem with more unknown and more measures per image point.

A lot of research has been carried out on using variational methods to compute optical
flow since the pioneer work by Horn and Schunck [3]. Some methods changed the regulariza-
tion term in order to cope with the presence of discontinuities in the optical flow [7]. Recent
work focused on reducing the computational cost of these variational methods, leading to
real-time performance [5] or parallel implementation [6]. However, the best results in terms
of accuracy were obtained by Brox et al. [4]: they avoid linearization of the different energy
terms in the variational formulation by warping the image at time t + 1 onto the image at
time t, and the global energy is only linearized inside the minimization algorithm. That way,
they get rid of the inaccuracies due to the approximation of the energy terms, especially the
data term which had always been linearized since Horn and Schunck. This method is also
robust to illumination changes, and somewhat handles discontinuities as well as occlusions,
although the latter are not treated explicitly. A work by Slesareva et al. [16] adapted directly
this variational formulation to estimate dense disparity maps.

Concerning the estimation of scene flow in a variational framework, one method that does
both reconstruction and scene flow estimation was proposed by Pons et al. [14]. Scene flow
estimation is performed by alternatively optimizing the reconstruction and the 3-D motion
field. The latter is done by optimizing an energy that takes into account the difference
between consecutive images re-projected on the computed 3-D reconstruction. Some recent
works propose joint estimation of disparity and motion : the method by Dongbo Min et

al. [12], which nevertheless misses illumination variations and occlusions handling, and the
work by Isard and MacCormick [10] which only computes integer disparity and flow values.

We propose a method that computes scene flow by joint estimation of the reconstructed
surface and the motion field from a calibrated stereoscopic image sequence. This method
takes into account the epipolar constraint between images taken at the same time, leading
to a minimal parametrization of the scene flow. Only 4 variables are optimized at each pixel
in the reference image: the stereo disparity at time t, the optical flow, and the disparity at
time t + 1 (the 3-D scene flow can be directly computed from these variables). This leads
to a set of highly coupled non-linear partial differential equations which are solved by a
multi-resolution algorithm. Our method avoids the linearization of the energy minimized by
our algorithm. Indeed, it was numerically proved by Brox et al. that better results can be
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4 Huguet & Devernay

obtained by avoiding the linearization of the optical flow constraint. This is generalized to
every constraint in our method. Besides the regularization terms can handle discontinuities
both in the reconstruction and in the motion field, thus allowing fractures to appear on a
smooth surface during time.

The rest of this paper is organized as follows: We first explain the mathematical formu-
lation which couples optical flow and stereo, and the different terms of the energy that has
to be minimized. We then expose the numerical difficulties tied to this problem, and the
global algorithm. Finally, we present numerical results obtained on synthetic and real stereo
sequences with the associated ground truth, and a real stereo sequence associated with a
non rigid scene , with large motion and stereo discontinuities.

2 A unified variational formulation for optical flow and

stereo

Our goal is to estimate a dense scene flow, while preserving the surfaces and motion dis-
continuities. Zhang and Kambhamettu [22] achieve this by first segmenting the scene, and
then applying piecewise regularization, but that problem can also be solved by using an
appropriate regularization functional.

Since we are working on a stereo image sequence, we first rectify the two image streams so
that the stereo disparity is along the horizontal direction in the images. Gaussian smoothing
(σ = 1.25) is also applied to the images in order to avoid numerical instabilities [2]. Our
method uses the numerical benefits of the work by Brox et al.: robustness to changes in
illumination thanks to the constant image gradient constraints, and robustness to stereo or
optical flow occlusions by using the Ψ regularization function.

Let Il(x, y, t), Ir(x, y, t) : Ω ⊂ R
3 be the left and right image sequences (Ω is the rect-

angular definition domain of the images). Let (u, v) : Ω → R
2 be the optical flow in

the left image, and (d, d′) : Ω → R
2 be the disparity maps at time t and at time t + 1.

w = (u, v, 1)> is the displacement vector between the left image at time t and Il at time
t + 1, d = (d, 0, 0) is the displacement between Il and Ir at time t, and d′ = (d′, 0, 0) is
the displacement between Il and Ir at time t + 1. As shown in Fig. 1, a point (x, y, t) in Il

corresponds to the points (x + u(x, y), y + v(x, y), t + 1) in Il, (x + d(x, y), y, t) in Ir , and
(x+u(x, y)+d′(x, y), y+v(x, y), t+1) in Ir: the reference for the scalar functions u, v, d and

d′ is always Il at time t. It is clear that the 3-D reconstruction of the scene point observed
at position (x, y) and time t in Il can be obtained from d, and similarly its reconstruction
at time t + 1 is obtained from u, v, and d′. Scene flow can then easily be computed as the
difference between these two positions.

We write the global energy as a sum of a data term and a regularization term:

E(u, v, d, d′) = EData + αESmooth, (1)

INRIA



A Variational Method for Scene Flow Estimation from Stereo Sequences 5

time t + 1

Stereo(x + u, y + v) (x + u + d′, y + v)

Left flow Right flow

(x, y)
time t

Stereo

Il (left image) Ir (right image)

(x + d, y)

Figure 1: The motion of a projected scene point between two time steps as seen in the stereo
images, and the associated functions.

α being the regularization parameter. EData is composed of four terms, corresponding to
the four relations between images shown on Fig. 1:

EData =

∫

Ω

(βflEfl + βfrEfr + βstEst + βsEs)dx. (2)

(x, y) : Ω → βfl(x, y) is 1 for non occluded pixels for the left optical flow and 0 otherwise.
The other β functions play a similar role for the occlusions associated with each part of
Edata. Let us introduce the following notation for the difference in intensity and illumination
between two image points:

∆(I,x; I ′

,y) = |I ′(y) − I(x)|2 + γ|∇I
′(y) −∇I(x)|2. (3)

where ∇ = (∂x, ∂y)
>. The four terms in EData can be written:

Efl(u, v, d, d′) = Ψ (∆(Il,x; Il,x + w)) , (4)

Efr(u, v, d, d′) = Ψ (∆(Ir ,x + d; Ir ,x + w + d′)) , (5)

Est(u, v, d, d′) = Ψ (∆(Il,x + w; Ir ,x + w + d′)) , (6)

Es(u, v, d, d′) = Ψ (∆(Il,x; Ir ,x + d)) . (7)

Efl is the data term corresponding to the left optical flow, and Efr corresponds to the
right optical flow, which has the same vertical component as the left optical flow. Similarly,
Es corresponds to stereo matching between the left and right images at time t, and Est

corresponds to stereo matching at time t + 1. Pixels in the left image may become occluded
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6 Huguet & Devernay

in some of the other three images, and quadratic penalizers would give them too much
influence on the solution. To solve this problem, we use the Ψ function [1, 4], defined by
Ψ(s2) =

√
s2 + ε2 (with ε = 0.001), which leads to a robust energy, corresponding to L1

minimization, but is still differentiable everywhere. The Ψ function is applied separately to
each data term, since pixels may be occluded by stereo, but not by optical flow, and vice-
versa. Besides, eq. (3) incorporates a gradient constancy assumption in all data terms [4], so
that the energy is also robust to illumination changes (local or global) and non-Lambertian
surfaces (the stereo terms may be highly affected by such surfaces, since they use images
coming from different viewpoints). The γ parameter should be set empirically, depending
on how much illumination change is expected in the scene.

We could have considered that the disparity d at time t is given from the previous scene
flow estimation (between time t − 1 and time t), but if the estimated disparity d contains
errors, theses errors would propagate to d′, u, and v. By minimizing the four data terms,
we will be able to re-evaluate all the components of the scene flow: The 3-D reconstruction
(from d), and the 3-D motion field (from u, v, and d′ − d).

The regularization term is:

ESmooth =

∫

Ω

Ψ(|∇u|2+|∇v|2+λ|∇(d′−d)|2+µ|∇d|2)dx. (8)

By reducing the influence of high gradients of the optical flow or the disparity on the global
energy, the Ψ function has a different role here: it helps preserving the discontinuities of the
functions u, v, d, and d′ [5]. Unlike in the data term, Ψ is applied to the sum of the gradient
norms, since discontinuities usually appear simultaneously in the disparity d, the optical
flow (u, v), and the disparity flow d′ − d (except in some special cases, as in the synthetic
example used in the results below).

The effect of the regularization on the 3-D scene flow should not depend on the orientation
of the motion field with respect to the camera, so the λ parameter should be set properly to
scale optical flow versus disparity flow, but should not be greater than µ to avoid oscillations
during optimization: λ < h/b, where h is the average distance from the cameras to the scene
and b is the baseline of the stereo setup. The effect of this parameter will be more regular
disparity flow (d′ − d) and smaller discontinuities when the baseline is smaller. The µ
parameter tunes the relative weight between the initial disparity and the optical flow. Since
the typical discontinuities in both terms observed on the scene should have the same effect
on ESmooth, a good guess is µ = hs/bS where s is the typical expected magnitude (in world
units) of the 3-D scene flow, and S a typical size of the scene: if the typical motion between
t and t + 1 is small with respect to the size of the scene, then µ should be small too.

INRIA



A Variational Method for Scene Flow Estimation from Stereo Sequences 7

3 Optimization

3.1 Euler-Lagrange equations

According to calculus of variations, an extremum of the total energy E satisfies the four Euler
condition ∇E(u, v, d, d′) = 0.This can be rewritten as (∂uE, ∂vE, ∂dE, ∂d

′E) = (0, 0, 0, 0).
Each derivative is computed using a Gâteaux derivative, which means that, for example,

∂uE = limh→0
E(u+h,v,d,d

′

)−E(u,v,d,d
′

)
h

and the other partial derivatives of E are computed
the same way. While being necessary, this condition is not sufficient (excepted in the partic-
ular case where the functional is strictly convex which is not the case here), and the solutions
to the Euler-Lagrange equations may also be local extrema of eq. (1). We will see later how
a multi-resolution approach helps solving this problem.

The four equations can be computed the same way, using the variational calculus tools,
and have similar terms. Let us introduce the following abbreviations:

Ilx := ∂xIl(x + w), Ilxz := ∂xIl(x + w)− ∂xIl(x), (9)

Ily := ∂yIl(x + w), Ilyz := ∂yIl(x + w)− ∂yIl(x), (10)

Ilz := Il(x + w)− Il(x), Ilyy := ∂2
yyIl(x + w), (11)

Ilxx := ∂2
xxIl(x + w), Ilxy := ∂2

xyIl(x + w), (12)

It+1
l := Il(x + w). (13)

and similar abbreviations for the right image Ir, as well as the following scalars: The last of
the previous notation is useful to see the time index in the following equations.

Ψ′

fl = ∂xΨ(∆(Il,x; Il,x + w)) (14)

Ψ′

fr = ∂xΨ(∆(Ir ,x + d; Ir,x + w + d′)) (15)

Ψ′

st = ∂xΨ(∆(Il,x + w; Ir ,x + w + d′)) (16)

Ψ′

div = ∂xΨ(|∇u|2+|∇v|2+λ|∇(d′−d)|2+µ|∇d|2). (17)

By computing ∂uE using a Gâteaux derivative, we obtain the first equation:

βflΨ
′

fl·
(

IlxIlz + γ(IlxxIlxz + IlxyIlyz)
)

+

βfrΨ
′

fr·
(

IrxIrz + γ(IrxxIrxz + IrxyIryz)
)

+

βstΨ
′

st·
(

(It+1
r −It+1

l )(Irx−Ilx) + γ
(

(Irx−Ilx)(Irxx−Ilxx)+

(Iry−Ily)(Irxy−Ilxy)
))

− α div(Ψ′

div∇u) = 0. (18)

This equation is composed of a data term, coming from EData, and a diffusion term in which
occurs the divergence operator.
The equation ∂vE = 0 is very similar to the latter :

RR n
�

6267



8 Huguet & Devernay

βflΨ
′

fl·
(

IlyIlz + γ(IlxyIlxz + IlyyIlyz)
)

+

βfrΨ
′

fr·
(

IryIrz + γ(IrxyIrxz + IryyIryz)
)

+

βstΨ
′

st·
(

(It+1
r −It+1

l )(Iry−Ily) + γ
(

(Irx−Ilx)(Irxy−Ilxy)+

(Iry−Ily)(Iryy−Ilyy)
))

− α div(Ψ′

div∇v) = 0. (19)

The equations ∂d
′ E = 0 and ∂dE = 0 can be written as:

βfrΨ
′

fr·
(

IrxIrz + γ(IrxxIrxz + IrxyIryz)
)

+

βstΨ
′

st·
(

Irx(It
r − It

l ) + γ(Irxx(Irx − Ilx) + Irxy(Iry − Ily))
)

− αλ div(Ψ′

div∇(d
′ − d)) = 0,

(20)

βfrΨ
′

fr·
(

It
rxIrz + γ(It

rxxIrxz + It
rxyIryz)

)

+

βstΨ
′

st·
(

It
rxIrz + γ(It

rxx(It
rx − It

lx) + It
rxy(It

ry − It
ly))

)

− α(λ + µ) div(Ψ′

div∇d) = 0. (21)

The boundary conditions for our problem are the Neumann conditions: ∀f ∈ {u, v, d, d′−
d},∇f · n = 0, where n is the external normal to the borders of image Il.

In this system of partial differential equations, the four unknown functions of our system,
u, v, d and d′, are highly coupled, but solving these equations will lead to scene flow
reconstruction.

3.2 Numerical solution

3.2.1 Numerical difficulties

As we explained, the energy is not trivially convex, since the optical flow constraint was
not linearized, and the non-linearities are present both in the data term and in the diffusion
term of the Euler Lagrange equations. This makes the problem ill-posed, and we cannot
use gradient descent to minimize the energy as in [13]. In order to solve these highly non-
linear coupled differential equations, we use an incremental multi-resolution algorithm, with
fixed-point iterations on the solution(u, v, d, d′) to improve it at each resolution level. A
similar method was proposed by Brox et al. [4] to solve the optical flow problem. The
stereo image pyramids are computed with a down sampling factor η, 0.5 < η < 1 to get a
smooth transition between pyramid levels (we used η = 0.9). The multi-resolution approach
ensures that we converge to a global minimum, as demonstrated in [11]. This algorithm has
been shown to work on many problems, and was recently improved to get near real-time
performance [5].

The data term in the Euler Lagrange equations, in eq. (18), is made of image values
and image gradients computed with respect to the reference image Il at time t. This is
equivalent to warping the three other images (Il at time t + 1, and Ir at times t and t + 1)

INRIA



A Variational Method for Scene Flow Estimation from Stereo Sequences 9

from the same pyramid level onto image Il at time t, using the current solution (u, v, d, d′),
and computing the data terms from these warped images and their gradients.

We deal with the non-linearities of the equations at a given pyramid level by using two
nested fixed point iterations, obtained by doing a first order Taylor expansion of the Euler
Lagrange equations to transform it into a linear system. The inside fixed point iterations
compute small increments of the solution (du, dv, dd, dd′), and the images are re-warped
using (u + du, v + dv, d + dd, d′ + dd′) at each iteration. The outside fixed point iterations
update the full solution (u, v, d, d′). We refer to sec. 3.2 of [4] for full details on how to
compute the fixed point iterations from the Euler Lagrange (although the referred article
concerns the simpler optical flow problem). The inside fixed point iterations uses the SOR
method to solve the final linear system. In this method, the system matrix is separated in
three parts: the diagonal, and the upper and lower triangular sub-matrices. Consequently,
different orderings of the lines and columns of the system will yield different results at each
iteration. Our implementation uses alternatively four different orderings, where the image
pixels are scanned in four different directions, in order to reduce the asymmetry induced by
each individual SOR iteration, which is not visible on the optical flow problem, but induced
oriented waves in the scene flow numerical solution.

The stopping conditions for the two fixed point iterations are measured from the relative
L2 norm between consecutive increments. We used 0.05 as the stopping condition for the
inner fixed point iterations, and 0.01 for the outer fixed point iterations.

Once the optimization is obtained at a given pyramid level, that solution is scaled by
1/η, up-sampled to the next resolution level, and the same process is repeated until the full
resolution is reached.

3.2.2 Discretization and final linear system

Each equation contains a fidelity data term and a non isotropic diffusive term. The data
fidelity term is expanded using Taylor order 1 expansion around the positions of a scene
point followed in each stereo pair, which gives expressions in (δu, δv, δd

′

, δd). For example,
Il(x+u+δu, y+v+δv) is replaced by the Taylor expression Il(x+u, y+v)+∂XIl ·δu+∂Y Il ·δv.
Concerning the diffusion term, we use either a 4-points scheme, using the left and right, above
and below neighbours, either a 8 points scheme using these pixels and diagonals neighbours.
These schemes interpolate values of the function at points located in the middle between
a pixel Pi,j of the reference image and its nearest neighbours (Pi+ 1

2
,j , Pi− 1

2
,j , Pi,j+ 1

2

and

Pi,j− 1

2

in the case of the 4-points scheme). Using the centered finite differences operators

concerning these points δ
+ 1

2

x , δ
−

1

2

x , δ
+ 1

2

y , δ
−

1

2

y we get a numerical approximation for the
divergence term estimated at pixel Pi,j :

div(b∇Φ)|i,j ≈
1

h2
(bi+ 1

2
,jΦi+1,j + bi− 1

2
,jΦi−1,j + bi,j+ 1

2

Φi,j+1 + bi,j− 1

2

Φi,j−1

− (bi+ 1

2
,j + bi− 1

2
,j + bi,j+ 1

2

+ bi,j− 1

2

)Φi,j)
(22)
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10 Huguet & Devernay

This expression is then used to discretize expressions of the form div(Φ + δΦ) for each
functionnal variable (u, v, d

′

, d). Finally, we regroup expressions using the unknown incre-
ments (δu, δv, δd

′

, δd) and we get a large, extremely sparse linear system Ax = b which main
matrix has the following block form :

A =

A1 −A1 04·NX

A3 A2 A4

04·NX
A1 −A1

We call NX and NY the dimensions (in pixels) of the reference image. 04·NX
is the

null squared matrix with dimension 4 ·NX . Then, because there are 4 equations per pixel
and NX · NY pixels in the reference image, A ∈ M4·NX ·NY ,4·NX ·NY

(<). A1 = 1
h
Id4·NX

,
where Id4·NX

is the Identity matrix with dimension 4 ·NX , is the submatrix associated with
boundary conditions on the horizontal image sides, and A2 is the submatrix associated with
the other pixels, the pixels on the vertical sides and the pixels located in the image interior.
The matrix A2 has the following block structure :

A2 =

B

C

...

C

B

C

...

B and C submatrix alternates in A2 structure. B is related to pixels located on the
verticals side of the reference image and is a matrix in space M4,4·NX ·(NY −2)(<) (4 lines
because we have 4 equations at this pixel, and 4 · NX · (NY − 2) is the total number of
unknowns associated with pixels not located on horizontal sides). B has the following block
structure :

B = 0 · · · 0
1

h
Id4 − 1

h
Id4 0 · · · 0

INRIA



A Variational Method for Scene Flow Estimation from Stereo Sequences 11

if the pixel at which B encode the discretized equations is located on the left vertical image
side, or

B = 0 · · · 0 − 1

h
Id4

1

h
Id4 0 · · · 0

if it is located on the right side.
C matrix encode the discretized equations at pixels located in the reference image inte-

rior. For a given interior pixel, C ∈M4,4·NX ·(NY −2)(<), like B matrix. This matrix embedd

the coefficients associated with the unknowns (δu, δv, δd
′

, δd), computed when the Euler
Lagrange equations were expanded using Taylor approximations, and then discretized. At
a given interior pixel Pi,j , C = Ci,j has the following block structure :

Ci,j = 0 · · · D1,i,j 0 · · · D2,i,j D5,i,j D3,i,j 0 · · · D4,i,j 0 · · ·

where

DT
1,i,j =

(

−ωb1
i−1,j −ωb1

i−1,j −ωλb1
i−1,j −ω(λ + µ)b1

i−1,j

)

DT
2,i,j =

(

−ωb1
i,j−1 −ωb1

i,j−1 −ωλb1
i,j−1 −ω(λ + µ)b1

i,j−1

)

DT
3,i,j =

(

−ωb1
i,j+1 −ωb1

i,j+1 −ωλb1
i,j+1 −ω(λ + µ)b1

i,j+1

)

and
DT

4,i,j =
(

−ωb1
i+1,j −ωb1

i+1,j −ωλb1
i+1,j −ω(λ + µ)b1

i+1,j

)

which correspond, for the 4 equations at the pixel Pi,j , to the discretized divergence
coefficients computed at the neighbours (see eq. (22)). D5,i,j is estimated at pixel Pi,j by

estimating equations coefficients related to (δu, δv, δd
′

, δd) and adding them the discretized
divergence coefficients at this pixel. This matrix has the generic form :

D5,i,j =









a1
δu a1

δv a1
δd

′ a1
δd

a2
δu a2

δv a2
δd

′ a2
δd

a3
δu a3

δv a3
δd

′ a3
δd

a4
δu a4

δv a4
δd

′ a4
δd









The submatrix A3 and A4 of the block matrix A have 0 elements almost everywhere
excepted at the lines associated with pixels which some neighbours are on the horizontal
image side. In this case, non zero elements are related to D1,i,j or D4,i,j .

This submatrix is not symmetric (for example in the general case a1
δv and a2

δu are not
equal), and so the general matrix of our system has not such property. Only 8 terms per
matrix line are not equal to 0, in the case of interior pixel, and 2 only for pixels on the image
side. Thus, this final linear system belongs to the most difficult class of the linear system
solving problems : the matrix is very large, not positive definite, and extremely sparse.
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12 Huguet & Devernay

3.3 Occlusions computation

Occlusions are handled by computing the functions βfl, βfr, βst, βs at each beginning

of the outer fixed point iteration. So we take into account each (u, v, d, d
′

) increment to
compute the occlusions maps. The β functions take the 1 value for pixels non occluded and
0 otherwise, so that for pixels occluded everywhere, only the regularization term is kept.
We describe the steps of βs estimation, the other functions are computed using a similar
principle:

� We first warp the disparity d to the right image Ir(., t) using Z buffering.

� We backwarp this disparity map to the left image Il(., t), and we add a tolerance (1.5
pixel) to the remapped disparity.

� We compute the occlusion map by comparing d with the backwarped disparity with
its tolerance.

The update of Edata for each pixel of the reference image is then realized.

3.3.1 Full algorithm with initialization

Since the problem to solve is strongly non-linear and non-convex, it must be carefully ini-
tialized in order to avoid local minima which correspond to a wrong solution.

For the optical flow problem [4], and especially when using a multi-resolution algorithm,
the coarsest resolution can be as small as possible, and the optical flow is usually initialized
to 0. The reason for this choice is that the optical flow is usually small compared to the
image dimensions, and it is easy to find a reasonable image resolution such that the scaled
down optical flow is below 0.5 pixel, which is usually enough to ensure convergence to the
global minimum.

In the scene flow case, we have a mixed problem: it looks like optical flow if we consider
each camera separately, but we simultaneously try to solve a stereo problem between the
left and right images. The characteristics of the stereo problem are very different from those
of the optical flow: the amplitude of the stereo disparity is usually comparable to image size
(it is usually even bigger than the size of the objects as seen in the images), and there are
lots of occluded areas. For these reasons, many multi-resolution approaches usually fail on
stereo if they start at a very coarse resolution, and our method will probably equally fail in
that situation.

Consequently, we chose to start the scene flow algorithm at an intermediate resolution,
and to initialize the four functions (u, v, d, d′) with non-zero values. First, we initialize
d using a stereo algorithm [8] which computes the disparity from the highest resolution
images (level 1 of the pyramid). The disparity error of a given stereo algorithm can be
easily evaluated using standard benchmarks [15], and we compute the pyramid level b such
that the downscaled nominal disparity error is below 0.5 pixels. We also compute a pyramid
level a, which is higher (coarser) than b, so that the expected optical flow at this level is
below 0.5 pixels. We then solve the optical flow problem – by keeping the terms of eq. (1)

INRIA



A Variational Method for Scene Flow Estimation from Stereo Sequences 13

dealing with the left optical flow, which bring us back to [4] – for the left and the right
images separately, from level a to level b, and we obtain estimates for the left optical flow
(u, v) and the right optical flow (u′, v′). The initial disparity d is then refined from a level
c to the level b (c is often chosen as being equal to b, but can be chosen by the user), using
the same method and keeping only the terms dealing with stereo at time t. d′ is initialized
by adding the difference between u′ and u to d, and warping the result to Il at time t.

Finally, the scene flow estimation algorithm is applied to the four images, from level b to
level 1 of the pyramid. The full scene flow estimation algorithm, including the initialization
phase, is detailed in the algorithm scheme.

Algorithm 1 Full scene flow estimation

Ensure: Compute scene flow (u, v, d, d′) from t and t + 1 stereo pyramids (each pyramid
has a levels)

Require: a, b, c ∈ N, a > b >= 1, a > c >= b >= 1
u← 0, v ← 0, u′ ← 0, v′ ← 0
for l = a to b do

(u, v)← left optical flow from (u, v) and level l
(u′, v′)← right optical flow from (u′, v′) and level l

end for

d← stereo from [8]
for l = c to b do

d← disparity at time t from d and level l
end for

d
′

(x + (u, v))← d + u′(x + d)− u
for l = b to 1 do

(u, v, d, d′)← scene flow from (u, v, d, d′) and level l
end for

4 Results and evaluation

Whereas there are numerous datasets with ground truth for various algorithms in computer
vision, the scene flow problem is probably not mature enough to deserve a proper evaluation
benchmark. However, such datasets exist for sub-problems of the scene flow: optical flow
and stereo.

The standard benchmark for optical flow is the Yosemite sequence, a flight sequence on
a ray-tracer-rendered landscape, with flow and depth ground truth. Unfortunately, at that
time a single camera was rendered for the sequence, and though a second camera could be
rendered by using the depth to warp the first image, the quality would be low, and the
occluded areas would be missing.

For the stereo problem, several datasets are available, each consisting in 8 view of the
same scene, where all the optical centers are aligned and evenly spaced, and the images are
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rectified [15]. Incidentally, these images can be used to benchmark a scene flow algorithm:
imagine a set of two rectified cameras which observe a static scene, and are translated along
the straight line joining their optical centers. All those images are present in the stereo
benchmark datasets. However, they represent a special configuration for the scene flow
estimation, since the optical flow part is strictly horizontal (v = 0), and the disparity maps
are the same (d′ = d), but since our algorithm doesn’t know anything about these, it is still
a good benchmark. We took images 2 and 6 of the Venus, Teddy and Cones datasets as the
stereo pair at time t, and images 4 and 8 as the stereo pair at time t + 1. Ground truth is
given as the disparity from 2 to 6, and the optical flow is half the disparity.

In order to evaluate our algorithm on a more general scene flow, we also generated
synthetic images of a rotating sphere (Fig. 2). This scene represents the extreme case
where a 3-D reconstruction will not give any information about what is happening in the
scene, and all the information is contained in the scene flow: since the sphere is rotating,
the reconstruction remains identical over time. Besides, the hemispheres are rotating in
opposite directions, which generates a strong discontinuity in the scene flow, and we will be
able to check if the method properly recovers that discontinuity.

The evaluation is done by computing the RMS error on the four maps u, v, d, d′.
The optical flow maps (u, v) are evaluated together, and the disparity maps are evaluated
separately: although they are measured also in pixels, measuring the disparity is more
difficult because of the disparity range and the occlusions. Results of these evaluations are
shown Fig. 3. Fig. 4 compares the angular error of the optical flow components of scene flow,
compared to optical flow computed using our method or [4]. Fig. 5 shows the resulting u,
v, d and d′ maps for the ball example, showing that the discontinuity was properly handled
by our algorithm, and the generated occlusion maps. Figures 6 and 7 present results on a
real stereo pair sequence with large motion and discontinuities.

For further evaluation of our method, we also provide an OpenCV based implementation
of the algorithm, with the sphere dataset1 (other datasets can be downloaded from the
Middlebury stereo page). The sample code can be used to compute optical flow, stereo, or
scene flow, using the unified approach presented in this paper.

5 Conclusion

In this report, we presented a variational framework to compute scene flow from a stereo-
scopic image sequence. This method couples optical flow estimation with dense stereo match-
ing by minimizing a global energy. The method handles discontinuities in the 3-D geometry
or in the 3-D motion vector field, is robust to the illuminations changes and moreover handles
the occlusions due to optical flow and stereo.

Our method extends the work made by Brox et al. [4] on accurate optical flow estimation,
by adding constraints due to the epipolar geometry, and we showed that the same kind of
numerical solution can be used to solve both problems. However, the nature of a disparity

1The source code is included in the additional material, and will be made available on a WWW server.
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Figure 2: The synthetic sample scene is a rotating textured sphere, where the two hemi-
spheres rotate separately (top-left, image on top-right)). The 3-D reconstruction remains
unchanged by these rotations The 3-D motion information is only measurable from the scene
flow: (u, v) (bottom left) and d′ − d (bottom right) show a scene flow discontinuity allow
the vertical meridian.
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Dataset (u, v) d d′

Venus 0.31 0.97 1.48
Teddy 1.25 2.27 6.93
Cones 1.11 2.11 5.24
Sphere 0.69 3.73 3.81

Figure 3: RMS error in pixels on the four maps computed by our scene flow algorithm with
the different datasets.

Dataset µof σof µsf σsf

Venus 1.06 1.17 0.98 0.91
Teddy 0.43 0.49 0.51 0.66
Cones 0.66 1.21 0.69 0.77
Sphere 1.50 5.65 1.75 6.07

Figure 4: Mean µsf and standard deviation σsf of the absolute angular error in degrees of
the optical flow component (u, v) of the scene flow, compared to the angular error (µof , σof )
of the optical flow computed separately.

Figure 5: Top: the recovered u, v, d, d′ maps for the ball example (−7 < u < 4, −4 < v < 4,
−113 < d < 1, −115 < d′ < 2). Notice the vertical discontinuity in d′, due to the fact that
the reference coordinates are those of the left image at time t. Bottom: the occlusion maps
for the data terms corresponding to left flow, right flow, disparity at t and disparity at t+1.
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map is different from the optical flow, in the sense that occlusions are larger, and the disparity
range is comparable to the size of the objects in the image, causing many difficulties to many
multi-resolution stereo algorithms. We thus proposed a two-step algorithm, where the initial
solution is bootstrapped by separate solutions to the optical flow and the stereo problem,
and that initial solution is then refined by our scene flow estimation method. This is the first
paper on scene flow which presents a quantitative evaluation of the method, by comparing
the optic flow component of the scene flow with the results of the most accurate variationnal
optical flow method to our knowledge. Moreover, our experiments showed that the method
is able to handle real stereo sequences with large motion and stereo discontinuities.

In the near future, we expect to have a mathematical proof for the convergence of this
method, and we will also work on speeding up the algorithm, probably by porting some recent
work on near real-time variational methods [5] to solve the scene flow problem. Moreover,
we would like to estimate a deterministic continuous function for the β coefficients handling
discontinuities. Previous work uses a probabilistic formulation [18, 17], but a deterministic
continuous approach could be better integrated into our variational formulation.
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Schnörr. Variational optical flow computation in real time. IEEE Trans. Image Pro-

cessing, 14(5):608–615, 2005.

[7] Rachid Deriche, Pierre Kornprobst, and Gilles Aubert. Optical-flow estimation while
preserving its discontinuities: A variational approach. In Proc. ACCV, pages 71–80,
1995.

[8] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient belief propagation for early
vision. International Journal of Computer Vision, 70(1), October 2006.

RR n
�

6267



18 Huguet & Devernay

Figure 6: An example with real data (images are 854×854 pixels). The time interval between
the top and the bottom stereo pair is 1.5s, resulting in illumination variations, large motion
(both in translation and rotation), and a clear motion discontinuity in the mouth region.
The ranges in pixels for the scene flow components on this sample set are u ∈ [−131, 1],
v ∈ [−49, 33], d, d′ ∈ [−122,−39].
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Figure 7: Sample results on real data: on top-left, the vertical flow component of scene
flow shows clearly that the mouth discontinuity was recovered. The right image at time 0
(top-right) and the stereo pair at time 1.5s were warped to the left image at time 0, showing
where the scene flow was correctly estimated. Although the discontinuity in the mouth area
was recovered, notice that the scene flow is not pixel-accurate in this area.
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