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The Delaunay Hierarchy

Olivier Devillers

Abstract

We propose a new data structure to compute the Delaunay triangula-
tion of a set of points in the plane. It combines good worst case complexity,
fast behavior on real data, small memory occupation and the possibility
of fully dynamic insertions and deletions.

The location structure is organized into several levels. The lowest level
just consists of the triangulation, then each level contains the triangulation
of a small sample of the level below. Point location is done by walking
in a triangulation to determine the nearest neighbor of the query at that
level, then the walk restarts from that neighbor at the level below. Using
a small subset (3%) to sample a level allows a small memory occupation;
the walk and the use of the nearest neighbor to change levels quickly locate
the query.
keywords: computational geometry, geometric computing, randomized
algorithms, Delaunay triangulation, dynamic algorithms.

1 Introduction

The computation of the Delaunay triangulation of a set of n points in the
plane is one of the classical problems in computational geometry and plenty of
algorithms have been proposed to solve it.

These Delaunay algorithms can have different characteristics:

• Optimal on worst case data, i.e. O(n log n) time.

• Good complexity on random data only

• Randomized

• On-line vs off-line

In the current trade-off between algorithmic simplicity, practical efficiency
and theoretical optimality, practitioners often opt for simplicity and practical

0INRIA, BP 93, 06902 Sophia Antipolis cedex, France. E-mail: First-
name.Lastname@sophia.inria.fr . This work was partially supported by ESPRIT LTR 21957
(CGAL). Preliminary version of that paper appeared in SoCG 98 [11]
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efficiency taking the risk of having bad performance on some special kind of
data.

Our aim is to reconcile many of the above aspects, namely to obtain an
incremental algorithm using simple data structures, having a good practical
performance on realistic input and still having a provable O(n log n) expected
randomized computation time in the worst case.

Previous related work

Our work is strongly related to some previous algorithms for Delaunay trian-
gulation. All these algorithms are incremental and their complexity is random-
ized, they use some location structure to find where the new point is inserted,
and then update the triangulation.

The first idea for a randomized incremental construction for the Delaunay
triangulation [5] uses a location structure based on the history of the Delaunay
triangulation: the Delaunay tree. Point pi is inserted at time i; to find the
position of pn in the triangulation, pn is located in all the triangulations at times
1 to n−1; the location at time i+1 is deduced from the location at time i. This
idea yields an expected O(n log n) complexity [6, 20] if the points are inserted in
a random order. The drawbacks of this approach are the following: the location
structure consists of the history of the construction and thus strongly depends
on the insertion order, and the additional memory needed cannot be controlled.
(The expected memory is proved to be O(n) and is experimentally about twice
the size of the final triangulation.)

Mulmuley [25] proposed a location structure independent of the insertion
order. The structure has O(log n) levels, each level being a random sample
of the level below. At each level, the Delaunay triangulation of the points is
computed, and the overlapping triangles at different levels are linked to enable
location of new points. This structure has the advantage of being independent of
the order of insertion, of ensuring an O(log2 n) location time for any point, and
of allowing deletions in an easier way than the Delaunay tree [13]. However, the
additional memory is still important and the location structure is not especially
simple.

Mücke, Saias and Zhu [24] proposed a very simple structure and algorithm
called jump and walk to handle triangulation of random points. The structure
reduces to a random subset of 3

√
n points and pointers, from each of these points,

to an incident triangle in the Delaunay triangulation. A new point is located by
finding the nearest neighbor in the sample by brute force, and walking in the
triangulation starting at that point. For evenly distributed points, the expected
number of points in the zone of a point of the sample is O(n

2
3 ) and since the

complexity of the walk has the behavior of a square root [17], we get an O( 3
√

n)

time for locating a point and an O(n
4
3 ) complexity for constructing the whole

triangulation. The simplicity of that algorithm makes it competitive with many
O(n log n) algorithms, but for some data (for example points on a curve) the

complexity may increase to O(n
5
3 ).
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Overview

Our approach uses a structure with levels similar to Mulmuley, but with
simpler relations between levels. This allows a better control of the memory
overhead. The transition between two levels is not direct as in Mulmuley but,
similarly to Mücke, Saias and Zhu’s algorithm, uses a walk to locate a point in
a triangulation.

In Section 2 we present the algorithm, in Section 3 we prove that the ex-
pected complexity of constructing the Delaunay triangulation is O(n log n). The
generalization to higher dimensions is explained in Section 4. In Section 5, the
parameters of the data structure are then tuned to minimize the constant in
the case of random points and are shown to yield an excellent behavior, we pay
special attention to the comparison with the method of Mücke, Saias and Zhu.
Finally we give some implementation remarks and practical results in Section
6.

2 Algorithm

Let S be a set of n sites in the plane. The aim is to compute the Delaunay
triangulation DT S of S and to maintain it efficiently under insertions and dele-
tions.

2.1 The location structure

The algorithm uses a data structure composed of different levels. Level i con-
tains the Delaunay triangulation DT i of a set of sites Si.

The sets Si forms a decreasing sequence of random subsets of S based on a
Bernoulli sampling technique [23, 26]:

S = S0 ⊇ S1 ⊇ S2 ⊇ . . . ⊇ Sk−1 ⊇ Sk

Prob(p ∈ Si+1 | p ∈ Si) =
1

α
∈]0, 1[.

The data structure is fairly simple: it contains the points of S and the
triangles of all the triangulations DT i. A point p ∈ S such that p ∈ Si ⊆ . . . ⊆
S0 and p 6∈ Si+1 is said to be a vertex of level i and has a link to a Delaunay
triangle of DT j incident to p for all j between 0 and i. A triangle of DT i has
links to its three neighbors in DT i and to its three vertices. The number k of
levels is not fixed; for each point, random trials decide its level, and the point
with the highest level determines k.

2.2 Location of a query

To locate a query q, we start at a known vertex vk+1 of the highest level k.
Then we search for vk, the vertex of DT k nearest to q. Since vk is also a vertex
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of DT k−1, we search for vk−1, the nearest neighbor of q in DT k−1, starting at
vk. The search is continued descending the different levels. At each level i, the
nearest vertex vi of q in DT i is determined.

At level i the search for vi is carried out in three phases:

• First phase: from vi+1, we have a link to a triangle of DT i having vi+1

as a vertex. All triangles incident to vi+1 are explored to find the triangle
containing the segment vi+1q.

• Second phase: all the triangles of DT i intersected by vi+1q are visited,
walking along the segment vi+1q up to the triangle ti that contains q.

• Third phase: from ti, we have to find the nearest neighbor vi of q. To this
aim, we visit the triangles that may be intersected by line segment qvi:
consider a visited triangle ww′w′′ of DT i such that q lies within the circle
C′ through w, w′ and w′′. Assume without loss of generality than |qw| ≤
|qw′|, |qw′′| and let C be the circle of center q through w, the relevant
neighbors of ww′w′′ are visited. Irrelevant neighbors are determined by
the following rules:

– Do not examine an already visited triangle.

– C does not cut C′ between w′ and w′′, thus the line segment qvi can
not intersect w′w′′ and the neighbor of ww′w′′ through w′w′′ does
not need to be examined (Figure 1a).

– if the absolute value of the angle qww′ (resp. qww′′) is greater than π
2

then qvi can not intersect ww′ (resp. ww′′) since C (which contains
qvi) does not intersect ww′ (resp. ww′′). The neighbor of ww′w′′

through ww′ (resp. ww′′) does not need to be examined (Figure 1b).

This phase starts at triangle ti and selects among the vertices of the visited
triangles the closest to q.

Figure 1c show the triangles visited by the different phases of the search.

2.3 Updates

Because of its simplicity, the data structure is fairly easy to update. Maintaining
it dynamically provides a fully dynamic triangulation algorithm. The links
between the different levels do not use any complicated data structure. The
vertices just know a triangle at all levels in which they appear.

To delete a point from S, just delete the corresponding vertex at all the
levels where it appears, which can be done in time sensitive to d the degree of
that vertex. On average d = 6 and thus some of the following algorithms can
be used: a complicated algorithm [1] of deterministic complexity O(d), a simple
randomized O(d) algorithm [8], solutions of complexity O(d log d) [12] or even
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Figure 1: Search for vi.

simpler O(d2) algorithms. The simple sub-optimal solutions may be good in
practice since d is small on average.

Inserting a point in S reduces to locating it at all levels, computing its level
i and inserting the new vertex at all levels j, 0 ≤ j ≤ i (which is sensitive to the
degree of the new vertex since it is already located). The insertion at each level
is done using a standard algorithm [21].

3 Worst-case randomized analysis

The analysis will rely on the randomization in the construction of the random
subsets Si and on the random order to insert the points of S. In this section,
no assumption applies to the data distribution, which can be the worst case
distribution. As usual in theoretical computational geometry, we make only an
asymptotic analysis and give rough upper bounds for the constants. In the next
section, parameter α will be tuned to get a tight constant in the special case of
evenly distributed points.

Let S be a set of n points organized in the structure described in Section 2
and q a point to be inserted in S. Since we have assumed a random insertion
order, q is a random point of S ∪ {q}.

We denote ni = |Si| and Ri = Si ∪ {q}.
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Notice that, thanks to the random insertion order, q is a random element of
Ri: an element v of Ri is equal to q with probability 1

ni+1 . Ri can be considered
as a random subset of Ri−1, indeed, given an element v of Ri−1, it belongs to

Ri with probability 1
ni−1+1 + ni−1|

ni−1+1
1
α (the first term is the probability that

v = q and the second term is the probability that v ∈ Si). In the sequel, we
denote by E(X) the expected value of some quantity X , the expectation is on
the whole randomization process, that is, q is random in Ri and Si is a random
subset of Si−1.

The cost of exploring all the triangles incident to vi+1 at the first phase of
the walk of level i is the degree of vi+1 in DT i. The cost of the second phase
is the number of triangles intersected by segment vi+1q. The cost of the third
phase is the number of visited triangles during the search of vi from ti.

Lemma 1 The expected degree of vi in DT i−1 is O(1).

Proof: The difficulty is that vi is not a random point in Ri but the nearest
neighbor NN(q) of a random point q in Ri. We will use the fact that qvi is an
edge of NN , the nearest neighbor graph of Ri, which has maximum degree 6
[27]. We denote by d◦G(v) the degree of v in some graph G.

E
(

d◦DT i−1
(NN(q))

)

= E





1

|Ri|
∑

q∈Ri

d◦DT i−1
(NN(q))





= E





1

|Ri|
∑

q∈Ri

d◦DT Ri−1
(q) + d◦DT Ri−1

(NN(q))





≤ 6 + E





1

|Ri|
∑

v,q∈Ri,v=NN(q)

d◦DT Ri−1
(v)





≤ 6 + E

(

1

|Ri|
∑

v∈Ri

d◦NN (v)d◦DT Ri−1
(v)

)

≤ 6 + E

(

1

|Ri|
∑

v∈Ri

6d◦DT Ri−1
(v)

)

≤ 6 + 36 ≤ 42

3

Lemma 2 Given w ∈ Ri, the expected number of vertices q of Ri such that w

belongs to the disk of center q and passing through the nearest neighbor of q in

Ri+1 is less than 6α.

6



ql

qj

w

Figure 2: For the proof of Lemma 2

Proof: Let w ∈ Ri and let w = q0, q1, q2 . . . qk be the points of Ri lying in a
wedge of angle π

3 having apex w sorted by increasing distance to w. Clearly, a
disk of center ql passing through qj (j < l) cannot contain w (see Figure 2) and
thus, if q = ql, a necessary condition for w to be in the disk having as diameter
the segment defined by q and the nearest neighbor of q in Ri+1 is that no point
of {q0, . . . ql−1} is in the sample Ri+1. It happens with probability (1 − 1

α )l.
Using six wedges around w to cover the whole plane, and summing over the

choice of q ∈ Ri we get the claimed result. Notice that the disk of center q

and passing through NN(q) contains the disk of diameter qNN(q), thus the
expected number of vertices q of Ri belonging to the disk of diameter qNN(q)
is less than 6α. 3

Lemma 3 The expected number of edges of DT i intersecting segment qvi+1 is

O(α).

Proof: Let e be an edge of DT i intersecting segment qvi+1. If e belongs to
DT Ri

, it means that e is an internal edge of the region retriangulated when q

is inserted in DT i.
The expected number of such edges is 3 since q is a random point in Ri, and

that number equals the average degree of q in Ri minus 3.
If e belongs to DT Ri

, one end-point w of e must belong to the disk of
diameter qvi+1, denoted disk[qvi+1], (otherwise any disk through the end-points
of e must contain q or vi+1 and e cannot be a Delaunay edge).
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The expected number of edges of DT Ri
intersecting disk[qvi+1] is bounded

by the sum of the degrees of the vertices in disk[qvi+1]

E(#{e ∈ DT Ri
having an end-point ∈ Ri ∩ disk [qvi+1]})

=
1

|Ri|
∑

q∈Ri

∑

w∈Ri∩disk [qvi+1]

d◦DT Ri

(w)

=
1

|Ri|
∑

w∈Ri

d◦DT Ri

(w) · #{q ∈ Ri|w ∈ disk [qvi+1]}

≤ 1

|Ri|
∑

w∈Ri

d◦DT Ri

(w)6α using Lemma 2

≤ 36α using the bound of 6 on the average degree of w

Notice that Lemma 2 was established for a fixed w and a random q which allows
it to be used inside the sum over w. Thus we get a total expected cost for the
walk bounded by 36α + 3. 3

Lemma 4 The expected number of triangles of DT i visited during the search

for vi from ti is O(α).

Proof: The triangles examined in Phase 3, either are triangles of DT i \ DT Ri

and the expected number of such triangles is 4, or are triangles of DT i ∩DT Ri

and have a vertex in the disk of center q passing through vi+1. Thus we can
argue as in Lemma 3, denoting disk |cqvi+1] the disk of center q through vi+1:

E(#{t ∈ DT Ri
having a vertex ∈ disk |cqvi+1]})

≤ 1

|Ri|
∑

q∈Ri

∑

w∈Ri∩disk |cqvi+1]

d◦DT Ri

(w)

≤ 1

|Ri|
∑

w∈Ri

d◦DT Ri

(w) |{q ∈ Ri|w ∈ Ri ∩ disk |cqvi+1]}|

≤ 1

|Ri|
∑

w∈Ri

d◦DT Ri

(w)6α using Lemma 2

≤ 36α using the bound on the average degree of w

The expected number of visited triangles is less than 4+36α. 3 An alternative
solution for Phase 3 consists of simulating the insertion of q in DT i in order to
select all the points which are neighbors of q in DT Ri

. Since we know that q

and vi are neighbors in DT Ri
, vi can be selected from these vertices. In that

case the visited triangles are those of DT i \DT Ri
plus their neighbors, that is,

an expected number of less than 10. This approach involves more complicated
tests than the approach analyzed above.
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Theorem 5 The expected cost of inserting the nth point in the Delaunay hier-

archy is O(α logα n)

Proof: By linearity of expectation, Lemmas 1, 3 and 4 prove that the expected
cost at one level is O(α). Since the expected height of the structure is logα n,
we get the claimed result. (The analysis is similar to the analysis for skip lists
[23].) 3

Theorem 6 The construction of the Delaunay hierarchy of a set of n points is

done in expected time O(αn logα n) and O( α
α−1n) space. The expectation is on

the randomized sampling and the order of insertion, with no assumption on the

point distribution.

Proof: Easy corollary of Theorem 5. 3

4 Higher dimensional case

The previous algorithm and its analysis generalize easily to higher dimensions.
The algorithm uses several levels of samples. At level i it uses a walking strategy
to locate the simplex containing a query, then its nearest neighbor vi can be
found by simulating the insertion of q in DT i.

The analysis of the previous section uses essentially the fact that the nearest
neighbor graph is of bounded degree 6 and the fact that the expected degree
of a point in a triangulation is also 6. The cost of walking at level i is the
product of these two numbers. In higher dimensions, the degree of the nearest
neighbor graph remains bounded by some constant depending on the dimension.
Unfortunately the expected degree of a random point is not bounded in higher
dimensions. As usual in analysis of incremental randomized constructions [4],
we can write aexpress the complexity as sensitive to the expected size of the
Delaunay triangulation of a sample. If f(r) is the expected size of the Delaunay
triangulation of a random sample of size r of S, then the expected degree of a

random point in the triangulation of that sample is f(r)
r .

Lemmas 1, 2, 3 and 4 generalize easily: Lemma 1 gives that the expected

degree of vi is O
(

f(r)
r

)

. Lemma 2 remains unchanged (up to a constant) and

Lemmas 3 and 4 give bounds of O
(

α
f(r)

r

)

for the Phases 2 and 3 of the walk.

The expected complexity of walking at level i is O(α f(αin)
αin ). Summing on the

different levels yields an expected complexity of
∑∞

i=0 α
f(αin)

αin to locate a point
in the Delaunay hierarchy.

There exist several bounds for f(r); in the worst case f(r) = r⌈ d

2 ⌉ and we
get Theorems 7 and 8 below. If the points are evenly distributed, f(r) = O(r)
[18] and the complexity of inserting a point is logarithmic. Other results on
f(r) exist, for example if there is a minimal distance between points [19] or if
the points belong to a surface [2].
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Theorem 7 The expected cost of inserting the nth point in a d-dimensional

Delaunay hierarchy for any constant ratio α is O
(

n⌈ d−2

2 ⌉).

Proof: The expected cost at level i is bounded by the maximum degree of the

nearest neighbor graph multiplied by α(αin)⌈ d−2

2 ⌉, summing for i going from 0

to ∞ gives O

(

α

1−α⌈ d−2

2 ⌉n⌈ d−2

2 ⌉
)

. 3

Theorem 8 The construction of the d-dimensional Delaunay hierarchy of a set

of n points can be done in expected time and space O
(

n⌈ d

2⌉
)

. The expectation

is on the randomized sampling and the order of insertion, with no assumption

on the point distribution.

Proof: Easy corollary of Theorem 7. 3

5 Tuning parameters

We have proved that our structure has an asymptotically worst case optimal
cost O(n log n) for any set of points in the plane. The constant hidden in the
O actually varies with α, the ratio between two levels of the hierarchy. In this
section, we propose a more precise analysis, not in the worst case, but for points
evenly distributed in a square1 to tune the parameter α in that case.

This section needs a careful analysis of the constant involved in the differ-
ent phases of the algorithm which implies a precise counting of the arithmetic
operations involved.

5.1 Phase 1

We can assume that d◦DT i
(vi+1) = 6 (and not only ≤ 36 as proved in Lemma 1).

And thus if the turn around vi+1 is clockwise or counterclockwise depending on
the position of segment vi+1q with respect to the starting triangle, and assuming
that this position is random around vi+1, the expected number of orientation
tests2 is 3. Figure 3 shows the different cases to average; the edges vi+1w such
that an orientation test vi+1wq is performed are indicated for a typical degree
6 vertex in the triangulation.

1We denote by γ the point density, that is, the expected number of points in any unit
square.

2An orientation test takes three points p, q and r and reports if the triangle is clockwise,
counterclockwise or degenerate.
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incident triangle
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q

q
q

q

tested edges

3 tests 4 tests

2 tests2 tests3 tests

4 tests

Figure 3: Number of orientation tests in Phase 1

5.2 Phase 2

Devroye et al. [17, 7] proved that the expected number of edges of a Delaunay
triangulation of random points crossed by a line segment of length l is O(l

√
γ)

where γ is the point density. Our experiments show that the constant is 2.
The expected number of points in the disk of center q passing through vi+1

is α − 1. Indeed, if the points of Ri are sorted by increasing distance from q,
vi+1 is the first point in Ri+1, thus the number of points in the disk is k with
probability (1− 1

α )k 1
α (probability that the k first points are not in the sample

and the k + 1st point is), and the expected number is 1
α

∑

k(1 − 1
α )k = α − 1.

Thus if l is the length of qvi+1 the density of points in DT i is γ = α
πl2 .

Thus we conclude that the expected number of edges of DT i intersecting

segment qvi+1 is i2l
√

γ = 2l
√

α
πl2 = 2

√
α√
π

.

For each edge ww′ crossed, two orientation tests are performed [14]: if w

is the newly examined vertex, orientations of triangles wqvi+1 and qww′ are
computed.

5.3 Phase 3

Phase 3 is more difficult to analyze precisely, but a rough bound is that the
number of candidate vertices examined (with shortest distance) is less than two
and that we examine less than 8 triangles in total.

In fact, we modified Phase 3 so that instead of really searching for vi, the
nearest neighbor of q in Si, we just define vi as the nearest among the three
vertices of ti. This modified Phase 3 is reduced to three distance computations
and two comparisons.

11
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Figure 4: Comparison of the number of floating point operations between c0(n)
and cMSZ(n) for α = 40 and β = 1.

5.4 Tuning α

A precise counting [10] of floating point operations (f.p.o.) yields a complexity

of 36 + 6.2
√

α at each level. Since the number of levels is logα n = log2 n
log2 α we

get a cost of c0(n) = (32 + 6.2
√

α)
⌈

log2 n
log2 α

⌉

which is close to its minimum (

c0(n) ∈ [13.3 log2 n, 14 log2 n]) for α ∈ [18, 90], with the minimum occuring
when α ≃ 40.

5.5 Comparison with [24]

A similar counting [10] of f.p.o. in the jump and walk algorithm, using a random

sample of β 3
√

n points, produces a cost of cMSZ(n) = 17+ 3
√

n

(

6.2√
β

+ 5β

)

which

is close to its minimal value for 0.5 < β < 1.
As shown by the comparison of the two curves in Figure 4, our method is

potentially much better than jump and walk [24], even for a small number of
points. However, this method of analyzing our approach hides the discontinuity
of the cost, since the effective number of levels is necessarily an integer. To have
a better understanding of what happens for a small number of points, we plot
the cost of inserting a point in a structure having a fixed number of levels.

The classical walk from a random point in the structure costs cwalk(n) =
17 + 6.2

√
n which is also the cost of inserting in our structure up to the time a

second level is created.

12



When k levels have been created, the cost is

ck(n) = cwalk

( n

αk

)

+ 15k + k · cwalk(α).

We can alternatively mix this multilevel approach with Mücke et al’s. sam-
pling at the first level of the structure. In that case, the cost is

c⋆
k(n) = cMSZ

( n

αk

)

+ 15k + k · cwalk(α).

This comparison (see Figure 5) shows that jump and walk [24] (c⋆
1(n)) be-

comes better than the simple walk (c1(n)) for n > 40. The two level delaunay
hierarchy (c2(n)) becomes better than the simple walk (c1(n)) for n > 180 and
better than jump and walk [24] (c⋆

1(n)) for n > 600. The main information is
that our structure should be significantly better than [24] for 10000 < n.

6 Implementation

6.1 Deletion

The above structure supports insertions and queries as explained above, but also
deletions. Since there is no complicated data structure to maintain, deletions
can be handled by just deleting the removed point at each level where it appears.

This can be done in output-sensitive time [9, 1], and thus the deletion of
a random point is done in expected constant time since a point appears at an
expected constant number of levels and its expected degree k is also constant.

From a practical point of view, and to keep the simplicity of the algorithm, a
simpler suboptimal algorithm is better. Point deletion can be done in O(k log k)
time in any dimension [12]. The hole created by the removal of all faces incident
to the removed points is filled by adding the new simplices in some good order.

6.2 Arithmetic degree

A basic geometric test (also called predicate) such as the orientation test usually
reduces to the evaluation of the sign of some polynomial; the degree of such a
polynomial is a useful measure of the complexity of the predicates used by the
algorithm [22]. The algorithm above is designed to make a parsimonious use
of high degree tests. More precisely, the location phase uses only orientation
tests on three points in Phases 1 and 2, and distance computations and angle
comparisons with π

2 in Phase 3. All these tests have degree 2. Updating the
Delaunay triangulation clearly needs to use in-circle tests which are of degree 4.

In higher dimensions, Phases 1 and 2 use degree d tests; Phase 3 and point
insertion use degree d + 2 tests.
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6.3 Robustness issues and degeneracies

Degeneracies are solved by handling special cases: if two points have the same
coordinates, then the insertion is not done, if four points are cocircular, then
the last point inserted is considered as outside the disk defined by the others.
This corresponds to the standard perturbation scheme [28] on the convex hull
of the points projected on the paraboloid in 3 dimensions. This generalizes in
any dimension.

We use exact arithmetic for 24 bits integers, and thus the coordinates of our
points are integers in range [−16.777.216, 16.777.216] (up to a multiplication by a
power of 2). Using this restricted kind of number, double precision computation
is exact on degree 2 tests and almost never leads to precision problems on degree
4 predicates. Nevertheless, the exactness of all computations are verified by an
arithmetic filter and exact computation is performed if needed.

In dimension three, we use the same kind of numbers. The orientation
test has degree 3 and the in sphere test have degree 5. All computations are
done using filtered floating point computations and exact computation if needed
[15, 16].

6.4 Experimental results

We have investigated the performance of our algorithm in different situations.
All point sets have 1.000.000 points (except moment), times are the time3

for reading the points and computing the Delaunay triangulation in seconds.

6.4.1 Sensibility to the input distribution

We have used the different kinds of input distributions described below:
2D square points evenly distributed in a square

ellipse points evenly distributed on an ellipse
mixed 95% points evenly distributed on an ellipse

plus 5% points evenly distributed in a square
parabola points evenly distributed on the parabola y = x2

and rounded to 24 bits
circle points evenly distributed on a circle (rounded)

3D cube points evenly distributed in a cube
ellipsoid points evenly distributed on an ellipsoid
object points measured on an object with a 3D sensor
sphere points evenly distributed on a sphere (rounded)
moment points evenly distributed on the moment curve

y = x2, z = x3 (rounded), 5.000 points only

3Running times have been obtained on a PentiumIII 730 MHz 640 Mo. Code is in C++
compiled with g++ under Linux.
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The following table gives the execution times. We can observe that the
running times are of the same order for the different kinds of distribution (except
for the quadratic example in 3D). By playing with the parameters, we can use the
same software to use the Hierarchy with or without the cubic root sampling of
Mcke, Saias and Zhu, the cubic root sampling without the hierarchy, or a simple
walk in the triangulation. The Delaunay hierarchy runs much faster than the
cubic root sampling in two dimensions. In three dimensions, the advantage is
less important but still significant, especially on some non uniform distributions.

data Hierarchy Hierarchy cubic root walk
+ sampling only sampling

square 19 20 56 488
ellipse 28 35 106 3380
mixed 31 31 708 392
parabola 33 35 170
circle 22 22 23 22
cube 90 94 102 245
ellipsoid 95 98 197 774
object 88 88 108 174
sphere 71 72 72 85
moment, 5000 62 62 63 71

6.4.2 Sensibility to the ratio between levels

The table below shows the running time for different point distributions and
depending of the ratio used to sample the levels. The line square in this table
agrees with the theoretical results of Section 5.4 that the behavior of the algo-
rithm should be good for a ratio between levels between 18 and 90; this validates
our counting of floating point operations as a relevant measure to establish this
optimal value of the ration α. . For non uniform distributions, the table shows
that a small ratio in the interval [18, 90] should be prefered. In all other tables,
we choose a ratio of 30. Using this ratio of 30 and for one million points, the
hierarchy has usually 3 levels of samples.

ratio between levels 3 5 10 20 30 80 200 500
square 27 23 20 19 19 21 24 27
mixed 29 25 24 28 31 47 75 113
ellipse 27 25 24 26 27 37 53 46
cube 147 123 106 100 97 96 97 98
object 130 110 95 89 89 87 89 91

6.4.3 Sensibility to randomness

The complexity is randomized, that is if you are unlucky with the random
sample or the random order of insertion the running time may increase. As
shown by the following table which gives the running time of different execution
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with different choices for the random sampling, the variance of the expected
running time of the algorithm is in fact very low and running times have a
variation of less than 1%. Since the times vary within this interval of 1% for
different runs of the algorithm, times in other tables have been rounded to the
precision of the second.

mixed 30.8 30.8 31.4 31.3 31.0
object 88.3 87.2 87.9 88.6 86.9

6.4.4 Comparison with other software

We have compared the two dimensional version with some Delaunay software
available on the WWW:

• qhull by Bradford Barber and Hannu Huhdanpaa, duality with 3D con-
vex hull [3] (available at http://www.geom.umn.edu/locate/qhull). This
algorithm is static.

• div-conquer by Jonathan Shewchuk, divide and conquer [29] algorithm
using a quadtree scheme. This algorithm is static.

• sweep by Jonathan Shewchuk, implements Fortune’s plane sweep algo-
rithm, which is static.

• incremental by Jonathan Shewchuk, incremental with Mücke et al. lo-
calization, this algorithm is semi-dynamic and can be easilly modified to
be fully dynamic.
These three codes support exact arithmetic on double (available at
http://www.cs.cmu.edu/∼quake/triangle.research.html).

• Dtree Delaunay tree structure[6] provides a semi-deynamic algorithm
(available at http://www.inria.fr/prisme/logiciel/del-tree.html).

• hierarchy this paper.

The execution times4 in seconds are in the table below. Our method is
significantly faster than the other incremental method, specially in the ellipse
cases. Our method is about 50% slower than the divide and conquer algorithm
and is clearly the best fully dynamic algorithm.

4This set of runs have been done on a Sun-Ultra1 200 MHz 128Mo.

17



distribution size qhull sweep div-conq incr Dtree hierarchy

random 5000 0.65 0.21 0.11 0.29 1.4 0.14
random 50000 8.0 3.6 1.6 6.6 17 2.3
random 500000 101 53 22 150 swap 31

mixed 5000 0.54 0.21 0.13 0.75 1.3 0.20
mixed 50000 7.8 3.2 2.16 42 16 3.5
mixed 500000 420 46 29 2100 swap 49

ellipse 5000 0.83 0.18 0.14 2.1 1.3 0.21
ellipse 50000 57 2.8 2.4 110 14 3.7
ellipse 500000 swap 39 33 1400 swap 55

parabola 5000 3.9 0.16 0.11 2.0 1.2 0.16
parabola 50000 790 2.7 2.0 110 14 3.0
parabola 500000 swap 39 28 1800 swap 45

circle 5000 93 0.17 0.17 0.52 1.4 0.14
circle 50000 220 3.1 1.8 11 15 2.4
circle 500000 swap 22 43 240 swap 36

7 Conclusion

We have proposed a new hierarchical data structure to compute the Delaunay
triangulation of a set of points in the plane. It combines good worst case ran-
domized complexity, fast behavior on real data, small memory occupation and
dynamic updates (insertion and deletion of points).

Referring to Su and Drysdale’s study of several techniques [30] and our
comparisons with Shewchuk implementations [29] of some of these techniques,
we have shown that our implementation is competitive with other approaches
on random data; the only faster approach for large inputs is the divide and
conquer algorithm which is not dynamic. Furthermore, we can prove that the
performance remains good on pathological inputs.

The main idea of our structure is to perform point location using several
levels. The lowest level just consists of the triangulation, then each level contains
the triangulation of a small sample of the levels below. Point location is done
by walking along a line segment in a triangulation to determine the nearest
neighbor of the query at that level, then the walk restarts from that neighbor
at the level below. Other walking strategies have been proposed [14] and may
be more efficient in practice but there is no theoretical result on the complexity
of these alternative walks. Location at the highest level is done using jump and
walk [24] which is efficient for small sets of points.

One characteristic of the Delaunay hierarchy is that the best time perfor-
mance is obtained with a ratio of about three per cent between two levels and
thus a very small number of levels (three or four typically) and thus good per-
formances in terms of memory occupation. The structure is simple and does
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not need additional features such as buckets.
Such structures can be generalized to other problems. The two main ingre-

dients of the proofs are bounds on the maximal degree of the nearest neighbor
graph and the expected degree of a random vertex in the Delaunay triangula-
tion. The first generalizes well in higher dimensions, while the second becomes
a data sensitive parameter (constant for random points, n⌈(d−1)/2⌉ in the worst
case). A generalization for computing the trapezoidal map can also be done.

Code

A demo version compiled for Sun Solaris is available at
http://www.inria.fr/prisme/logiciels/del-hierarchy/.
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