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Progressive Lossless Compression
Of Arbitrary Simplicial Complexes

Pierre-Marie Gandoin Olivier Devillers
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Figure 1: Steps in the progressive decompression of variousmodels.

Abstract

Efficient algorithms for compressing geometric data have been widely devel-
oped in the recent years, but they are mainly designed for closed polyhedral sur-
faces which aremanifold or “nearly manifold”. We propose here aprogressive
geometry compression scheme which can handle manifold models as wellas “tri-
angle soups” and 3D tetrahedral meshes. The method is lossless when the de-
compression is complete which is extremely important in some domains suchas
medical or finite element.

While most existing methods enumerate the vertices of the mesh in an order de-
pending on the connectivity, we use a kd-tree technique [8] which does not depend
on the connectivity. Then we compute a compatible sequence of meshes which
can be encoded using edge expansion [14] and vertex split [24].
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The main contributions of this paper are: the idea of using the kd-tree encod-
ing of the geometry to drive the construction of a sequence of meshes, an improved
coding of the edge expansion and vertex split since the vertices to split areimplic-
itly defined, a prediction scheme which reduces the code for simplices incident
to the split vertex, and a new generalization of the edge expansion operation to
tetrahedral meshes.

1 INTRODUCTION

Compressing data manipulated by computers has always been,and stays, a crucial
necessity since the amount of data grows as fast as the size ofcomputer storage. After
text, sound and images, the compression of geometric structures is a new challenge
both for storage and for visualization and transmission over the network. For this latter
application, we would like to design compression schemes that are progressive, where
the information is organized such that a coarse model can be visualized before the
transmission is complete.

Most often, a geometric structure consists of a set of points, often referred to as
thegeometry (or vertex positions) and theconnectivity (or topology), composed of the
adjacency relations between the vertices. The descriptionis sometimes also completed
by a list ofattributes (normals, colors, textures).

1.1 Related Work

1.1.1 Connectivity Driven Approach

The main difficulty in the design of a compression scheme is toachieve good compres-
sion rates forboth geometry and connectivity. Regarding the single resolution (non
progressive) geometry compression, which dates back to an article by Deering in 1995
using generalized triangle strips [7], all the methodsgive priority to the connectiv-
ity coding. The common intuitive idea is to describe a spanning tree of vertices and
faces by reordering the vertices according to a deterministic strategy to traverse the
mesh. This strategy constructs a sequence where each vertexis associated to a label
(Rossignac’s edge-breaker [25]), or some other additionalinformation such as the de-
gree of the vertex (Touma and Gotsman’s algorithm [31]), describing the way this ver-
tex is connected to the previous ones in the sequence. Thus, the order of enumeration
of the vertices is imposed by the connectivity and the geometric part of the coder tries
to get some additional gain, using differential coding or positions prediction: instead of
being specified with absolute coordinates, the new vertex position can be expressed rel-
atively to its predecessors, using a difference vector or some linear predictor. Most of
the single-rate compression methods [7, 9, 30, 12, 31, 25, 27, 19, 16, 15, 20, 3, 5, 11, 2]
follow this framework and reach costs as low as2 bits per vertex on average for the most
efficient connectivity coders.

Historically, progressive compression methods find their origin in mesh simplifica-
tion. The general idea is to create a decimation sequence from the original mesh using
some canonical operator (vertex or face removal, edge collapse, vertex unification)
yielding a very coarse version of the mesh. Furthermore, this decimation sequence is
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driven by a criterion optimizing the choice of the decimatedelements in order to max-
imize the rate/distortion ratio. Thus if the coarse model istransmitted, followed by a
sequence of refinements describing finer models, the client,by truncating the bit stream
at any point, is guaranteed to obtain the best approximationof the original object. Un-
fortunately, such a hierarchical organization often leadsto a significant overhead cost
in bit size. This is why simplification algorithms were not initially used ascompression
methods (an overview of these algorithms can be found in the very complete survey of
Garland and Heckbert [13]). The first methods for progressive geometric compression
are extensions of single-rate methods [29, 4]. By grouping the refinement operations
in batches, some techniques yield results relatively closeto those of single resolution
methods. For instance, the algorithm proposed by Pajarola and Rossignac [21, 22]
uses vertex bit-marking instead of the costly explicit coding of the vertex indices. The
two most efficient methods to our knowledge are based on the vertex removal operator,
followed by a canonical retriangulation allowing the decoder to identify the patches re-
sulting from the deletions. The first one is due to Cohen-Or, Levin and Remez [6], and
uses triangle coloring to code the patches. This technique results in connectivity costs
of around6 bits per vertex on usual models, but the strip retriangulation produces in-
termediate meshes whose visual quality is unsatisfactory.To avoid this problem, Alliez
and Desbrun [1] propose to preserve the regularity of the mesh during the simplification
by maximizing the number of degree6 vertices. To this aim, the algorithm alternates
the main decimation phase with a regularization phase wheredegree3 vertices are re-
moved. Besides the better quality of the transitional meshes, this method compresses
the connectivity of usual meshes (nearly manifold) down to3.7 bits per vertex on av-
erage. As in single-rate methods, the geometry coding follows from the connectivity
coding and is generally based on a linear local prediction. Some of these methods can
handle non manifold meshes of small genus, either by coding explicitly the changes
in topology or by stitching manifold patches [10], which generally induces important
overcosts. It is also important to note that much lower bit-rates can be reached when
the algorithm begins with a complete remeshing of the model to generate regularity
and uniformity [18, 17], which is not admissible in many practical applications where
data loss is prohibited.

1.1.2 Geometry Driven Approach

Schmalstieg and Schaufler [28], following Rossignac and Borrel [26] have tackled the
problem from a completely different point of view. They group vertices in clusters on
a geometric basis and merge them to construct different levels of details. However,
the main goal in their approach is to obtain continuity between coarse to fine approx-
imations of the object, and the achieved compression ratiosare not competitive with
the current state of the art. In a previous paper [8], we have adopted a similar ap-
proach: observing that the geometry is, bitwise, the most expensive part of a mesh,
and that in many cases, the connectivity can be automatically reconstructed from the
vertex positions, we designed an efficient, purely geometric coder, which constitutes
the starting point of our present work. The algorithm, validin any dimension, is based
on a kd-tree decomposition by cell subdivision. Givenn 2D points with integer coor-
dinates onb bits, the starting cell is a rectangular bounding box of size2b by 2b. The
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algorithm starts by encoding thetotal number of points n on an arbitrary fixed number
of bits (32 for example). Then it starts the main loop, which consists insubdividing
the current cell in two halves along the horizontal axis and then coding thenumber of
points contained in one of them (the left one for example) on an optimal number of
bits: if the parent cell containsp points, the number of points in the half-cell, which
can take thep+1 values0, 1, . . . , p, will be coded onlog

2
(p+1) bits using arithmetic

coding [32]. The number of points contained in the second half-cell does not have to
be explicitly encoded since it can be deduced from the total number and the number
transmitted for the first half-cell, after which each one of the two resulting cells is sub-
divided along the vertical axis according to the same rule. The process, depicted in
Figure 2, iterates until there is no non-empty cell greater than1 by 1. As shown on
Figure 2 (in yellow), the corresponding coding sequence consists only of the numbers
of points. The positions of these points are hidden in the order of the output. As the
algorithm progresses, the cell size decreases and the transmitted data lead to a more
accurate localization. The worst case for the algorithm hasbeen proven to correspond
to an uniform distribution of points in the bounding box. In the latter case, the gain is
equal ton (log

2
n − 2.402) bits. In practice, the method takes advantage of structured

distributions containing variations of local density, which yields generally much better
performances (see Section 2.5). The method works in any dimension and in the sequel
we will use it for points in dimension 3.
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Figure 2: The geometry coder on a two-dimensional example.

Regarding the compression of the connectivity, we propose two alternatives. The
first one is to reconstruct the connectivity from the geometry, which is reasonable in
special cases such as terrain models or densely sampled objects. The second possibility
is an edge-based connectivity coder, but the proposed technique handles only edges and
not higher dimensional faces. It is rather expensive and spend more than12 bits per
vertex for a triangular mesh, these bad performances restrict this technique to very
specific applications for sparse meshes with few edges.

1.2 Overview

In this article, we present a new algorithm for connectivitycoding, compatible with the
kd-tree geometry coder described above. The general idea isto first run the geometry
coder splitting the cells without taking the connectivity into account, then, when the full
precision is reached, the connectivity of the model can be added and we can run the
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splitting process backwards, merging the cells and deducing connectivity between the
cells of coarser models (Section 2.1). Connectivity changes between successive models
can be encoded by symbols inserted between the numbers of thecode of Figure 2.

The changes of connectivity can be described by two well-known decimation op-
erators originally used in a surface simplification context: edge expansion and vertex
split. The edge expansion generates short codes in locally manifold cases, while the
more expensive (but more general) vertex split operator allows us to treat general mod-
els and even unconnected 3D objects like “triangle soups”. Compared to classical use
of these two operators, we get a cheap description for two reasons: first, in our case,
the vertex to be split is implicitly defined and does not need to be referenced explicitly;
the second reason is the use of prediction techniques which improve the compression
of the connectivity by about50% (Section 2.4). We get bit-rates of8 bits per vertex
for the connectivity in the non manifold cases and bit-ratesas low as3 bits per vertex
for nearly manifold meshes usually handled by the geometriccompression community.
In the manifold case, we are competitive with the most efficient published algorithms
[22, 6, 1], while we reach a continuity in the bit-rate with respect to the manifold/non
manifold axis using a unified encoder (Section 2.5).

Furthermore, we show how the method can be extended to volumetric meshes. To
this aim, we define a new operator for edge expansion and propose an efficient encoding
for it. This approach improves the best progressive method reported for tetrahedral
compression [23] by25% (Section 3). We finally discuss the possibility to adapt the
method to polygonal meshes and conclude in Section 4.

2 THE CONNECTIVITY CODER

2.1 Principle Of The Algorithm

Starting from the principle described in Section 1.1.2, thekey idea consists in defining
a connectivity between the cells of the kd-tree to approximate the connectivity of the
original 3D model. Then the geometric code is enriched: to the number of vertices in
the first half of a split cell is appended a code which describes how the connectivity
with other cells evolves during the split. There are now two different problems: on the
one hand, we have to associate connectivity to coarse levelswhere the cells contain
several points, on the other hand, the way the connectivity evolves has to be coded
efficiently.

Let our model be composed of a point set and a set of simplices (edges and tri-
angles). If we consider some intermediate step of the construction of the kd-tree, we
embed the connectivity of the model on the set of cells by creating edges and triangles
between the cells if they exist in the original model betweenthe points contained by
these cells. This sequence of connectivities for the sequence of sets of cells is con-
structed in the fine to coarse direction, going back through the subdivision process up
to the biggest cell (the object’s bounding box), using cell merging. After each merge,
the information required by the decoder to restore the original connectivity is encoded.

When two cells are merged, they are replaced by a parent cell. Moreover, each
cell is identified to its center-point, representative of all vertices contained in the cell.
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Therefore, merging two cells is equivalent to unifying the two vertices respectively
representing them. Accordingly, in the following, we will use tools and vocabulary
originating from progressive mesh simplification. Basically, the vertex merging is per-
formed by the two following decimating operators:

Figure 3: The edge collapse.

Figure 4: The vertex unification.

• edge collapse, originally defined by Hoppeet al. [14] and widely used in surface
simplification (but also for compression purposes by Pajarola and Rossignac [21, 22]),
will be used to merge two adjacent cells under some hypotheses. The two endpoints
of the edge are merged, which leads to the deletion of the two adjacent triangles (only
one if the edge belongs to a mesh boundary) degenerating in flat triangles (Figure 3).
• vertex unification, as defined by Popović and Hoppe [24], is a much more general
operation that will allow us to merge any two cells even if they are not adjacent in the
current connectivity; the result is non manifold in general(Figure 4).

Each of these operators has a reverse operation: the edge expansion and the vertex
split, and their efficient coding will be described in detailin Section 2.2.

In the surface simplification literature discussed previously, the algorithm usually
has complete freedom to choose the mesh elements on which thedecimating operation
is applied. This has two main consequences on the methods. Onthe one hand, it is
possible to optimize the decimation in order to best approximate the original surface
as long as possible. Thus to minimize the geometric distortion, a priority queue con-
taining the mesh components is dynamically maintained, andat each decimation, the
item minimizing a proximity criterion to the original mesh (or sometimes to the pre-
vious version of the mesh) is chosen. On the other hand, in order to let the decoder
know which component have been deleted and must be restored,an additional code
describing the index of the component among the whole current set must be output.

In our case, on the contrary, the edge to be collapsed or the vertices to be unified
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are implicitly specified by the subdivision order of the geometric coder. The decoding
algorithm uses this implicit definition and the cost of specifying the vertices to apply
the operator is avoided. The connectivity coder simply generates a symbol identifying
which of the two operators has been used, followed by the parameters detailing the way
this operator has modified the connectivity of the current set of cells. The next section
shows how these parameters can be efficiently encoded.

2.2 Coding Of The Decimation Operators

2.2.1 Edge Collapse

The edge collapse operator is very inexpensive in terms of coding, but can be applied
only in a quite restrictive context: not only the vertices tomerge have to be adjacent, but
also the neighborhood of the contracted edge must be manifold and orientable. Under
these hypotheses, an edge collapse results in the loss of thetwo adjacent faces, and the
necessary information to code the reverse operation — the edge expansion — consists
of the indices of two edges (V N2 andV N7 in Figure 5) among the edges incident to the
merged vertexV (V N1 to V N10). Actually, since the neighborhood ofV is manifold
and orientable, the two edges specified unambiguously splitthe adjacent simplices in
two subsets, one of which will be attached toV1, the other toV2.

If the merged vertex has a degreed, the description of the two edges to be expanded
into triangles costslog

2

(

d
2

)

. For an average degree equal to6, and with arithmetic
coding, this leads to a code size smaller than4 bits. However, in the context of the cell
subdivision, an additional bit is necessary to complete thedescription. In fact, when
a cell is halved, its center-point is split into two verticeswhose positions are fixed to
the centers of the sub-cells. Consequently, the decoder needs to know which vertex
is connected to the red simplices (or equivalently, which one is connected to the blue
simplices, see Figure 5).
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Figure 5: The edge expansion.

In Section 2.4, we will see how simple prediction techniquesfor the two edges
expanded into triangles can result in edge collapse coding using less than3 bits per
vertex on “nearly manifold” and “regular enough” meshes.
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2.2.2 Vertex Unification

When the vertices to be merged are not adjacent, or when their neighborhood possesses
a complex topology, a more general operator is used: the vertex unification, introduced
by Popovíc and Hoppe [24] inProgressive Simplicial Complexes, and whose reverse
operation is called generalized vertex split. Using this operator allows us to simplify
— but also, in the framework of this article, to efficiently compress — any simplicial
complex (i.e. any set containing simplices of dimension0 (points),1 (edges),2 (tri-
angles),3 (tetrahedra), and so on), which is much more general than theconnected
manifold case usually handled by previous geometric compression methods.

The counterpart of this genericity is that without careful coding, the description
of the generalized vertex split can be extremely expensive.Indeed, the principle is to
exhaustively detail the evolution of the simplices incident to the vertexV to be split.
More precisely, whenV1 andV2 are unified intoV , any simplexS incident toV1 or
V2 is replaced byS′ = (S \ {V1, V2}) ∪ V (in the case whereS′ is obtained several
times, only one occurrence remains). Consequently, the coding sequence associated to
the unification must provide the decoder with the information required to reconstruct
the original simplex set. In order to do so, each simplexS′ incident toV receives a
symbol from1 to 4 determining its evolution afterV has been split:
• code 1:S′ becomesS1 incident toV1;
• code 2:S′ becomesS2 incident toV2;
• code 3:S′ becomesS1 incident toV1 andS2 incident toV2;
• code 4: S′ becomesS1 incident toV1, S2 incident toV2, and S of dimension
dim(S′) + 1 incident toV1 andV2. (see Figure 6).

V

V

dim 1
split

dim 2
split

code 1

V1 V2

V1 V2

code 2

V1 V2

V1 V2

code 3

V1 V2

V1 V2

code 4

V1 V2

V1 V2

V V1 V2
V1 V2

dim 0

Figure 6: Examples of generalized vertex split.

If naively encoded, this description can lead to prohibitive costs of about30 bits.
Popovíc and Hoppe propose to optimize the coding by two means. First, they observe
that the simplex codes are not independent. Their mutual interaction can be summa-
rized by the following two rules: i) if a simplexS has codec ∈ {1, 2}, all the simplices
adjacent toS with dimensiondim(S) + 1 have codec; ii) if a simplex S has code
3, none of the simplices adjacent toS with dimensiondim(S) + 1 have code4. By
coding the simplices adjacent to a vertex to be split by ascending dimensions, and ap-
plying these rules and their contrapositives, the cost is reduced by50% on average.
The second optimization suggested by the authors is relatedto entropy coding. Given
a simplexS of dimensiond with possible codesc1 to ck, k ≤ 4 (some codes can be
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known impossible accordingly to rules i) and ii)), the codesc1 to ck have not the same
probability. Therefore, a statistical array is filled during the decimation process, then
the sequence is reversed and the final codes are optimally output: for each simplex,
the probability distribution corresponding to its dimension, its potential codes, and its
actual code, are sent to the arithmetic encoder. This yieldsa new gain of about50%
which lowers the final cost down to8 bits per vertex for usual 3D objects.

2.3 Analysis And Features

The decimation algorithm starts from the set of separated vertices with their origi-
nal connectivity, and performs successive cell/vertex merging according to the fine to
coarse sequence of subdivisions generated by the geometriccoder, until one vertex rep-
resentative of the whole point set and centered in the bounding box is obtained. In this
section, we give an experimental analysis of the percentageof vertex splits and edge
expansions obtained in that context. Sincen − 1 decimation operations are necessary
to completely decimate a set ofn points, the global cost of the connectivity coding in
bits per vertex is almost:

Cseparation + Ccollapse Pcollapse + Cunif Punif

whereCseparation is the size of the header specifying which refinement operator is
used,Ccollapse andCunif are the respective costs of the refinement descriptions,Pcollapse

andPunif are the respective percentages of occurrences of the operators in the coding
sequence. The performance of the algorithm thus depends onPcollapse andPunif ;
Table 1 shows some statistics for typical models (the last row gives the size of the sep-
aration code arithmetically encoded). In usual surface simplification methods where
the decimating items are explicitly specified, they are chosen to give priority to edge
collapse on vertex unification; here, we do not have this freedom, but we still observe
that on nearly manifold models, the edge collapse is quite predominant in the decima-
tion process (up to96% of the operations).

models number of edge vertex separation
vertices collapse unification cost

triceratops 2832 76.4% 23.6% 0.79 bit
blob 8033 90.9% 9.1% 0.44 bit

fandisk 6475 96.0% 4.0% 0.24 bit
bunny 35947 93.0% 7.0% 0.37 bit
horse 19851 92.4% 7.6% 0.39 bit

average 73138 92.2% 7.8% 0.39 bit

Table 1: Decimation operators percentages.

The cell subdivision principle that governs the algorithm makes it intrinsically well
suited to progressive visualization purposes. As the decoding progresses, cell sizes de-
crease and the received data allow us to localize the points with more accuracy, and
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simultaneously, to smooth the object by incorporating the new connectivity informa-
tion. Therefore it is possible to visualize the set of pointsat any stage of the decoding,
with smooth transitions between the successive versions using geomorphs. Moreover,
the precision over the point coordinates is controlled since it is equal to half the current
cell size.

Besides progressivity, the advantage of the method is to provide advanced inter-
activity to the user. For instance, the geometric coder doesnot impose ana priori
quantization of the coordinates: the server can compress the points on as many bits as
necessary to preserve the original floating point precisionof the model, and the client
asks for refinement data until he/she considers the accuracysufficient for his/her needs.
Furthermore, since the cells are structured in a kd-tree, itis possible, during decoding,
to select one or more subsets of the scene and to refine them selectively. Hence an
interactive navigation through a complex 3D scene is optimized in terms of quantity of
data transmitted.

Moreover, the connectivity coder can efficiently handle anysimplicial complex in
dimensiond (see Section 3 for the volumetric meshes extension). In particular, it is
important to note that any geometric structure that can be described as a set of edges
(i.e. 1-dimensional simplices) is manageable by our algorithm. For instance, this can
provide a way to progressively encode polygonal surface meshes (in this case however,
a post-process phase is needed to reconstruct the polygons by searching the edge loops).
Thus, the edge-based connectivity coder proposed in our previous paper [8] appears as
a particular case of our method. Figure 7 gives an example of connectivity code
inserted in the geometric code of Figure 2. The portion of code in the figure starts with
a geometric vertical split with3 points on the left, followed by a code of edge expansion
and the indices of the two incident edges (1 and 4) expanded intriangles; the three next
horizontal geometrical split (001) involves cells with only one point and does not need
connectivity code; the last code is a horizontal geometrical split with 2 points above
followed by a code of generalized vertex split and the connectivity splitting code for
the vertex, the edges and the incident triangles, the simplices are colored on the figure
accordingly to their splitting code (due to compatibility rules, only one triangle is really
coded).

2.4 Prediction

For the encoding of the edge expansion of vertex split, we have consider all cases
with the same probability, for example, in Figure 5 the 10 pointsNi are considered as
possible vertices of the triangles incident to edgeV1V2 with the same probability. If we
can compute more realistic probability, then the performance of the arithmetic coding
are improved, the most probableNi get short encoding and the less probable larger
one. In the end of this section, we compute such probabilities.

Since the edge collapse operator is by far the most frequent (as shown by Table 1),
we focused on the optimization of its description. In the coding sequence, the descrip-
tion of connectivity follows that of geometry, so that when the decoder is about to read
the description of an edge expansion, it already knows the geometric position of the
vertexV to be split, those of the resulting verticesV1 andV2, and those of the neigh-
borsNi (see Figure 5). The idea is to exploit this geometric information in order to
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attempt to guess the two edges having to be expanded into faces to recover the orig-
inal connectivity (thecut-edges). To do so, a score is assigned to each incident edge
according to some criterion (defined later), then the scoresare normalized and passed
to the arithmetic coder; if the prediction scheme is reliable, the actual edges to be ex-
panded obtain a high probability, and thus a short code. Among the numerous criteria
we have tested, two stand out by their efficiency and their robustness. The first one
is very simple and intuitive: the probability for the edgeV Ni to be one of the two
cut-edges is defined as a linear function of|d(Ni, V1) − d(Ni, V2)| (whered() is the
Euclidean distance). For the second predictor, an interpolating plane ofV , V1, V2 and
Ni is first computed, then a Delaunay-like criterion is appliedto the projected points:
the score of each edgeV Ni is inversely proportional to the radius of the circumscribed
circle of {V1, V2, Ni} (see Figure 8). By linearly combining these two criteria, anav-
erage gain of up to40% can be reached for the edge collapse coding sequence. As for
the additional bit assigning the two edge subsets (white andblue edges in Figure 5)
to the verticesV1 andV2, the gain is even more spectacular since a simple proximity
criterion reduces the cost down to0.2 bit per operation. The prediction proceeds as
follows: if B1 (resp. B2) denotes the barycenter of the neighbors ofV in the first
(resp. second) subset, the comparison of the expressionsd(V1, B1) + d(V2, B2) and
d(V1, B2) + d(V2, B1) allows us to predict which subset is attached toV1 and which
one toV2, with an average reliability of95% on the models of Table 1.

For the vertex unification, the same kind of proximity criterion can be used to
predict the code of the simplices. In our implementation, wechoose to apply prediction
schemes only for simplices whose code is1 or 2, which are much more frequent than
codes3 and4. We deduce the probabilities for a simplex of barycenterR to be attached
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Figure 8: Delaunay (left) and proximity (right) criterions.

to V1 (resp. V2) directly from the distanced(R, V1) (resp. d(R, V2)) (see Figure 8).
The probabilities are then passed to the arithmetic coder and yields a gain of10 to 20%
on the sole vertex unification coding sequence.

It must be noted that, as usually with prediction, the efficiency of all these methods
strongly depends on the regularity of the mesh.

2.5 Results

Table 2 presents some results of our algorithm compared to those of Pajarola and
Rossignac [22], Cohen-Or, Levin and Remez [6] and Alliez andDesbrun [1] (a row
concerning the Touma and Gotsman [31]single-rate method has been added as refer-
ence). For each model and each benchmarked algorithm, the first line gives the con-
nectivity cost and the second one the geometry cost in bits per vertex. As shown by the
last line, our method reaches progressivity with less than5% overhead compared to the
most efficient single resolution algorithms and compares well to other multi-resolution
techniques. Generally speaking, the performance comparison between the various pub-
lished works is made very delicate owing to the disparity of the tested models, as well
as the disparity of quantizations on a given model. Since we have not implemented all
the methods, Table 2 uses the 3D objects appearing in the different articles. Regard-
ing the quantization, all the models have12 bits coordinates, except the fandisk whose
vertex coordinates are coded on10 bits.

As shown in Section 2.2.2, the vertex unification operator makes our algorithm
applicable to a much wider range of geometric structures than the manifold trian-
gulated surfaces. Table 3 gathers the results of our algorithm on 3D objects mod-
eled with triangle soups (these objects are freely available on the 3DCafe web site:
http://www.3dcafe.com/asp/meshes.asp). The connectivity and geometry bit-rates are
separated as previously, and the vertex coordinates have been quantized on12 bits for
all the models. Contrary to the objects tested in Table 2, theedge collapse occurs barely
during the decimation process: it represents less than5% of the operations. As a result,
the average bit-rate of the connectivity goes up to8 bits per vertex.

Figures 9 and 10 show the progressive decompression for a manifold surface (the
triceratops) and a triangle soup (thetree, presented in a global view and a zoomed in
region). For thetriceratops, the size of the compressed data goes from4% (for the
first low precision version) to25% (for the final lossless version) of the original data in

12



models vertex T G P R C L R A D our
number 1998 2000 2000 2001 algo

triceratops 2832 2.2 7.4 5.8 5.9 6.0
20.0 21.0 20.4 25.5 19.2

blob 8033 1.7 5.9 7.6 4.3 4.1
20.0 21.0 19.7 20.6 20.1

fandisk 6475 1.1 6.8 ? 5.0 2.9
9.0 15.0 12.3 12.1

bunny 35947 ? 7.0 ? 4.0 3.1
16.0 15.4 14.8

horse 19851 2.3 ? 5.7 4.6 3.9
17.0 15.4 16.2 16.4

average 73138 2.0 7.1 5.8 4.4 3.5
16.5 16.9 17.0 16.3 15.7

total 18.5 24.0 22.8 20.7 19.2

Table 2: Results on manifold models in bits per vertex for connectivity (number above)
and geometry (number below).

models vertex results models vertex results
number number

aqua05 16784 8.5 grass14 29224 7.5
16.4 18.8

maple01 45499 8.2 skeleton 6103 11.4
16.9 15.9

m tree1 17782 7.9 average 115392 8.2
16.0 17.1

Table 3: Results on triangle soups in bits per vertex for connectivity (number above)
and geometry (number below).

their raw form (3 x 12 bits per vertex for the positions plus3 x log
2
n bits per triangle

for the connectivity). As for thetree, the compressed size spreads from8% to 45%
of the original raw size. We also draw the average positionning error of the vertices
as the decompression evolves. Figures 1 and 12 show more examples of progressive
decompression.

3 VOLUMETRIC MESHES EXTENSION

Volumetric meshes have been extensively used in finite element for years, and are also
more and more widespread in volume visualization. More specifically, tetrahedral
meshes, which offer a direct and flexible way to interpolate numerical values in any
point in space, have established themselves as the most natural and powerful tool for
volume representation.

Although the need for tetrahedral compression is clear (theconnectivity being by
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Figure 9: Rate distorsion on thetriceratops model.

far more expensive than for surface meshes), relatively fewmethods have been pro-
posed up to now. Regarding the progressive coding, the only article tackling the
progressive tetrahedral mesh compression is due to Pajarola, Rossignac and Szym-
czak [23], and uses an edge collapse operator applied to successive batches of indepen-
dent edges. Besides the cost of the vertex split description(the implant), an additional
bit per vertex and per batch is used to identify the vertices to be split. Thus the global
cost depends on the number of independent edges collapsed ineach batch. To avoid
the appearance of non manifold regions during the simplification process, some edge
collapses are forbidden. As for the compression of the vertex positions, the authors
suggest to exploit the prediction techniques designed for triangular meshes.
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Figure 10: Rate distorsion on them tree1 model.

3.1 Generalization Of The Decimation Operators

The generalization of the vertex unification operator described in Section 2.2.2 is straight-
forward in any dimension. As a result, the progressive geometry and connectivity cod-
ing algorithms we proposed in the framework of triangular structures are easily appli-
cable to any simplicial complex in dimensiond. However, without a low cost operator
equivalent to the edge collapse described in Section 2.2.1,the performances regard-
ing the connectivity compression will not be competitive. More precisely, the average
cost of a vertex unification for tetrahedral meshes is120 bits without optimization, and
around40 bits by applying the two rules stated in Section 2.2.2 plus arithmetic coding.

We suggest here a decimation operator equivalent to the edgecollapse adapted
to tetrahedral meshes. Similarly to the case of polyhedral surfaces, we improve the
coding of special vertex unifications that do not create topological changes in their
neighborhood. More precisely, this 3D edge collapse can be used when the reverse
operation fulfills the following conditions:
• the vertexV to be split has a code4 (i.e. the split is an edge expansion);
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• the set of triangles incident toV having a code4 (i.e. the triangles generating a
tetrahedron after the split) forms a manifold surfaceM , andV is not on its boundary;
• the remaining edges (i.e. the edges adjacent toV that do not belong toM ) have a
codec ∈ {1, 2};
• M separates the set of code1 edges from the set of code2 edges (see Figure 11).

code 1 edges

code 2 edges

(code 4 faces)
surfaceM

V

Figure 11: Good case for the 3D edge expansion.

When the conditions are satisfied, the piece of code that allows to restore the neigh-
borhoods of the verticesV1 andV2 before the unification is composed of: i) the number
of code4 triangles adjacent toV ; ii) the indices of these triangles among the set of tri-
angles incident toV ; iii) the indices of the edges lying on the “first” side ofM . As
shown in Section 2.4, the cost can be lowered with the help of prediction techniques
combined with arithmetic coding. On average, the final cost of this 3D equivalent of
the edge collapse is about20 bits.

3.2 Results

As in the coding of triangular structures, the global cost depends essentially on the
occurrence percentages of the two operators. For the Delaunay tetrahedralization of
10, 000 points points uniformly distributed in a sphere, the 3D edgecollapse occurs
in less than45% of the vertex merging; we thus reach a bit-rate of34 bits per vertex
to encode the mesh connectivity and35 bits per vertex for the geometry if the point
coordinates are quantized on16 bits. We obtain a final compression rate of15% if
we compare with a direct storage with16 bits per coordinate and4 × log

2
n bits per

tetrahedron.
These results can be compared with those obtained by Pajarola, Rossignac and

Szymczak [23]for progressive tetrahedral compression. For a random Delaunay tetra-
hedralization containing10, 000 vertices, their edge collapse operator, whose function-
alities and coding are quite different from ours, yields a total cost around45 bits per
vertex for the connectivity (taking into account the base mesh plus the refinement cost).
Moreover, the progressivity is limited since the base mesh cannot be arbitrary small (it
represents about 1/4 of the total cost). The geometry codingis not addressed in this
article, just like in Yang, Mitra and Chiueh work [33], whichtackle the progressive
coding of tetrahedral meshes from a rendering point of view.

We have also tested our algorithm on meshes coming from real applications: for a
mesh of a Falcon business jet, (courtesy of Dassault-Aviation) with 10188 vertices and
54911 tetrahedra with coordinates on 16 bits, we obtain41% of edge collapses and a
bit-rate of 23 bits per vertex for the geometry and 25 bits pervertex for the connectivity.
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Blob

4 bits, 2% 5 bits, 4%

7 bits, 9% 12 bits, 21%, lossless

Aqua

3 bits 4 bits 5 bits 6 bits 7 bits 8 bits 12 bits
0.3% 0.9% 2% 4% 7% 10% 23%, lossless

Horse

3 bits, 0.1% 4 bits,0.4% 5 bits, 1% 6 bits, 3% 7 bits, 6% 12 bits,17%, lossless

Figure 12: More examples of progressive decompression.

4 CONCLUSION AND FUTURE WORK

We have presented a new progressive connectivity coding algorithm based on surface
simplification techniques optimized for compression purposes. This work is built on
the kd-tree geometric coder [8], and as such, allows an efficient joint compression of
the positions and the connectivity of the mesh. Besides the good compression rates,
which are competitive with the most efficient progressive methods, the algorithm has
the advantage of being applicable to any simplicial complex, including in particular non
manifold triangulations and triangle soups. Furthermore,the method can be extended
to any dimension and yields in the case of tetrahedral meshesa cost reduction of about
25% compared with previous work.

Future work will address the extension of the algorithm to polygonal meshes. In-
deed, the method permits the compression of such geometric structures by describ-
ing them as a set of edges, and by reconstructing the polygonsfrom this set by loop
searching, but it should be more efficient to define an edge collapse operator adapted
to polygons with a size greater than3. Also, we think the compression ratios can be
still improved, in particular by combining connectivity and geometry prediction as the
refinement process proceeds.

Acknowledgments: Thanks to Pierre Alliez, Alain Dervieux, George Drettakis
and Monique Teillaud for their help.
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