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LRI, Université Paris Sud, F-91405 Orsay France
caillou;sebag;dubut@lri.fr

1 Introduction

Multi-agent systems (MAS) represent a powerful framework to analyze
complex systems, including realistic agent behavior (such as leaning
mechanisms). The analysis can be made both at a micro level to study
individual scenarii and interpret results and at a macro (global) level
to study emergence and structural evolution (beyond agent complexity
and local analysis) [1]. MAS make it also possible to study systems
with complex interaction protocols, particulary useful to simulate more
realistic systems with minimum information transmission between the
agents (e.g. pricing without preference transmission). Such complex
interaction systems are particulary important in a field such as social
networks where links, which are the heart of the problem, support these
interactions.

This paper investigates a socio-economic MAS, focusing on three
specific aspects: i) agents heterogeneity (each agent follows its individ-
ual preferences modeled after a parameterized long term utility func-
tion); ii) dynamic social network (the agent activity is shaped after
its social network, which evolves as a result of the agent activity); iii)
computational interaction design (covering the rules of interaction and
the information revelation among agents).

The presented MAS considers a loan-granting scenario where each
agent can borrow/lend money to its neighbors and/or consume it. We
define six interaction protocols, ranging from fixed equilibrium rate
loans to double-free auctions, and we study their impact on the net-
work structure and the global welfare of the economy. Further, the
agent fitness is investigated in relation with its connectivity (number
of neighbors) and eccentricity (longest path to the other agents).
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After describing the state of the art and the problem tackled in
this paper (section 2), we present a loan granting game played by a
society of rational agents with a long-term utility function, conditioned
by and shaping their social network (section 3). Section 4 reports on the
simulation results; the main contributions of the approach are discussed
together with perspectives for further studies in section 5.

2 State of the Art and Goal of the Study

Introduced by Epstein and Axtell [2], Agent-based Computational Eco-
nomics established two major results (the interested reader is referred
to [3, 1] for a comprehensive presentation). Firstly, the lack of a central-
ized walrasian auctioneer does not prevent a society of 0th-intelligence
agents from converging towards an economical equilibrium when agents
interact and exchange in a decentralized manner; secondly, this result
does not hold any longer if the agents can die or evolve.

The importance of interaction protocol in artificial markets using
MAS has been since widely studied, especially in the popular auto-
mated auction domain (see [4] for a comprehensive study). In partic-
ular, the theoretical Pareto-optimality of the English and Vickrey [5]
auction mechanism has been shown despite their known limitation (e.g.
preference elicitation for the English auction and trust problems for the
Vickrey auction). From a reverse engineering perspective, Chevaleyre
et al. [6] have investigated the conditions on the rationality criteria
enforcing an egalitarian welfare.

Meanwhile, after the pioneering Milgram experiment [7] and many
further studies (e.g., [8]), the structure of social networks is acknowl-
edged a major factor of economics efficiency. A framework for analyz-
ing social network economics was defined [9], and exploited through
either analytical approaches, or various simulation-based extensions
[10, 11, 12, 13].

In this paper, the goal of this study is to investigate the protocol
impact on the economic structure and welfare. One originality of this
study compared with MAS work [4, 6] is to deal with a dynamic social
network environment, the evolution of the network being as important
as the macro variables.

Contrasting with the standard framework [9], the social network
considers interdependent periods: the money borrowed at time t must
be payed back at time t+1. Decisions at each period are no longer inde-
pendent. Therefore, this study examines the impact of the agent models
and strategies on the global welfare in a long term perspective. This
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contrasts with e.g. [9] considering the immediate network efficiency,
and neglecting the negative impact of current decisions in the long run.

Another contribution compared to social network economic analy-
sis [9, 10] is to study several different interaction protocols involving
different information sharing levels, whereas economic studies usually
assume a perfect preference knowledge. This assumption is required
for many game-theory analysis. In the framework of ACE, a relaxed
assumption is done (such as [2] to compute the exchange price as the
average of preference values).

3 Overview

This section presents the agent model, the interaction setting and the
observed variables of the system.

3.1 Agent model

The agent utility function models the intertemporal choice of the con-
sumer after the standard economic theory [14]. Formally, agent Ai max-
imizes the sum over all time steps of its weighted instant utilities. The
utility weight at time t, set to pt

i (0 < pi < 1), reflects the agent pref-
erence toward the present (parameter pi). The instant utility reflects
the current consumption level Ci,t, with a diminishing marginal util-
ity modeled through parameter bi (0 < bi < 1), standing for the fact
that the agent satisfaction is sublinear with its consumption level [15].
Letting Mi denote the lifelength of agent Ai, it comes:

Ui =
Mi
∑

t=0

(pt
iC

bi

i,t) (1)

The instant neighborhood of agent Ai, noted Vi,t involving all agents Aj

such that link (i, j) belongs to the social network at time t (subscript t

is omitted when clear form the context). Additional agent parameters
and variables are described in Appendix A.

The social network comes at a cost, i.e. every link (i, j) must be paid
by agents Ai or Aj or both. Agents accept to pay for a link iff it was
profitable during the last time steps (if the utility increase due to this
link offsets the link cost). Under mild assumptions (see Appendix A),
agent Ai can compute its threshold interest rate ri (lower bound
for loan granting activities and upper bound for money borrowing ac-
tivities). Note that this rate needs be updated after every elementary
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transaction as it depends on the agent current and expected capital
(see Equation 2 in Appendix A).

Agent life is viewed as a sequence of time steps, where each step
involves four phases: i) salary and loans payback, ii) negotiation, iii)
consumption, iv) social activity (link creation/deletion).

During the first phase, agent Ai receives its salary Ri, reimburses
the money borrowed (plus interests) and is reimbursed for the money
lended (plus interests). The negotiation phase involves a variable num-
ber of transactions, depending on one of the protocols defined below.
During the consumption phase, the agent computes its optimal fraction
of consumption (see Appendix B) and scores the corresponding utility.
During the social phase, each agent decides whether it maintains its
links whether the link has been profitable in the last time steps. Link
(i, j) is either maintained by agents Ai and/or Aj , or deleted. Indepen-
dently, Ai creates a new link (i, j) with probability si (its sociability
factor), where j is uniformly randomly selected. If Ai has no neighbors,
some link (i, j) is automatically created where j is selected uniformly.

After Mi steps, agent Ai dies. It is then replaced by a new agent
(reinitializing all agent parameters) with same neighborhood.

3.2 Interaction protocols and computational design

To emphasize the importance and impact of the protocol and infor-
mation transmission, we define 6 exchange protocols ranging from a
complete and perfect knowledge of others preferences to minimum pref-
erence sharing between agents.

• EQU: Equilibrium rate exchange. Each agent knows the theoretical
equilibrium rate of the economy (see Appendix D for the mathemat-
ical details). Each agent proposes to its neighbors to borrow/lend
money at this rate depending on its individual preferences. Every
accepted proposal is immediately enacted. The negotiation proceed
until no more transactions are realized.

• AVG: Average rate exchange. Each agent knows the threshold rate
of its neighbors. Each agent proposes to its neighbors to borrow/lend
money at a rate equal to the average between its own rate and its
neighbor’s. Every accepted proposal is immediately concluded. The
transactions proceed until no more transactions are realized.

• AUCs: Auctions. Iteratively, agent Ai proposes to every neighbor
Aj whether Aj would be willing to borrow money, and which rate rj

Aj would be willing to accept. Ai determines the best transaction,
with A∗

j such that r∗=max(rj). If r∗ > ri, Ai grants a loan. The
loan rate depends on the specific protocol:
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– AUCAVG: Average auction. The rate is the average of both
threshold rates: r∗ = 1

2
(ri + rj).

– AUCVIC: Vickrey auction (second-price sealed-bid auction).
The rate is the second best offer of the auction.

– AUCSIM: Standard (simple) auction (first-price sealed-bid auc-
tion). The best bid is selected, the rate is thus set to the borrower
threshold rate rj .

The negotiation proceed until no more transactions are realized.
• DOUBLE: Double sided transaction. Auctions are asymmetrical.

The objective of this mechanism is to minimize preference revelation
in a symmetric protocol:
Iteratively, agent Ai achieves its best possible borrowing and lend-
ing rate and concludes at most one loan granting and one borrow-
ing(corresponding to one negotiation cycle); it maintains its esti-
mation ri,j of the interest rate for a transaction (borrow or grant)
with agent Aj , and proposes a transaction for one currency unit at
rate ri,j . Depending on whether this transaction is accepted, ri,j is
updated (Algorithm 1). Agent Aj accepts a borrow transaction if
the proposed rate is lower than i) its limit rate rj and ii) its last
borrow rate during its negotiation cycle (similar conditions hold for
lend transactions).
The negotiation proceed until no more transactions are realized. It
is important to note that preferences are never transmitted in this
protocol (in contrast with all AUC auction systems), agents only
accept or refuse proposals.

BestRate r∗=0;
who=i;
foreach Aj ∈ Vi such that rij > ri do

Propose Loan(rate=rij);
if accepted then

if rij > r∗ then r∗ = rij ; who=j;
Increase(rij)

else
Decrease(rij)

end

end

if r∗ > 0 then Lend one currency unit at rate r∗ to Awho

Algorithm 1: Lending transactions (borrowing transactions pro-
ceed likewise). rij is uniformly initialized during the first time step.
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3.3 Fitness and Global Welfare

The socio-economical system will be assessed from the global welfare
of the agents. The difficulty is that the agent utility function depends
on its individual preferences. While this setting is more realistic form
a modeling viewpoint, it prevents from directly comparing the agents
utilities. Therefore, an original normalization procedure is used, consid-
ering the canonical consumer-only alternative strategy. Each Ai, would
it have adopted the consumer-only strategy, would get utility:

U∗

i =
Mi
∑

t=0

(pt
iR

bi

i ) = Rbi

i

1 − pMi+1

i

1 − pi

Accordingly, the normalized fitness of Ai is defined as:

Fi =

(

Ui

U∗

i

)
1

bi

− 1

Note that if Ai spends a fixed fraction α of its salary at each time step
(without engaging in any borrowing or lending transactions), it scores
a normalized fitness α − 1. In brief, agent Ai benefits from the social
network iff its fitness Fi is positive.

The efficiency of the socio-economic system is thus assessed as the
global welfare of the economy, i.e. the average normalized fitness of the
individuals, and its standard deviation. An alternative welfare function
is discussed in section 4.3 to take consider the inequalities involved by
this measure: by convention, the egalitarian welfare is the minimum
over all agent fitness.

4 Results

After the description of the experimental setting, this section reports on
the impact of the network and agent dynamics on the network structure
and on the global efficiency of the system.

4.1 Experimental settings

The socio-economical game is implemented and simulated within the
Moduleco framework [16]. The initial structure of the social network is
a ring, where each agent is connected to its two neighbors. Agents are
initialized by independently drawing their parameters using Gaussian
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or uniform laws (see Appendix C for detailed values). Experiments
were conducted with a population size ranging from 25 to 100, with
similar results. All reported results are averaged over 1000 independent
experiments conducted with 25 agents over 1000 time steps. The global
fitness is computed by averaging the normalized fitness at their death
instant of agents that died before the 1000th. step.

4.2 Structural analysis

Interest rate evolution

The theoretical interest rate τ at the equilibrium can be derived from
the utility functions (see Appendix D for demonstration). As this rate
depends on the current agent population, it fluctuates along time due
to agents death and birth. Still, the position of the MAS with respect
to the equilibrium can be assessed by comparing the rate of each loan
and the rate of the last loan for each link with the equilibrium rate of
the period (Fig 1). While EQU protocol enforces the equilibrium rate
by construction, all other protocols converge toward the equilibrium
rate at each time step (final distance to equilibrium is much lower
than average distance). DOUBLE protocol enforces a fast convergence
toward the equilibrium rate (the average difference being .3%, and the
final rate average difference .2%). Other protocols have a much higher
difference, ranging from 2% (AVG) to 11% (AUCSIM). Within each
period, the standard deviation analysis confirms the previous remarks.
The DOUBLE protocol appears again to have the most stable rates
(after EQU) with a low standard deviation of 2%, while rates of the
four other protocols are much more instable.

Even if the market mechanism leads near the theoretical equilibrium
situation at the end of each period, the protocol has a clear impact
on the individual rate evolution. Protocols relying on the preference
sharing (AVG, AUCAVG) enforces a faster convergence. Meanwhile,
asymmetrical protocols (in term of information sharing) AUCVIC and
AUCSIM, lead to higher interest rate on average, favoring the granter,
that collect information. Still, the DOUBLE protocol, which is both
symmetrical and does not imply preference sharing, leads to a stable
and fair market (both the lowest rate dispersion and difference with
equilibrium).

Network evolution

Another structural variable which can explain the (non)convergence of
the rate is the number of links (or equivalently the average connectivity
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Fig. 1. Convergence toward equilibrium interest rate

Fig. 2. Average exchanged value (for one agent at one time step) and average
connectivity degree

of agents) and the number of transactions (measured by the average
amount exchanged by one agent during one time step) achieved with
each protocol (fig. 2). We have again three distinct groups: The EQU
protocol with a very low number of links (average degree less than 2)
and few exchanges (an average amount inferior to 2, representing less
than 10% of its salary); The AVG protocol with a very high number
of links (more than 6 average degree) and a high number of exchanges;
And the four others with an average number of links and a high number
of exchanges. Interestingly, while each link supports an average amount
of less than one unit of transaction with EQU, it support more than
1.3 with AUC* and DOUBLE, which suggests that the social network
is more effective in the latter case. A tentative explanation for this fact
is the efficiency of the auction mechanism: only selecting the best loan
at each cycle of proposal (vs every accepted loan in EQU and AVG).
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4.3 Welfare analysis

Global welfare

The population global welfare associated to every mechanism is as-
sessed from the average aggregated agent fitness (see section 3.3). The
comparison of welfare, displayed on Figure 3 shows that AVG and EQU
protocols results on a negative welfare, which can be linked to the bad
link selection observed in 4.2, followed by DOUBLE. The best system
appears to be the AUCSIM protocol, followed by the AUCVIC.

Fig. 3. Average Global welfare, standard error and global welfare for each
protocol

The egalitarian welfare gives very different results: AVG is still the
worse, but it is followed by AUCSIM (the best for global welfare), DOU-
BLE and AUCVIC. AUCAVG and EQU (worst for global welfare) are
the best egalitarian systems. The welfare distribution can also be ana-
lyzed w.r.t. the standard deviation: while EQU is relatively egalitarian,
AUCVIC and AUCSIM respectively follow a heavy tailed distribution.

There appears to be a real choice between equitable (global) and
egalitarian (both in value and standard error) systems. The equality
objective clearly requires common knowledge, but this knowledge can
be limited to neighbors preferences (with AUCAVG). Market efficiency
seems to rely on inequalities between agents. Finally, minimizing in-
formation revelation (DOUBLE) does not allow the system to reach
either maximum global or egalitarian welfare.

Connectivity degree effect

Fig. 4 shows how the agent fitness is related to its position within
the social network, depending on the interaction mechanism. The so-
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ciability is indifferent with the AUCAVG protocol; a high sociability is
positively correlated to the agent fitness for the EQU protocol, whereas
it is negatively related to the others.

Fig. 4. Average Fitness for agents with a connectivity ranging from 1 to 20

Fig. 5. Average Fitness for agents with an eccentricity ranging from 1 to 20

Another measure for the agent position is its eccentricity (longest
path to the other agents in the network, see Fig. 5). While eccentricity
is negatively correlated to the agent fitness for EQU (which is con-
sistent with the fact that EQU rewards agent sociability), it has no
clear impact within the AVG setting; and high eccentricity adversely
affects the agent fitness on all other settings. In the latter case (AUC*
and DOUBLE), it appears that the best agent position is to have few
neighbors that are well connected, enforcing both a low eccentricity
and a low connectivity.
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Salary effect

Fig. 6 depict the impact of the agent salary on its fitness. As could have
been expected, the higher the salary, the higher the fitness is. Never-
theless, this correlation is quite mysterious, as the normalized fitness
was precisely designed to cancel out the salary level (see section 3.3).
This unanticipated effect can be interpreted in several ways. Firstly,
the fact that transactions concern a currency unit would marginally fa-
vor the agent with higher salary. Another interpretation, related to the
“Matthew Effect”, suggests that the gain opportunities increase over
with the salary activity.

Fig. 6. Average Fitness for agents with increasing salary values

Fig. 7. Average Fitness for agents with increasing time preference values

Time preference effect

Despite the fact that Time preference value (parameter pi) is compen-
sated for in the fitness normalization (see section 3.3), Fig. 7 shows that
the time preference has a strong impact on the agent fitness. Specifi-
cally, extreme values (very low and very high) appear to be much more
profitable than medium values. The transaction benefit for an agent
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with extreme time preference can be much higher compared to that for
an agent with average time preference (the difference between the in-
terest thresholds increases when one of the agents has an extreme time
preference). The impact of the time preference also depends on the
protocol. reminding that AUC* frameworks are asymmetrical (trans-
actions are driven by granting agents), we see that AUCSIM specifically
favors agents with high pi value, i.e. low preference toward the present.
As these agents will propose many loans, and select the most profitable
ones, these transactions will be all the more profitable as the interest
rate is set to the borrower’s threshold rate. It is interesting to see that
the Vickrey mechanism (AUCVIC), using the second-best price instead
of the best one, decreases the loan-granter advantage (because it allows
the receiver to pay less than its threshold price). In contrast, AUCAVG
tends to favor agents with high preference toward the present.

5 Conclusion and Perspectives

The complex system investigated in this paper involves heterogeneous
agents engaged in a socio-economic game, following different interaction
protocols. Several trends have been empirically demonstrated, showing
the interdependency of the agents individual preferences and the inter-
action rules. Clearly, the considered settings correspond to quite dif-
ferent socio-economic organizations. The EQU depicts a context with
little sociability and exchanges, with negative global welfare, where the
most well off agents are the cental ones (high connectivity, low ec-
centricity). The AVG setting does not appear to be very efficient: the
most well off agents have few neighbors and the global welfare is the
worst one among all considered settings. The AUC* are rather efficient
w.r.t. global welfare. The AUCAVG is particularly efficient in terms of
egalitarian welfare. The main difference among the AUC* settings re-
gards the impact of the agent time preference: while AUCAVG rewards
agents with high time preferences, AUCSIM instead rewards the patient
ones. Lastly, the DOUBLE framework enforces the convergence of the
market toward the equilibrium interest rate with a parsimonious pref-
erence revelation; it leads to a well connected social network, though
the global welfare is less that with the AUC* settings. Agents with
limited sociability and low eccentricity are rewarded.

Further research will consider more complex agents, capable of
learning and controlling (for some of them) the preferences of their
neighbors. The merits of learning agents will be to study the robust-
ness of the interactions settings, as far as learning abilities would allow



Negotiation protocols and dynamic social networks 13

agents to detect and exploit the “holes” and biases in the settings.
In the long run, the possibility for agents to control some individual
characteristics of their neighbors will allow us to model socio-economic
games in term of dynamic systems.
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Appendix

A Agent parameters

Agent is defined by some additional parameters:

• Salary Ri: Ai receives a fixed salary Ri at the beginning of each
time step, and uses it to grant or pay back loans, to buy links, or
for consumption.

• Sociability factor si (0 < si < 1): Ai creates a new link (i, j)
(where j is uniformly chosen) with a probability si at each time
step; in case Ai is isolated, a new link is automatically created.

The following variables can be defined using agents parameters:

• Capital Ki: The capital of an agent is the money it can use at a
given time. At the beginning of each time step, it is equal to its
salary, minus the amount it has to pay back (loans contracted at
the previous step), plus the payback of the loans it granted. The
capital may change during a time step (it increases when money is
borrowed, decreases when loans are granted).

• Expected capital Ni: It is the amount of money that will be avail-
able at the next time step if the agent consumes all his current cap-
ital and does not realize any more transaction. If no transactions
were done during the time step, it is equal to the salary Ri.

• Limit rate ri: It is possible to compute the rate ri so that agent
i refuses to borrow at a higher rate and refuses to grant loans at a
lower rate. Agent i will accept to grant a loan if the loan increases
his utility:

Kbi

i + piN
bi

i < (Ki − q)bi + pi(Ni + (1 + ri)q)
bi

⇒ ri >
p
−

1

bi

i (Kbi

i + piN
bi

i − (Ki − q)bi)
1

bi − Ni

q
− 1 (2)
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B Optimal saving

Each agent increases its utility by consuming a part or the totality
of his capital. Through a maximization of the utility function, we can
compute the optimal saving amount until the next time step:

x̂ =
Ki − p

1

bi−1

i Ni

1 + p
1

bi−1

i

C Experimental conditions

Agents parameters (see section 3.1) are defined with truncated gaussian
variables (restrained to the interval [µ−2σ, µ+2σ]). Default values are:

• Time preference pi ∼ N (0.8, 0.075)
• Utility factor bi ∼ N (0.5, 0.1),
• Link cost c = 0.1 and c = 0.2 alternatively
• Sociability si ∼ N (0.01, 0.05), (0.025, 0.05), (0.04, 0.05) alternatively,
• Salary Ri ∼ N (20, 5),
• Life expectancy Mi ∼ U(20, 100),

D Theoretical interest rate equilibrium

The term of each loan is the next time step. Marginal utility of agent
Ai can thus be deduced:

dU

dqi

= bi(Ki + qi)
bi−1 − bipi(1 + τ)(Ri − (1 + τ)qi)

bi−1

Since every agent maximizes its utility, one has at the equilibrium:

dU

dqi

= 0 ⇔ (Ki + qi)
bi−1 = pi(1 + τ)(Ri − (1 + τ)qi)

bi−1

qi =
(pi(1 + τ))

1

bi−1 Ri − Ki

1 + (pi(1 + τ)bi)
1

bi−1

The equilibrium rate is thus the solution of the equation:

∑

i

qi =
∑

i

(pi(1 + τ))
1

bi−1 Ri − Ki

1 + (pi(1 + τ)bi)
1

bi−1

= 0


