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Summary. Over the last decade, numerous papers have investigated the use of Ge-
netic Programming (GP) for creating financial trading strategies. Typically, in the
literature, the results are inconclusive but the investigators always suggest the pos-
sibility of further improvements, leaving the conclusion regarding the effectiveness
of GP undecided. In this paper, we discuss a series of pretests aimed at giving more
clear-cut answers as to whether GP can be effective with the training data at hand.
Precisely, pretesting allows us to distinguish between a failure due to the market
being efficient or due to GP being inefficient. The basic idea here is to compare
GP with several variants of random searches and random trading behaviors hav-
ing well-defined characteristics. In particular, if the outcomes of the pretests reveal
no statistical evidence that GP possesses a predictive ability superior to a random
search or a random trading behavior, then this suggests to us that there is no point
in investing further resources in GP. The analysis is illustrated with GP-evolved
strategies for nine markets exhibiting various trends.

1 Motivation and Introduction

Computational intelligence techniques such as genetic programming3, with
their continuous advancement, persistently bring us something positive to ex-
pect, and incessantly push the application domain to more challenging issues.
However, sometimes, the costs and benefits of using these advanced CI tech-
niques are uncertain. Usually the benefits are not assured, while the costs are
immediate. On the one hand, the CI techniques are frequently used as in-
tensive search algorithms, which are inevitably computationally demanding,
and take up a great amount of computational resources. On the other hand,

3 Although, in this paper, we solely focus on genetic programming, the general
ideas and some specific implementations should also be applicable to other com-
putational intelligence techniques used to induce trading strategies.
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whether or not there is a needle in the haystack remains dubious. For exam-
ple, in the financial application domain, the lack of such a needle may be due
to the efficient markets hypothesis or the no-arbitrage condition. Certainly,
if such a needle does not exist at all, then all efforts are made to no avail.
Given this asymmetry between costs and benefits, it would be economical, at
the first stage, to test for the existence of such a needle before a fully-fledged
version of the search is applied. We refer to this procedure as a pretest.

The pretest procedure proposed here is in a sense similar to the pretests
used in econometrics where the estimator of an unknown parameter is chosen
on the basis of the outcome of a pretest [9]. Pretesting, also known as “data-
snooping” in finance, classically serves to select the right model that will be
used later on for forecasting purposes (see [5, 20]). More broadly, pretesting
can be considered to be a practice of a sequential decision-making process,
which is used when the decision involves a great deal of uncertainty, and the
costs of making a wrong decision are huge4. In this case, at the first stage,
we would like to expend some limited resources on probing into gaining some
initial information, e.g., the distribution of a very uncertain environment,
while in the later stages, we will make our decision based on the gauged
distribution.

The reasoning behind prestesting is very intuitive, and [11] is the first to
apply this idea to the financial application of genetic programming (GP). [11]
proposed a measure known as the η statistic. The η statistic is a measure
of predictability obtained by comparing the predictions regarding the actual
data and the shuffled data5. Basically, by using a simple (vanilla) version of
GP, one can first gauge the predictability based on η. When η is low or close to
zero, it indicates that there is nothing to forecast. So, the use of fully-fledged
GP is not advised. The virtue in doing this is to distinguish two kinds of

possibilities when we see the failure of an initial attempt based on simple GP.
First, the series itself has nothing to forecast; second, GP has not been used
appropriately. Understanding this distinction can result in big differences in
our second stage of the decision. In the former case, we may simply give up
any further search to avoid wasting resources. In the latter case, we should
keep on exploring different deliberations of GP to search for potential gains
before a final conclusion can be reached. In either case, we have a clear-cut
situation. However, when a pretest is absent, we become less conclusive: we
are no longer sure whether the problem is due to the non-existence of the
needle, or the improper use of GP.

4 The problem of sequential decision making under incomplete knowledge has been
studied by researchers in various fields, such as optimal control, psychology, eco-
nomics, and game theory.

5 The η statistics make use of surrogate data, that is, the data sharing statistical
properties of the data under study but not the property that is tested for. Here, the
property investigated is temporal dependence and, thus, by shuffling the original
time series, the temporal dependencies, if any, are lost. The interested reader
might refer to [16] and [18] for a good starting point on the use of surrogate data.



Failure of Genetic-Programming Induced Trading Strategies 3

Unfortunately, in most financial trading applications of GP, a pretest has
been largely neglected6. We think that this negligence may give rise to many
inconclusive results. Typically, what happens is that the results from using
GP are not very convincing, but the investigators always suggest directions
for further improvement, leaving the actual conclusion regarding the effective-
ness of GP undecided. Therefore, this study attempts to provide a practical
pretesting procedure aimed at reducing the number of cases where the con-
clusion is inconclusive.

Needless to say, there are various ways of implementing different types
of pretesting. For example, the η statistic mentioned above can be used as a
pretest, as [11] did, but that is mainly applied to forecasting time series. That a
series is to a certain extent predictable does not necessarily imply that we can
develop profitable trading strategies. For example, the predictability horizon
might be too short, the fluctuation might not be volatile enough to cover the
round-trip transaction costs or, simply, the right trading instrument might not
be available (e.g., no short selling in a downward oriented market) or else they
are some regulation and rules (e.g., the “uptick rule” makes intraday trading
with short selling more difficult). Consequently, the literature on forecasting
with GP (e.g., [12, 17] and [6]) and the literature on trading with GP (e.g.,
[1, 14, 21] and [4]) are usually separated. Therefore, in this paper, we attempt
to develop pretest procedures that are more suitable for trading purposes.
However the correlation between the predictability7 of a time series and the
profitability of GP induced rules, and more generally of any trading strategies,
is an intriguing and still open question, whose answer8 constitutes, in our view,
a major step towards efficient market timing decision tools.

6 This may not be completely so. In fact, most earlier studies selected a risk-free
investment (e.g., treasury bills) or, most often, the buy-and-hold strategy as the
benchmark. However, the conclusion that “GP performs better than buy-and-
hold in a bearish market and worse in a bullish market” is often found in the
literature. However, nothing different can be expected since buy-and-hold is the
worst possible strategy in a steadily decreasing market and the best possible
strategy in a steadily increasing market. This shows the limits of choosing buy-
and-hold as a benchmark.

7 Numerous metrics, emerging from the fields of information theory, the study of
dynamical systems and algorithmic complexity or statistics, have been devised
to quantify the predictability of a system observed by the data it produces. One
can mention the Lyapunov exponent, which is a measure of the rate of diver-
gence of nearby trajectories and thus an indication of the short-term predictabil-
ity, the Shannon entropy which measures the diversity of the data produced or
the Grassberger-Crutchfield-Young statistical complexity which informs us of the
amount of information which is relevant to the system’s dynamic. The reader
interested in predictability measures can refer to [2] and [19] for a comprehensive
survey.

8 Of particular interest is the work of [10] which is a significant step in that direc-
tion.
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More precisely, we will propose here several different styles of pretests,
which when put together can help us decide whether there are hidden patterns
to be discovered and whether GP is properly designed to do the job. The
essential idea underlying all proposed pretests is to compare the performance
of GP with random trading strategies or behavior. However, as we shall see
in Section 2, just making trading strategies or trading behavior arbitrarily
random is not sufficient to provide a fair and informative comparison. To do
so, some constraints are expected, and the interesting point is how to impose
these constraints properly.

The rest of the paper is organized as follows. Section 2 provides a detailed
formulation of the four pretests. The first three are concerned with the trad-
ing strategies, whereas the last one is concerned with the trading behavior.
Normally, trading behavior comes from trading strategies, and they cannot
be separated; however, when randomness is introduced, differences between
the two may arise. In particular, in the vein of algorithmic complexity, ran-
dom trading strategies can imply trading behavior actually using knowledge,
while random trading behavior presumably excludes such a possibility. We,
therefore, intentionally distinguish between the two by referring to the former
as zero-intelligence strategies, and the latter as lottery trading. Section 3 dis-
cusses how to use these proposed tests together to make a better judgment
given the initial results we have. Section 4 illustrates the proposed pretests
based on the real data and the experimental designs detailed in the appendix.
Section 5 gives the concluding remarks.

2 Pretests: description and rationale

In this section, we describe a series of 4 pretests and discuss their purpose and
implementation. Of the 4 pretests, we highlight 2 that are of particular interest
and, as shown in Section 3, enable us to gain complementary knowledge on
the data under study and on the efficiency of the GP’s implementation. In the
following, we consider GP with a validation stage before the actual testing of
the out-of-sample data. Validation means that the best rules induced on the
training interval are further selected on the unseen data, i.e., the validation
period, before being applied out-of-sample. The validation step is a device
to fight overfitting that has been widely used in earlier GP work (see for
instance [1, 15]).9 Note that our proposals, except for pretest 1 which explicitly
requires validation, remain valid as they do for GP without the validation step.

2.1 GP versus equivalent intensity random search

The basic idea here is to compare the outcome of GP with an equivalent

intensity random search. We say that two search algorithms are equivalent in

9 The actual effectiveness of validation in this context is, however, still an open
question. See [4] and [3].
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terms of search intensity if their execution leads to the evaluation of the same
number of distinct trading strategies for the training data. For instance, let
us consider GP with the parameters chosen for this study: a population of
500 individuals evolved over 100 generations. In the first approximation, the
equivalent random search (ERS) would consist of evaluating 50,000 randomly
created solutions. In practice, search algorithms sometimes rediscover identical
solutions over the course of their execution. This can simply be detected by
keeping track of all created individuals since the beginning of the execution,
and in doing so useless fitness evaluations can be skipped, which actually
saves computing time when the fitness function is rather time-consuming.
Since, computationally speaking, what is preponderant in our context is the
fitness evaluation, we impose the restriction that our definition of equivalent
search intensity only accounts for unique individuals, i.e., individuals that
require evaluation. We consider two solutions to be distinct if their expression
is syntactically different10, in our GP context, if the trees representing the
programs are different.

The three following pretests compare GP with a random search both with
and without a training and validation stage. In random search, the biologically
inspired evolution process of GP is simply replaced by the creation of solutions
at random. Since with random search the strategies do not benefit from the
“intelligence” resulting from the evolution and learning process11, we dub
randomly created solutions as zero-intelligence trading strategies.

For each pretest i, we formulate the null hypothesis Hi,0 that GP does
not outperform the technique it is compared with at pretest i, where the
alternative hypothesis is denoted by Hi,1. The experiments will provide us
with the answer to whether Hi,0 should be rejected in favor of Hi,1 or not.
As usual, the chosen significance level of the test enables us to finely control
the probability to falsely reject the null, that is in our case to come wrongly

10 Two individuals can be syntactically different while being equivalent in the sense
that they always lead to the same trading decisions, and the equivalence could
thus also be defined in terms of semantics. With symbolic simplification using
rewriting rules and interval arithmetic on the function arguments, we could detect
that some syntactically different individuals are in fact semantically identical.
However, there is no way of making sure that all duplicates will be detected and
the implementation of this procedure would be so complex and time consuming
at run time that, in our opinion, a definition based on semantics would be of
little practical interest. Alternatively, the equivalence in search intensity could be
defined in terms of equivalent running time. However, there is such a difference in
complexity between a fully-fledged GP implementation and random search that
it is hard to imagine how we can ensure that the two implementations have been
optimized in a similar manner, while a better implementation of GP may for
instance may lead us to come to an opposite conclusion.

11 Comparing GP with random search informs us regarding the effectiveness of
the GP operators. Further meaningful information regarding this issue could be
obtained by comparing regular GP with an implementation that would favor
crossover among the less fit solutions (“breed-the-worst”), as suggested in [13].
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to the conclusion that GP is more effective than the technique it is compared
with.

Pretest 1: GP versus equal search intensity random search - both

with a training and a validation stage.

The implementation of the random search strategy is straightforward: pa-
rameters of GP are set in such a way that only the initial generation, where
individuals are created at random, is used. The size of the initial population
is adjusted so that the resulting search intensity is identical to the one for the
regular GP.

• Hypothesis H1,0 cannot be rejected: the first explanation that can
be envisaged is that, GP or not, there is nothing essential to be learned
from the past. In that case GP would strongly “overfit” the training data,
possibly explaining that in the same cases its out-of-sample performance
is worse than that with a random search. This can be due to the market
being efficient or because the training interval exhibits a time series pattern
which is significantly different from the out-of-sample period12. Another
explanation is that the GP machinery is not working properly, for instance
due to a wrong choice in the composition of the function and terminal sets,
because the parameters controlling the GP run are inappropriate (e.g., a
search intensity that would be insufficient), or the genetic operators are
unable to create better-than-random individuals.

• Hypothesis H1,0 is rejected in favor of H1,1: there may be some-
thing to learn from the past and GP, with the chosen parameters, may be
effective in that task.

Rejecting H1,0 is of course a first indication of the efficiency of GP but, as we
will see in Section 3, further investigation may provide additional information
to answer that question and rule out mere luck.

Pretest 2: GP versus equal search intensity random search with a

training but without a validation stage.

Here, the best solutions found at random over the training interval are ap-
plied directly to the out-of-sample period. With regard to pretest 1, pretest 2
could give us some insight into how effective validation is as a device to fight
against overfitting. However, since overfitting is unlikely to occur with random
search, the rationale for using pretest 2 is unclear and it will not be further

12 In [4], experiments have consistently highlighted that when training and out-of-
sample data sets are very “dissimilar”, for instance if the market exhibits opposite
trends, then there is little chance that GP will perform well out-of-sample.
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considered in this study. A more direct and effective way to evaluate the ef-
fect of the validation stage is simply to compare regular GP with and without
validation13.

Pretest 3: GP versus equal search intensity random search both

without a training and without a validation stage

In pretest 3, the selection of the strategies for the training set is removed:
a large number of random strategies are created and applied directly out-
of-sample. The performance is evaluated as the average performance (e.g.,
average total return) over the set of random strategies. Comparing the out-
come of pretest 3 with regard to pretest 1 and regular GP tells us something
about how effective the selection process is, and the extent to which a top per-
forming rule on the training and validation sets will keep on performing well
out-of-sample. If strategies selected by GP or random search on the training
and validation intervals have some predictive ability out-of-sample, this will
provide us with evidence that there is something to learn from the past. It is
worth pointing out that the randomness of the strategies here is constrained
by the GP language: rules can only be made with GP functions/terminals or-
ganized according to the constructs of the language and its typing scheme. For
instance, it may happen that the GP language is not sufficiently expressive
to define a rule consisting of buying and selling every other period14. In the
remainder of this study, we will consider pretest 4, presented in Section 2.2,
that is similar in spirit to prestest 3, but is more random in the sense that it
does not possess the bias in randomness induced by the GP language.

2.2 GP versus lottery trading

We refer to lottery trading as a strategy that would consist of making the in-
vestment decision randomly on the basis of the outcome of a random variable.
In its simplest form, the random variable would follow a Bernoulli distribution
where the parameter p expresses the probability of taking a long position and
1 − p the probability of closing a long position or staying out of the market.

In our context, this requires refinement since we are interested in prof-
itability and profitability takes into account transaction costs. Therefore, in
order to allow a fair comparison with GP, we should make sure that the ex-
pected number of transactions for lottery trading is the same as for GP. We
refer to the expected number of transactions per unit of time as the frequency

of a trading strategy. Another important characteristic of a trading strategy is
what we term its intensity, i.e. the number of periods where a position15 “in

13 For instance, as in the case of [4] and [8].
14 Period refers to the granularity of time used for trading, for instance, one second

or one day.
15 Implicitly, we consider here the trading of a single instrument, e.g., an index,

where two positions are possible at each point in time, i.e., be in or be out of the
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the market” is held, over the length of the trading interval. We should also
enforce lottery trading to have the same expected intensity as GP to avoid
misleading results, for instance, in the case where, given its frequency, the
intensity of lottery trading is not sufficient to cover the transaction costs with
the volatility of the market under study.

We denote by FGP and IGP , respectively, the average frequency and av-
erage intensity observed for the set of GP-evolved rules applied to the testing
interval over all GP runs, and NGP is the number of transactions leading to
FGP . For the experiments made in the following, a sequence of investment de-
cisions SLT resulting from lottery trading is generated at random according
to the following procedure:

• the intensity for lottery trading, ILT , is uniformly chosen in [IGP · (1 −

α), min(1, IGP · (1 + α))] where parameter α (0 ≤ α ≤ 1) introduces a
controlled randomness.16 In the first step, SLT is made of the ‘0’ positions
(i.e., out of the market) followed by the block of ‘1’ positions (i.e., in the
market) corresponding to ILT ,

• the number of transactions NLT is uniformly chosen in the set of integer
values that are even17 in interval [NGP · (1 − α), NGP · (1 + α)]. The
block of ‘1’ is subdivided at random in NLT /2 sub-sequences and each
sub-sequence is inserted at random inside the block of ‘0’. This design
avoids the problem of overlapping among the ‘1’ sub-sequences that may
occur with other schemes.

We formulate the pretest comparing GP and lottery trading and denote by
H4,0 the null hypothesis that GP does not outperform lottery trading while
the alternative hypothesis is H4,1.

market if short selling is not possible, or with short selling as implemented in [4],
holding a long position or a short position. These concepts can be extended to
the case where there are three possibilities in each time period: holding a long
position, holding a short position or staying out of the market. Similarly, intensity
and the frequency of a strategy can be instantiated for each traded instrument.

16 Parameter α is intended to reproduce the variability of intensity and frequency
observed over the sample of GP runs that lottery trading is compared with. In
the simplest form presented here, this is implemented as a parameter α which is
unique for intensity and frequency. It is of course possible to refine this scheme
by individualizing the parameter for intensity and frequency, or by drawing at
random the values of ILT and NLT according to the empirical distributions of
intensity and frequency encountered over the sample of GP runs. This latter
procedure is especially meaningful when the empirical distributions of intensity
and frequency in GP significantly differ from the uniform distribution that is
implicitly assumed here.

17 NLT has to be even since a “buy” transaction is followed by a sell transaction
and no positions are left open.
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Pretest 4: GP versus lottery trading.

Obviously, if GP is not able to outperform lottery trading, it gives strong
evidence that GP will not be good at evolving effective trading strategies
with the data at hand. In Section 3, we shall discuss this point in more detail.

3 What do the pretests tell us ?

The outcomes of the pretests provide us with answers to the following two
questions: Is there something essential to learn on the training data that can
be of interest for the out-of-sample period? Does the GP implementation show
some evidence of effectiveness in that task? Clearly, before actually trading
with GP evolved programs, these two questions must be answered with rea-
sonable certainty; the rest of this section explains how pretests may help in
that regard.

3.1 Question 1: Is there something to learn ?

The null hypothesis H4,0 corresponding to pretest 4 has been presented in
Section 2.2. We introduce pretest 5 that will be used in conjunction with
pretest 4.

Pretest 5: Equivalent intensity random search with training and

validation versus lottery trading.

Here, we compare lottery trading to a random search with training and vali-
dation, and a search intensity equivalent to the one used for GP in pretest 4.
The null hypothesis H5,0 is that the equivalent intensity random search does
not outperform lottery trading for the out-of-sample data. Depending on the
validity of H4,0 and H5,0, we can draw the conclusions that are summarized
in Table 1:

H4,0 H5,0 Interpretation

case 1 ¬R ¬R there is evidence that there is nothing to learn

case 2 R ¬R there may be something to learn (weak certainty)

case 3 R R there is evidence that there is something to learn

case 4 ¬R R there may be something to learn (weak certainty)

Table 1. Information drawn from the outcomes of pretest 4 and pretest 5 (¬R

means that the null hypothesis Hi,0 cannot be rejected while R means that the
hypothesis is rejected in favor of the alternative hypothesis).

In case 1, the best solutions for the training intervals, obtained with 2
different search algorithms, do not perform better than lottery trading for the
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out-of-sample period. This suggests to us than there is nothing to learn. In case
2, GP outperforms lottery trading but random search does not; it is possible
that there is something to learn, but that the selected random rules do not
have a sufficient predictive ability. In any case, this leads us to a less certain
conclusion than in case 3 where both search techniques outperform lottery
trading. Finally case 4 is a special case where random search performs better
than lottery trading but GP does not. The whole evolutionary process of GP
has thus a detrimental effect and a possible explanation is that GP-induced
solutions strongly overfit the training data despite the validation stage.

3.2 Question 2: Is the GP machinery working properly?

The second question we ought to ask is whether GP is effective. Of course,
this cannot be answered with the data at hand if pretests 4 and 5 have shown
that there is nothing to be learned (case 1 in Table 1). In addition, in case 4
of Table 1, we already know that GP is not efficient since, by transitivity, it
is outperformed by the random search-based algorithm. Thus, the only two
cases where one really needs to proceed to further examination are case 2
and case 3. The validity of the null hypothesis H1,0, which can be tested
with pretest 1, gives a helpful insight into the answer: only if H1,0 should be
rejected can we conclude that GP shows some real effectiveness. We would
like to stress that rejecting H1,0 is far from implying profitability, but beating
a mere random search algorithm on a difficult problem with an infinite search
space is the bare minimum one can expect from GP.

4 Experiments

The aim of the experiments is to evaluate the extent to which the pretests pro-
posed are reliable. The methodology adopted here is to check if the outcomes
of the pretests are consistent with results already published in the literature.
We call the software used in [4] GP1, which will constitute our benchmark,
while GP2 is the GP implementation developed for this study. Although both
programs have been developed by members of the AI-ECON Research Center,
they have not been written by the same persons and do not share a single line
of code. Furthermore, GP2, which is based on the Open-Beagle C++ library
(see [7] and http://beagle.gel.ulaval.ca/), makes use of strongly-typed
GP on the contrary to GP1. The GP2 control parameters, as close as possible
to the ones used in [4] for GP1, are summarized in Table 1 (Appendix A).

The traded instruments are the indexes of 3 stock exchanges: the TSE 300
(Canada), the Nikkei Dow Jones (Japan) and the Capitalization Weighted
Stock Index (Taiwan). They have been chosen among the 8 markets studied
in [4] because they exhibit the main price evolution patterns that can be
found in the set of 8 markets. The aim of GP is to induce the most profitable
strategy, measured by the accumulated return, for trading the stock exchange
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index. The use of short selling is possible. We adopt what is done classically
in the literature in terms of data-preprocessing and use normalized data that
is obtained by dividing each day’s price by a 250-day moving average.18 In
a way similar to what is usually done, we subdivide the whole data set into
three sections: the training, validation and out-of-sample test periods. For each
stock index considered, 3 different out-of-sample test periods of 2 years each
(i.e., 1999-2000, 2001-2002, 2003-2004) follow a 3-year validation and a 3-year
training period. In the following, the term market refers to a stock exchange
during a specific out-of-sample period. For instance, market Canada-1 (C1 for
short) is the TSE 300 during the out-of-sample period 1999-2000. Hypothesis
testing is performed with the Student’s t-test at a 95% confidence level. The
samples for statistics are made up of the results of 50 GP runs, 50 runs of
equivalent search intensity random search with training and validation (ERS)
and 100 runs of lottery trading (LT) with parameter α = 0.2 (see §2.2 for the
definition of α). The following results were obtained with GP2:

• In 4 out of the 9 markets (i.e., C3, J2, T1, T3), there is evidence that there
is something to learn from the training data (case 3 in Table 1 - GP2 and
ERS outperform Lottery Trading). This is consistent with [4] where GP1
performs outstandingly in these 4 markets (respective total return: 0.34,
0.17, 0.52, 0.27).

• In markets C1, J3 and T2, pretests 4 and 5 suggest to us that there is
nothing to learn (case 1 in Table 1 - neither GP2 nor ERS outperform
Lottery Trading). Except for C1, GP1 also performs poorly (−0.18 for J3
and −0.05 for T2).19

• Finally, in the 3 markets where GP2 is shown to beat ERS (H1,0 is rejected
in favor of H1,1 for J1, J2 and T1), the GP results are very good: both
GP1 and GP2 produce positive returns and outperform the buy-and-hold
strategy.

Although more comprehensive tests are needed, the experiments conducted
here on 9 markets show some preliminary evidence that the proposed pretests
possess some predictive ability. Indeed, when the outcome is “nothing to
learn,” the two GP implementations perform very poorly (except in one case).
On the contrary, when the pretests suggest that there is something to learn,
at least one GP implementation does well.20

18 See [4] for a discussion on how non-normalized data affects the performance of
GP.

19 The two markets that are not listed, i.e. C2 and J1, correspond to cases where
“there may be something to learn.” Precisely, they both belong to case 2 in
Table 1, that GP beats LT but random search does not beat LT.

20 In all 4 such cases (C3, J2, T1, T3), GP2 beats LT, but in 2 cases where the
market is bullish (C3 and T3) the returns earned by GP2, which are 5% and
-4%, respectively, are far less than those of Buy-and-Hold, which are more than
30% during the out-of-sample period. As a result, one cannot say that GP2 is
performing superbly. However, in those 2 cases, GP1, which seems in general to
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When pretests suggest to us that a market is efficient, we cannot conclude
that there is no way of making consistent profits in this market, because the
concept of efficiency is of course relative to the investors considered. What can
be concluded is that a group of investors making their investment decisions
by running GP2 on the past price time-series will not be able to consistently
outperform the market. It is also worth noting that the efficiency of a market is
variable over time; for instance, pretests suggest to us that T2 is efficient while
T1 and T3 are not. As highlighted in [4], GP not being efficient is often due
to the training interval exhibiting a time series pattern which is significantly
different from the out-of-sample period (e.g., “bull” versus “bear”, “sideways”
versus “bull”,. . . ). Thus, a first way of making improvements that can be
investigated is to rethink the data division scheme.

In light of the pretests, we should also conclude that our GP implementa-
tion (i.e. GP2) is more efficient than random search (GP2 outperforms ERS
in 3 markets while ERS never beats GP2 with statistical significance). How-
ever, in our experiments, searching trading rules at random, with the same
set of functions and terminals as used in GP, is usually enough to come up
with trading systems that outperform lottery trading when GP does as well.
This suggests to us that GP2 may only be able to take advantage of “simple”
regularities in the data.

5 Conclusions

The main purpose of this paper is to enrich the earlier research on Genetic Pro-
gramming (GP) induced market-timing decisions by proposing pretests aiming
to shed light on the GP results. In actual fact, in the literature, the results
of applying GP for market-timing decisions are typically not very convincing,
but the investigators always suggest the possibility of further improvements.
If the investigators can first be convinced that there is something to learn and
that GP is suitable for that task, then their conclusion would be less vague
and uncertain. We propose here a series of pretests, where GP is tested against
a random behavior (lottery trading) and against strategies created at random
(zero-intelligence strategies) that aim to answer these two crucial questions.
Of course there is the risk of getting a wrong pretest result and the possible
reasons why GP may have failed should be thoroughly investigated before
drawing a conclusion. But, in the end, analyzing the results in light of the
pretests should help us to draw more fine-grained conclusions.

be the best implementation, happens to be very efficient (only a few percent less
than buy and hold).
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A Genetic programming settings

Program GP2 implements strongly typed GP with the set of functions and
terminals described in Table 1. The parameters here are basically identical to
the ones in [4] (program GP1) except when fine-tuning GP2 has highlighted
that better results may be obtained with different parameters. Precisely when
we make use of more elitism, the size of the tournament selection is set to 5
and numerical mutation is implemented.Population size 500Number of generations 100Maximum tree depth 10Funtion set +,-,*,/,norm,average,max,min,lag,and, or, not,>,<,if-then-else,true,falseTerminal set prie, real and integer ephemeral onstantsValue range for real onstants [-1,1℄Value range for integer onstants [0,1000℄O�springs reated by:rossover 50%standard mutation 20%swap mutation 15%reprodution 10%ephemeral onstant mutation 5%Initialization ramp-half-and-halfEvolution sheme generation-by-generation replaement strategyElitism 25 best individuals kept for next generationSeletion sheme tournament seletion of size 5Fitness funtion aumulated returnTransation osts 0.5%Validationnumber of best trees saved 1 individual per run is saved for validationTable 1: Control parameters of GP

Fig. 1. GP control parameters
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