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Abstract— We present an ant model that solves a discrete
foraging problem. We describe simulations and provide a
complete convergence analysis: we show that the ant population
computes the solution of some optimal control problem and
converges in some well defined sense. We discuss the rate
of convergence with respect to the number of ants: we give
experimental and theoretical arguments that suggest that this
convergence rate can be superlinear with respect to the number
of agents. Furthermore, we explain how this model can be
extended in order to solve optimal control problems in general
and argue that such an approach can be applied to any problem
that involves the computation of the fixed point of a contraction
mapping. This allows to design a large class of formally well
understood ant like algorithms for problem solving.

I. INTRODUCTION

Swarm intelligence [2], [5] was introduced in the 1990s as
a novel nature-inspired approach for problem solving. The
inspiring source is the behavior of real insects: a popula-
tion of simple interacting agents, communicating indirectly
through an environment, constitutes a massively distributed
algorithm for solving a given task (e.g. foraging, flocking, la-
bor division, prey capture, ...). Referring to neural networks,
another nature-inspired approach for massively distributed
computing, Kohonen wrote in 1988 [13]:

“One of the fundamental tasks of this new “neural
networks” science is to demonstrate by mathematical
analysis, computer simulations, and even working arti-
ficial sensory and control systems that it is possible to
implement massively parallel information-processing
functions using components the principles of which
are not mysterious but already familiar from computer
technology, communication science, and control en-
gineering. There is nothing in the “neural network”
area which were not known, in principle at least, from
constructs already in use or earlier suggested.”

The motivation of this paper is to argue for a similar
statement about swarm intelligence.

Classical engineering problem solving and swarm intel-
ligence can be viewed as alternative approaches of the
same problem. Then what makes these approaches seem so
different ? As Sutton pointed it [21] (when discussing the re-
lations between “modern” Machine Learning and “classical”
Intelligent Control), we could

“characterize the split as having to do with the fa-
miliar dilemma of choosing between obtaining clear,
rigorous results on the one hand, and exploring the
most interesting, powerful systems on the other.”

Roughly speaking, research on swarm intelligence is often
focused on impressive proof-of-concept applications through
extensive experimental simulations while classical engineer-
ing problem solving relies on theoretical convergence proofs
for “toy” problems. The intent here is not to judge these
approaches, which are clearly complementary, but rather to
express our belief that filling the gap between both is a great
research challenge.

There have not been many attempts in the literature that try
to actually fill this gap, in particular in the area of ant-like
algorithms. One interesting exception is the probably best
known instance of swarm intelligence: the Ant-colony opti-
mization (ACO) meta-heuristic for combinatorial problems,
which has been extensively studied. Most theoretical works
on ACO have recently been reviewed in [10]. In this review,
the authors present theorems for “convergence in value”
(ACO is guaranteed to find an optimal solution in finite time
with a probability that can be made arbitrarily close to 1)
and “convergence in solution” (provided a properly designed
decreasing exploration parameter, the ACO asymptotically
converges to an optimal solution almost surely). They also
relate ACO to “more standard” optimization techniques such
as stochastic gradient descent and cross entropy. The inter-
ested reader should go through this article for further details.

In this paper, we come back to the original inspiration of
ant algorithms, where a population of simple agents (that may
be viewed as mimicking the behavior of real ants) efficiently
solve a foraging problem. Many models and algorithms have
been proposed to solve this problem, see for example [9], [8],
[18], [15], [16], [19]. Such works mainly propose realistic
models of the behavior of real ant colonies, from which
they derive algorithms and methods for solving interesting
problems. However, they do not go beyond simulations nor
provide formal analysis of the algorithms.

In this article, we introduce a massively distributed ant
model that is guaranteed to asymptotically solve the foraging
problem in a certain sense. We provide a convergence proof
of the model, and a rate of convergence analysis with
respect to the number of agents. Our analysis relies on
optimal control theory, parallel distributed computing and
graph theory. To our knowledge, this is the first attempt to
present an ant model for the foraging problem and formal
analysis of the algorithm in terms of convergence and rate
of convergence is provided.

The remaining of the paper is organized as follows. Section
II provides a description of our ant model and discusses some



simulations that were made to measure the convergence and
the rate of convergence. Section III gives a formal proof that
there is convergence in some sense and the theoretical analy-
sis is used to discuss the influence of the model parameters.
Section IV analytically discusses the rate of convergence:
it gives formal arguments that explain why one observes a
superlinear rate of convergence. Finally section V provides
a discussion about the scope of our model and its relations
to other models proposed in the literature.

II. A SIMPLE ANT MODEL

In this section, we describe a simple ant model, which
is aimed at solving a foraging task. We provide simulations
that illustrate the behavior of the model and experimental
measurements of its performance. These experiments show
that the efficiency of this distributed model can be superlinear
in the number of ants.

A. Description of the ant model
We consider a set of artificial ants moving on a two-

dimensional grid environment1 on which they update arti-
ficial “pheromone traces”. The environment is composed of
four different types of cells: one nest cell, one food cell,
several bad cells and all the remaining cells are considered
free. Each cell s of the grid stores two pheromone traces as
two real numbers: Vf (s) the food pheromone and Vn(s) the
nest pheromone.

Ants can carry one unit of food at a time, and are
consequently in two possible states: carry food or carry
nothing. Food is picked up at food cells and dropped at
the nest. When a unit of food is brought to the nest a food
counter, which will serve as a global performance measure,
is incremented. Initially :

• the food counter is set to 0,
• the positions of the ants are initialized arbitrarily (e.g.:

all ants are initialized at the nest or uniformly at random
on the grid, etc...) and all ants are set to be in the carry
nothing state,

• the pheromone values are initialized arbitrarily (e.g.: 0,
random, etc...)

At every time step, each ant performs two actions:
1) It updates both food and nest pheromone Vf (s) and

Vn(s) of its current cell s using the pheromone values
of its four neighbors (we note the set of neighbors of
cell s as N (s)), therefore using only local information.
In fact, the update requires only the knowledge of the
maximum and average of both pheromone values over
the neighbors. If we define:

maxi(N (s)) ≡ max
s′∈N (s)

Vi(s
′),

and
avgi(N (s)) ≡

1

4

∑

s′∈N (s)

Vi(s
′)

1As the reader will understand in the following, more complicated graph
structures could be used, we address here the 2D grid case for the sake of
simplicity.

where i ∈ {f, n} represent which of the nest and food
pheromone is used, the pheromone update rules are
then as follow:

Vf (s)←

8

>

<

>

:

1 if s is the food cell
−1 if s is a bad cell
β
`

α maxf (N (s)) + (1− α) avgf (N (s))
´

otherwise

Vn(s)←

8

>

<

>

:

1 if s is the nest cell
−1 if s is a bad cell
β (α maxn(N (s)) + (1− α) avgn(N (s)))

otherwise

where 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1 with the condition
that β < 1 if α = 1.

2) It moves to one of its four neighboring cells: with
probability ε (0 ≤ ε ≤ 1) (that we shall call the
exploration rate) it moves uniformly at random to one
of its neighbors, and with probability 1 − ε, it moves
to the neighbor with the highest pheromone value. The
internal state of the ants conditions which pheromone
is used: Vf if it is in state carry nothing and Vn if it
is in state carry food.

The β parameter can be considered as a sort of “evapo-
ration parameter” and is typically to be set close to 1. The
α parameter, which we shall call the noise parameter for
reasons that will be explained later, should typically be set
either close to 0 or close to 1. Two simple instances of our
model correspond to the parameter choices (α = 1, 0 < β <

1) and (α = 0, β = 1). In the former choice, the general
pheromone equation (the “otherwise” case above) reduces
to:

Vi(s)← β maxi(N (s)), (1)

and in the latter choice the equation reduces to:

Vi(s)← avgi(N (s)) (2)

which is a simple linear update. As it will appear clearly
in the analysis, the question whether the ant activities
(pheromone values updates and moves) are done syn-
chronously or asynchronously is not important.

To summarize and to identify precisely different instances
of this model (and for the reader to be able to reproduce the
experiments we will soon describe), the following informa-
tion needs to be specified:

• the environment: the set of cells, and their types (nest,
food, free, bad),

• the way we initialize the position of the ants and the
pheromone values Vf and Vn over the environment,

• the noise parameter α, the evaporation parameter β and
the exploration parameter ε.

The model we have just described is made of very simple
reactive agents that communicate indirectly through the en-
vironment. In a way, this model is simpler than classical ant
models: in our case, pheromones need not to be evaporated
at every cell of the environment (this might represent a heavy
computation when simulating a typical ACO-like algorithm).
In our model, pheromone updates take place only at ant
positions and not on the entire environment, and some sort



of evaporation is performed through the β parameter of the
local pheromone update. Nevertheless, unlike classical ant
models which typically use one pheromone trail, ours uses
two: following Vf leads to the food source and following
Vn leads back to the nest. This is to compensate the fact
that our ants, which are completely reactive agents, do not
memorize to the path to nest. Indeed, most work using a
single pheromone trail often relies on ad-hoc mechanisms to
help the ants return to the nest. Other ant models where two
pheromone trails are used for foraging can for instance be
found in [16], [23], [12].

B. Simulations
In this section we illustrate the behavior of our ant model

with simulations. As we will see, we observe a form of con-
vergence. We begin by describing what form of convergence
we obtain and explain the experimental setting that allows us
to measure the rate of convergence. Finally, we will briefly
comment the results, as a formal in-depth analysis follows
in sections III and IV.

Let us consider a typical run of the algorithm during which
we fixed the parameters as follow: ε = 0.8, α = 0.7, β =
0.9999 and m the population size is set to 128. The ants
where initialized at the nest. Figure 1 shows snapshots of
this run at different time steps. On these figures can be seen
the evolution of the ants moving through the environment
searching for food. Once the food source is found by an
ant, more ants move toward the source and a trail starts to
form between the nest and the source. As time goes, a good
proportion of the ants follow the trail and the dynamics seems
to stabilize. Depending on the value of the noise parameter α,
we can observe different forms of paths, and even sometimes
no path. Figure 2 illustrates the asymptotic distribution of
ants for different values of α: there are paths except for the
case where α = 0.6. We will explain this phenomenon later
in the analysis.

Suppose a path emerges between the nest and the food
source. We do observe such a path visually, however it would
be interesting to measure something objective that reveals
the emergence of this path. This can be done through the
food counter we introduced previously. If we plot the value
of the counter with respect to time, we obtain the curve
showing the increase of the accumulated quantity of food
brought back to the nest over time. A typical such curve
is shown in figure 3. After some time, we observe that
the accumulated quantity of food brought back to the nest
increases linearly. This means that the foraging behavior of
the ants has converged. Section 3 will provide theoretical
arguments that characterize precisely this convergence, and
we will in particular explain why we don’t see a path for
certain values of α. Such a curve experimentally shows that
there is convergence. It can also be exploited to measure
some sort of convergence rate. To do so at regular times, a
line is fitted on the accumulated food quantity data using
a linear regression. At some point of the simulation, the
parameters of the fitted line stabilize within a certain relative
confidence interval. Experiments showed that using a portion

(t = 10) (t = 2500)

(t = 10000) (t = 11000)

(t = 12000) (t = 16000)

Fig. 1. Snapshots of the ant model: filled squares represent ants carrying
food from the food source (bottom left) back to the nest (top right), and
empty squares are ants not carrying food.

of the data (at time t we use the data registered between 0.5t

to t) gives robust estimations. In a way that resembles the
time constant calculus for electrical components, we define
the time of convergence as the intersection of the fitted line
with the x-axis once the linear regression has stabilized (see
figure 3). A rate of convergence is then computed as the
inverse of the time of convergence.

Using this, one can compute some statistics on the rate
of convergence to evaluate its dependence with respect to
the number of ants. For every population size, twenty runs
were carried out with the same parameter values (α, β, ε

and m). At the beginning, ants can either be initialized at
the nest or uniformly over the environment. If for a given
experiment the ants were initialized at random, the same
starting positions were used for each run. After each run,
the rate of convergence is measured, and at the end of
the experiment we compute the mean rate and its standard



α = 1.0 α = 0.8

α = 0.6 α = 0.0

Fig. 2. Limit distribution of the population for various values of α.

deviation.
We varied the population size m from 30 to 110. Figure

4 shows a curve that represents the rate of convergence of
the algorithm with respect to the population sizes. In these
experiments, we fixed α = 0.7, β = 0.9999, ε = 0.8, and ini-
tialized the ants at the nest. The curve shows experimentally
that when the number of ants increases linearly, the increase
in the rate of convergence can be superlinear. In other words,
when the number of ants is doubled the rate can increase by
more than a factor two. This apparently surprising result will
be discussed in section IV: we will provide formal arguments
that explain why the rate of convergence can be superlinear.

III. CONVERGENCE ANALYSIS

In this part, we are going to give an analysis of our ant
model. We will prove that it converges in some sense. To
understand what our ant model does and why we see a
path emerge, we will first make a detour into the theory
of discrete-time stochastic optimal control, and particularly
into the Markov Decision Process (MDP) framework. An
MDP is a controlled stochastic process satisfying the Markov
property with rewards (numerical values) assigned to states.
Formally, a MDP is a four-tuple 〈S, A, T, R〉 where S is
the state space, A is the action space, T is the transition
function and R is the reward function. T is the state-transition
probability distribution conditioned by the action. For all
states s and s′ and actions a, T (s, a, s′) is the probability
to go from state s to state s′ after executing action a at state
s,

T (s, a, s′)
def
= Pr(st+1 = s′|st = s, at = a).
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Fig. 4. Convergence rate with respect to the number of ants.

R(s) ∈ IR is the instantaneous reward for being in state s. In
the MDP framework, the optimal control problem consists in
finding a policy, that is a mapping π : S → A from states
to actions, that maximizes the expected long-term amount of
rewards, also called value function of policy π:

V π(s) = Eπ

[

∞
∑

t=0

γt.R(st)|s0 = s

]

. (3)

We here consider an infinite time horizon; also, future
rewards are discounted exponentially with a discount factor
γ ∈ (0, 1) (setting γ < 1 can be seen as a mathematical trick
so that the above performance criterion remains bounded).
Given an MDP model, it is shown [17] that there exists a
unique optimal value function V ∗ which is the fixed point
of the following mapping on functions, also called Bellman



operator, ∀W ∈ IRS :

[B W ] (s) = max
a

 

R(s, a) + γ.
X

s′

T (s, a, s
′).W (s′)

!

(4)

Once an optimal value function V ∗ is computed, an optimal
policy π∗ can immediately be derived as follows:

π
∗(s) ∈ arg max

a

 

R(s, a) + γ.
X

s′

T (s, a, s
′).V (s′)

!

. (5)

The fundamental reason why the above Bellman operator
B has a unique fixed point is related to the fact it is a
contraction mapping with a contraction factor at most γ:
i.e. for all pairs of real functions U , U ′ on S,

‖BU −BU ′‖ ≤ γ‖U − U ′‖

where ‖.‖ is the “max-norm” on S: ‖U‖ = maxs |U(s)|. A
standard approach for solving the optimal control problem
is to use a sequential iterative procedure, known as Value
Iteration [17], which consists in initializing a value function
V 0 arbitrarily and iterating the following process:

For all states s ∈ S, do: V t+1(s)← [BV t](s).

Because of the contraction mapping property, this sequence
is guaranteed to asymptotically converge to the optimal
value function V ∗, from which we can deduce the optimal
controller π∗ (cf equation 5). Furthermore, such an iterative
sequence, has a linear rate of convergence γ:

‖V t+1 − V ∗‖ ≤ γ.‖V t − V ∗‖ ≤ γt+1.‖V 0 − V ∗‖ (6)
In [3], the authors prove that an asynchronous version of
Value Iteration:

Pick (randomly) a state s ∈ S and do: V (s)← [BV ](s) (7)

will also converge to the fixed point V ∗, as long as all
states keep on being picked. In the asynchronous case, one
can rewrite a variant of equation 6 as:

‖V kt+1 − V ∗‖ ≤ γ ‖V kt − V ∗‖ ≤ γt+1‖V 0 − V ∗‖ , (8)

where k0, k1 . . . is an increasing series such that k0 = 0 and
all components of S (all states) are updated at least once
between instants kt and kt+1 − 1 for all t (see [4] p. 27).
Each time all the states have been updated, we know that
V gets closer to V ∗ at a linear rate γ. In fact, once again,
the proof of such a result relies on the contraction mapping
property. While the aim in [3] was to come up with efficient
parallel implementations on real parallel computers, ours is
a bit different: we are going to show that the optimal control
computation fits in the (virtual) ant paradigm.

Coming back to the ant model we described earlier, we are
going to make a clear link between what the ant population
computes and some optimal control problems. Indeed, we
will show that the pheromone values Vf and Vn correspond
each to the value function of a control problem. This is our
first result:

Proposition 1: Consider the ant model described in sec-
tion II-A. If the exploration rate ε is strictly positive, then the

pheromone value Vf (resp. Vn) asymptotically converges to
the optimal value function of the MDP Mf = 〈S, A, Tf , Rf 〉
(resp. Mn = 〈S, A, Tn, Rn〉) with discount factor β where:

• S is the set of grid cell plus an extra “end state”.
• A is the set of the four cardinal moves (north, east,

south, west)
• The transition Tf (resp. Tn) is characterized as follows:

1) when, in a state s corresponding to a free cell or
the nest cell (resp. to a free cell or the food cell), one
chooses one of the four directions a ∈ A, the probability
of actually making the move in the direction a is α +
1−α

4 = 3α+1
4 while the probability of getting to each

of the 3 other neighbors is 1−α
4 . 2) From all the other

states, that is from bad cells, the food and the “end state”
(resp. from bad cells, the nest and the “end state”), there
is, for every action, a probability 1 to reach the “end
state”, which is an absorbing state.

• The reward Rf (resp. Rn) is defined as follows: for
all states s corresponding to a free cell or a nest cell
(resp. a free cell or a food cell), the reward is 0.
For the state corresponding to the food cell (resp. the
nest), the reward is 1. The reward is −1 for all states
corresponding to bad cells and 0 for the “end state”.

The proof of the above result simply consists in checking
that the ant model is an asynchronous version of the value it-
eration algorithm for the corresponding problems: concretely,
we need to check that, for all cells, the updates for Vf and Vn

are identical to the one that would be done by the Bellman
operator (equation 7). This is a simple question of rewriting.
For instance, to update Vi(s) (i ∈ {f, n}) when s is a free
cell, we have:

Vi(s)← β (αmaxi(N (s)) + (1 − α)avgi(N (s)))

Vi(s)← β

0

@α max
s′∈N (s)

Vi(s
′) +

1− α

4

X

s′∈N (s)

Vi(s
′)

1

A (9)

⇔ Vi(s)← β max
s′∈N (s)

0

@αVi(s
′) +

1− α

4

X

s′′∈N (s)

Vi(s
′′)

1

A

⇔ Vi(s)← β max
s′∈N (s)

 

„

α +
1− α

4

«

Vi(s
′)

+
1− α

4

X

s′′∈N (s)\{s′}

Vi(s
′′)

1

A

⇔ Vi(s)← β max
a∈A

 

X

s′∈S

Ti(s, a, s
′)Vi(s)

!

(10)

We let the interested reader check that this equation also
holds in the remaining (limit) cases. Finally, the condition
ε > 0 ensures that all states will keep on being visited
and updated, which in turn ensures the convergence of this
asynchronous version to the optimal value functions.

Now let us interpret what this means and especially why
we observed the emergence of paths between the nest and
the food source in the experiments. Solving Mf (resp. Mn)
means finding a policy that will generate trajectories that



avoids (on average) the bad cells for which the reward is −1
and try to reach the food cell (resp. the nest cell) for which
the reward is 1; because of the discount factor β < 1, the
optimization also tries to minimize the time to reach the food
cell (resp. the nest cell). In other words, Mf (resp. Mn) are
natural formulations of the control problem: “go to the food
cell (resp. to the nest cell) while avoiding the bad states”
assuming that there is some noise in the transition models
Tf (resp. Tn). The level of noise is related to α: calling α a
“noise parameter” was thus fully justified.

In each state, the optimal action is the one for which the
maximum is reached in equation 10 above, and it is easy
to see that this optimal action is the one that points to the
cell for which the maximum is reached in equation 9: that is
the cell with the highest pheromone value. The pheromone
values asymptotically converge to the corresponding optimal
value functions Vf and Vn. Therefore, the moves of the ants,
which are (recall the ant move description in section II-A) a
mixture of random uniform moves (with a weight ε) and the
action that climbs up the pheromone value (with a weight
1− ε), converge to a mixture of random uniform moves and
the optimal corresponding moves. The smaller ε, the clearer
will be the path when the pheromones have converged (at
the limit if ε = 0 all the ants follow the optimal policy).
However, the smaller ε, the longer it will take for the ants to
repeatedly visit all the states and make the pheromone values
converge. This trade-off is typical of optimal control theory
and is known as the exploration-exploitation dilemma (see
for instance [22]).

In the description of the algorithm in section II-A, we
wrote about the parameters α and β that we needed 0 ≤
α ≤ 1 and 0 ≤ β ≤ 1 with the condition that β < 1
if α = 1. We can now explain these conditions from the
optimal control viewpoint: setting the discount factor of a
MDP to a value strictly lower than 1 ensures that the infinite
time horizon performance (eq. 3) remains bounded and that
the Bellman operator is a contraction mapping. As soon as
there is some amount of noise (i.e. α < 1) in the transition
model of our specific MDP Mf and Mn, then for any action,
there is a probability 1 of reaching one of the absorbing
“end state” (with zero reward) and this suffices to ensure that
the performance criterion remains bounded and the Bellman
operator is contracting. However, in the purely deterministic
case (α = 1), the discount factor β needs to be set to a value
strictly lower than 1.

We can explain further the influence of the noise parameter
α. When α is equal to 1 (and the update is eq. 1), there is no
noise in the transition model and the optimal policies exactly
match the shortest path (with the respect to the Manhattan
distance, see figure 2, case α = 1) between the nest and
the food source. When we decrease α, the level of noise
increases and the optimal policies get smoother (they try to
stray away from the bad states). At some point, when α goes
on decreasing, there is so much noise that the probability
of first reaching a bad state when trying to reach the food
source (or the nest) gets really large whatever the policy.

Consequently the optimal behavior consists in simply staying
away from the bad cells and not trying to reach the food
source (or the nest): in this case it is better to have a 0 reward
than a −1 (which happens when one hits a bad state). This
explains why there was no path in figure 2 for α = 0.6.
Furthermore when α goes on decreasing and gets close to 0,
something apparently strange happens: paths appear again.
We can give two explanations of this: 1) when the noise gets
so large that the influence of the actions nearly vanish, the
optimal controller cannot even prevent from hitting a bad
state and, as a kamikaze that would know he is going to
die anyway, it again becomes interesting to try to reach the
food source (or the nest). 2) At the limit when α = 0 (and
the update is eq. 2), the pheromone potentials, which satisfy
an equation of the type Vi(s) = avgi(N (s)) is equal to a
discrete harmonic function and it is known that a harmonic
function can be used for navigation (see [7], [6] for further
details).

IV. RATE OF CONVERGENCE ANALYSIS

We saw that our ant model converges by arguing that it
is an asynchronous computation of two contraction mapping
fixed points: pheromone potentials that results from the ants
local updates stabilize towards the optimal value functions
of some control problems, which guide the ants between
the nest and the food source. The aim of this section is to
study the rate of convergence of this process with respect
to the number of ants. We shall describe some objects and
results related to Markov chains on graphs that highlight the
experimental observation (made in section II-B) that this rate
of convergence can also be superlinear: doubling the number
of ants may accelerate the process by more than a factor two.

To study the rate of convergence, we go back to equation
8 that describes, in general, the convergence rate of the
asynchronous computation of a contraction mapping fixed
point. We rewrite it here for the sake of clarity:

‖V kt+1 − V ∗‖ ≤ γ ‖V kt − V ∗‖ ≤ γt+1‖V 0 − V ∗‖ , (11)

Recall that k0, k1 . . . is an increasing series such that k0 = 0
and all components of S (all states) are updated at least
once between instants kt and kt+1 − 1 for all t. The rate of
convergence is thus clearly related to the random variable kt:
the slower kt grows the faster the process converges. Since
we are interested in the rate with respect to the number m of
ants, we can make this dependence explicit by writing km

t .
What we need to study is thus km

t+1 − km
t .

The good news about km
t+1 − km

t is that it can be related
to a known object of the probability literature. Consider the
expectation of this quantity when m = 1: E[k1

t+1 − k1
t ] is

the average time for one ant to visit all the cells of the
environment. More formally, if we see the environment as
a graph G (there is one node for each cell and a connection
when two cells are neighbors) it is the average time for a
Markov chain (that describes the positions of the ant) to visit
all the nodes of the graph G, and such a quantity is usually
called the cover time of the Markov chain on the graph G



[1]. Similarly, for any m, E[km
t+1 − km

t ] is the average time
for several parallel Markov chains to visit all the nodes of
the graph G and it is known as the cover time of the parallel
Markov chains on the graph G.

Now comes the bad news about km
t+1 − km

t : it is in
general very hard to compute the cover time of a graph
for a given Markov chain and a given initial distribution:
they are computable in exponential time and it is not known
whether it is possible to approximate them in deterministic
polynomial time [11]. It is obviously harder to compute
the cover time of a graph for several Markov chain. For
our specific ant model, it is even harder to compute the
cover times since the Markov chains and the distribution
of ants vary over time in a non-trivial way: the transition
probabilities depend upon the pheromone potentials which
themselves are continuously updated by the Markov chains.
There is therefore little hope that one could estimate very
precisely the rate of convergence of our ant model. A general
asymptotic study of the convergence (where one considers
that 1) the pheromone values have converged and 2) the ants
have reached their stationary distribution) may be pursued
and this is a possible subject for future research.

Nonetheless, by studying the literature on the cover time,
we were able to find the following interesting result [1]:

Proposition 2: On a regular n-vertex graph2, consider
m independent balanced random walks3, each started at a
uniform random vertex. Let Cm be the time until every vertex
has been hit by some walk4. Then as the size of the graph
n→∞ and while the number of walks satisfies m ≥ 6 logn,
we have:

E
[

C [m]
]

≤
(25 + o(1))n2 log2 n

m2
.

The interesting point is the 1
m2 dependence: this implies that

(as n → ∞ and m ≥ 6 logn) the cover time is bounded
by a function which is inversely quadratic in the number of
walks. On simple graphs like the n− cycle, [1] explains that
the above bound is sharp, so in such a case, the cover time
is inversely quadratic in the number of walks.

Using the above discussion, we can “translate” the above
proposition into something that is meaningful for our ant
framework:

Proposition 3: Consider the ant model described in sec-
tion II-A on a toric grid environment with n cells, with an
exploration rate ε = 1 and initialize the ants uniformly on
the environment. When the size of the environment n→∞
and while the number m of ants satisfies m ≥ 6 log n, the
time for the pheromone values to reduce their distance to
their limit by a factor β is bounded by (25+o(1))n2 log2 n

m2 that

2A regular graph is a graph where all nodes have the same degree, i.e:
each node is connected to the same number of nodes.

3A balanced random walk on the graph is such that transitions are uniform
distributions on neighbors.

4E[Cm] is thus the cover time of the graph by these parallel random
walks

is a function that is inversely quadratic in the number m of
ants.
We consider a toric environment so that the corresponding
graph is regular. We take ε = 1 so that the ants follow a
balanced random walk. Also notice then that the uniform
initialization is the stationary distribution of the random
walks, so that the distribution of ants is stationary over time.
Our proposition is thus simply a corollary of proposition 2.

The bound is sharp when the environment is a n-cycle
graph, that is a long (cycled) corridor: in such a case,
the rate of convergence can be quadratic in the number
of ants. We there have a superlinear rate of convergence.
The experiments we made suggest that superlinearity also
happens for other values of ε and general environments.
Extending the above results to these more general setting
constitutes future research.

V. DISCUSSION

We have presented an ant model that can be related
to the framework of optimal control, and proved that it
converges in some sense. We have also studied the rate of
convergence with respect to the number of ants: we showed,
through experimental and analytical arguments, that the rate
of convergence can be superlinear in the number of ants.
At first sight, superlinearity may look like an impressive
property. There is however no magic: the fundamental reason
why we have such a superlinear rate is due to the fact that
small populations of our ants are particularly inefficient at
visiting the whole state space, and therefore making the
pheromone potentials converge. In fact, the convergence
analysis of contraction mapping that we used clearly suggests
(compare equations 6 and 8) that the fastest method for
computing the optimal value function is the synchronous
version: at each step, the value is approaching its limit with
the linear rate γ. The relative slowness of the asynchronous
version has to be understood as the price for decentralization.

The ant model we have presented in this paper is very
flexible. It can incorporate many variations. For instance,
one could consider that there are several food sources,
each containing a finite quantity of food, which decreases
over time as ants come and go. This quantity could be
incorporated in the corresponding optimal control model,
through the reward function on the food states. The reward
would then evolve over time, and the pheromones, which
are continuously being updated, would keep on following the
corresponding “moving” optimal value function. One could
also use different parameters for the back and forth trips
of the ants: this could model different strategies depending
on the fact that the ant carries food or not. Finally, if the
environment is static, one could make the exploration rate
ε slowly tend to 0, so that the ants eventually converge to
the deterministic optimal policies. Studying good ways for
“freezing” the ant behavior through the exploration parameter
ε constitutes future research.

It is in fact easy to see that one could construct similar
ant algorithms for almost any optimal control problem. As
long as the problem is formulated as a MDP, we know that it



can be solved by an asynchronous version of Value Iteration,
and building the corresponding ant system is immediate: we
just need to have ants move around the state space and do
the Bellman update everywhere they go. If we care about
the “locality constraint”, i.e. the constraint that “ants should
make their decisions only using local information” then this
approach will work as long as the transitions in the MDP are
also local in the state space. We can even go further: All our
analysis (the convergence and the rate of convergence) relies
on the “contraction mapping” property. This suggests that
any problem that involves the computation of a contraction
mappings (contraction mappings can for instance appear
in zero crossing problems, constrained and unconstrained
optimization [14]) on a finite space has a natural (potentially
superlinear) ant-like solution: ants move around on this finite
space and do local contraction updates.

The ant model we have presented is closely related to
previously published algorithms for the foraging problem.
In [19], the author presents an algorithm that compute
shortest path using an asynchronous implementation of the
Bellman-Ford algorithm: the local update is of the form
U(x)← 1+minx′∈N (x) U(x′). Modulo the variable change
U ↔ log(V )

log(β) this is equivalent to our pheromone update
with α = 1 expressed in equation 1. In [16], the authors
address the foraging problem and identify, as we proposed,
the value function of control problems as pheromone rates.
They use an asynchronous version of Value Iteration as well
as certain variants of algorithms in reinforcement learning
[22], which is also formulated through MDPs, to solve the
optimal control problem. Furthermore, they present many
experiments which illustrate that these models are robust in
environments with obstacles and where the positions of the
nest and the food source vary over time. As in our model,
the authors use multiple pheromone trails for the different
paths to find.

There are however significant differences between these
works and ours. 1) They focus only on the foraging problem
whereas we have just argued that in principle, any opti-
mal control problem (and any computation of contraction
mapping) could be tackled by such ant-like algorithms. 2)
To our knowledge, there are no arguments concerning the
convergence of the models in [16] whereas an extended
version of [19] presents a convergence proof, that uses
arguments close to the ones we give here [20]. 3) Last but
not least, if the superlinearity of the convergence rate is
experimentally observed in [19], we are to our knowledge
the first ones to study it from an analytical point of view.

VI. CONCLUSION

We have described a foraging ant model that can be related
to the optimal control framework. This allowed us to prove
its convergence in some well defined sense and to discuss
its rate of convergence with respect to the size of the ant
population. Our analysis, based on the idea that the ant pop-
ulation computes the fixed point of a contraction mapping,
explains many results obtained through simulations, among

which the potential superlinearity of the rate of convergence.
Eventually, our work suggests that any problem that involves
the computation of a contraction mapping fixed point (e.g.
optimal control in general, contraction, zero crossing prob-
lems, constrained and unconstrained optimization) on a finite
space has a natural similar (potentially superlinear) ant-like
solution.
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