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Sketch-Based Interaction

A Sketch-Based
Interface for

Clothing Virtual
Characters

espite sometimes questionable user
friendliness, software solutions for 2D
image authoring and editing are now a widespread
commodity among average computer users. Clearly, the
same cannot be said of 3D suites; the introduction of a
third dimension on intrinsically 2D input and output
devices—the mouse and screen—adds a discouraging
complexity that only professional artists and a few
skilled amateurs can overcome.
To make such tools appealing to a broader audience,
researchers have devoted considerable effort to enhanc-
ing ease of use and creating intuitive

interfaces based on simple, well-

This interactive system for
garment creation determines a
garment’s shape and how the
character wears it based on a
user-drawn sketch. The system
then uses distances between
the 2D garment silhouette and
the character model to infer
remaining distance variations
in 3D.

understood tasks. To convey 3D
shapes, people typically sketch
them—or, more precisely, sketch a
2D projection of the shape from
which our brains can seamlessly
reconstruct a full 3D representation.
Sketch-based interfaces seem all the
more convenient because most peo-
ple who design 3D objects and reg-
ularly use 3D modeling programs
already use sketches and artwork
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extensively in early phases of the
creative process. As Figure 1 shows, this is especially
true of fashion designers when they create new gar-
ments.

In fashion design, the required step between the ini-
tial concept art and the final product is currently cum-
bersome and requires know-how possessed only by
trained designers (see the “Feedback from a Fashion
Designer” sidebar for further discussion on what this
entails). Fashion design’s final product might be a real
garment or virtual clothes for virtual actors or video
game characters, which we focus on here. To clothe such
characters, designers use a range of approaches. For
incidental characters, the clothing might be no more
than a texture map. For lead characters in feature films,
they might use full-fledged physical simulation of
detailed cloth models. In between, designers often use
simple skinning techniques (that is, a garment is
deformed by a skeleton), combined with texture map-
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ping to create clothing that deforms somewhat as the
character moves.

Our goal is to make it easy for users to generate sim-
ple garments adapted to existing models. We believe
that for most people, drawing garments worn by a man-
nequin—which is how they imagine them—is easier
than the traditional pipeline in which they create the
2D patterns needed to sew garments. We therefore
developed a sketch-based interface that lets users quick-
ly construct 3D virtual garments on a character model.
Our system offers simple yet effective solutions to shape
generation and placement, and basic clothing simula-
tion in a resting position. The system is also easy to use:
our contributing designer created the entire wardrobe
featured in this article in less than an hour.

Designing for virtual characters

Clothing virtual characters entails three problems:
designing the clothes (tailoring), placing them on the
character (dressing), and making them look physically
correct (simulating).

Existing methods

In the tailoring process for human beings, the design-
er must choose the cloth, fit it to the body, adjust the
garment’s pattern pieces to fit the model, and sew the
pieces into a garment. A virtual character’s garment typ-
ically has no patterns with which to sew, and is instead
represented by a simple polygon mesh that designers
construct to fit the body. Currently, constructing such
meshes is tedious, even without patterns and stitching.
Designers sometimes construct the garment by directly
incorporating the cloth mesh into a character’s geomet-
ric model so that the character has pants but no legs, for
example. In this case, physical simulation is impossible,
sowhen a character needs new clothes, designers must
largely remodel it.

As an alternative, designers can draw pattern pieces
for a garment and position them over the character’s
naked form, defining stitching constraints and so on. This
can be wearisome, however, especially when the charac-
terisrelatively unimportant. This approach also requires
that designers understand how cloth fits over forms,

0272-1716/07/$20.00 © 2007 IEEE



although the actual pattern-and-stitching information
might be irrelevant once tailoring is completed. (In rare
cases, the cloth’s physical properties—such as whether it
was cut on the bias or it resists folding along one axis—
might be relevant to a full-fledged physical simulation.)
To ease the process, we draw inspiration from previous
work on sketch-based interfaces (see the “Related Work”
sidebar at the end of the article for more details).

A sketch-based approach
Our approach combines tailoring, dressing, and phys-

cross the body) or borderlines (lines that cross the
body). Next, it computes a distance-to-the-body value
for each point of a silhouette segment and uses these
distances to determine desired point-to-body distances
for the borderlines. It then propagates this distance
information in 2D to find desired point-to-body dis-
tances, which it uses to determine the garment’s 3D
position. When the drawing includes fold strokes indi-
cating fold location and placement, the system adjusts
the garment’s distance values so that the established
level moves closer to or farther from the body.

ical plausibility into a single step to create a mesh that is
both visually pleasing and suitable for later complex sim-
ulation or skinning approaches. We described a prelim-
inary version of our system elsewhere; ! here, we present
the system in detail and describe several new aspects,
including

B generation of complete (back and front) garments,
B fold-sketching,

B graphical user interface improvements, and

B feedback from a seasoned fashion designer.

Our system’s two key features are its pleasant user-
interaction experience and its method for reconstruct-
ing the garment’s 3D geometry and placement from a
2D sketch. As in work by Bourguignon and colleagues,?
our system lets users sketch garments directly on a 3D
virtual actor body model. However, our method outputs
a full 3D geometry for the garment, using the distance
from the 2D garment silhouette to the body model to
infer distance variations between the garment and the
character in 3D.

The system performs this reconstruction in four steps.
First, it automatically classifies the 2D garment draw-
ing’s contour lines as either silhouettes (lines that don’t

Feedback from a Fashion Designer

Fashion designer Laurence Boissieux has experience in
creating both real and virtual garments. She produced the
sketch in Figure 1 and most garments featured in this article.
Boissieux offers the following commentary on
the system.

For a designer, the most natural way to create new
fashion is with a simple sheet of paper and a good old
pencil. But designers must keep up with the times and enter
the digital age. So far, the existing tools for creating clothes
in most 3D modeling systems are based on a quite complex
sequence of steps. The first is to draw flat panels, which
presupposes a strong knowledge of pattern making. Not
everyone has such skills; in the fashion industry, pattern
making is a distinct job and is not typically handled by the
designers themselves. Once the panels are created, users
must arrange them correctly in space around the body. The
next step is to specify seams, and finally to launch a physical
simulation that will pull the different panels toward each
other. Assuming users choose all parameters well, given a
lot of trials—and time!—they’ll get a 3D garment.

The real strength of the sketch-based interface is—as the
name claims—that it’s true to the designer’s natural

()

1 A sketched-based approach to 3D cloth modeling. (a) Our designer
created a traditional fashion design sketch early in the design process to
convey her vision on paper. (b) She then reproduced the design using our
sketch-based interface. (c) The resulting system-generated 3D garment.

gestures. It replaces paper and pencil with a graphic tablet,
which is strictly equivalent. And, above all, designers are
only expected to draw—something they’re used to doing.
The system bears a likeness to reality in its use of metaphors:
to remove a line, you just scribble on it. Users can draw and
redraw strokes until they’re satisfying. Generating the 3D
shape is as simple as clicking a button, and the computation
is efficient and quick. The result is nearly instantaneous—no
need to wait for endless iterations.

This speed lets designers go back and forth from the
sketch to the garment, making rapid changes. The same
drawing metaphor lets the designer add folds. Although the
fold shapes are somewhat automatic, they’re aligned on
free-hand curves and thus look natural. This is another great
feature that painlessly enriches the models and gives them
more realism at no cost. Another interesting aspect is that
even neophytes can play designer: the system doesn’t
require any particular know-how. It's easy to get into it and
very intuitive. My wish as designer would be to see this
system included in well-known 3D modelers so that
developers could create nicely shaped garments quickly,
easily, and directly—and then have more time to focus on
animation!
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(a)

1ot

2 Example user interaction. (a) After the user draws a few lines in contour mode to
indicate the skirt’s shape, the system’s corner-detector detects a breakpoint that the user
doesn’t want. The user therefore deletes the breakpoint by drawing a circle around it.
(b) The system classifies the remaining lines and displays silhouette lines in red and
borders in yellow. (c) The user requests a reconstruction, and the system displays the
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inferred surface.

3 Adding new breakpoints. The user had outlined a skirt in contour mode without sharp
corners at the bottom, so the system’s corner-detector failed to insert breakpoints. (a)
The user draws short strokes (in green) that cross the contour to indicate the need for
new breakpoints. (b) The system inserts the new breakpoints. (c) The reconstructed skirt.

4 Folding mode. (a) The user draws a few fold lines (thick green lines) that correspond
to ridges or valleys on the garment’s surface. (b) The width of the u-shaped gesture
crossing each end of a fold line determines the fold’s width; its depth determines the
fold’s depth. The system indicates both width and depth using a pink-circled Gaussian
profile at the end of each fold line. (c) The system adds the folds to the skirt.
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The sketch-based interface

A central objective of any sketch-based interface is to
give users the benefits of a traditional pencil-and-draw-
ing-board, while providing as much new functionality
as possible. To achieve this, we seek to minimize mod-
ifier keys and buttons, and UI modes (such as Caps
Lock). Our system uses only one button (which lets
users employ devices such as graphical tablets or tablet
PCs), a few mode sets, and an optional symmetry mode.

The first mode set lets users toggle between con-
tour mode (sketching the garment’s contours) and
folding mode (sketching the garment’s folds). Con-
tour mode is the default, and is the starting point for
any garment creation. Folding mode is subsidiary. In
the second mode set, users choose between applying
strokes to the garment’s front, back, or both (the
default behavior). Finally, an optional symmetry
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mode helps users draw vertically sym-
metrical garments.

Although we believe our interface pro-
vides an intuitive way of designing gar-
ments, the major contribution of our
approach is in the method for gener-
ating a 3D garment from a finished 2D
sketch. The sketching phase in itself clear-
ly leaves room for improvement; we could
push the drawing-board metaphor further
by introducing techniques such as cluster-
ing and beautification of fuzzy strokes, or
oversketching as a way of editing the
current sketch.®

Typical user interaction

To illustrate the system’s performance,
we describe a typical interaction in which
a user, Edna, sketches a skirt on a female
model.

Contour mode. As Figure 2a shows,
Edna first draws a line across the model’s
waist (indicating the top of the skirt), then
draws a line down the side (indicating the
skirt’s silhouette). Next, she draws a line
across the bottom in a V shape to indicate
that the skirt’s front should dip down. She
finishes with the other side. The system
then applies a simple corner-detection
process—based on the 2D curvature’s vari-
ation—to break the sketch into parts. The
system accidentally detects one extra cor-
ner (at the bottom of the V shape), which
Edna deletes using a deletion gesture. She
could also add new breakpoints, but none
are necessary here. (As we describe later,
breakpoints determine the garment’s glob-
al 3D position with respect to the body, and
thus play an important role in the 3D posi-
tioning process.) As Figure 2b shows, the
system classifies the two side lines as sil-
houettes, and the other lines as borderlines.

Edna now presses a button to see the gar-
ment that the system has inferred (see Fig-
ure 2¢); almost instantly, the system displays a surface
that matches the drawn constraints, but adapts to the
underlying form’s shape (see the waistline, for example).
Sometimes, the system’s breakpoint-inference fails to
detect all the points the user wants; in this case, she can
make a gesture (see Figure 3) to add new breakpoints.

Folding mode. Now that Edna is satisfied with the
skirt’s global shape, she decides to add a few folds to
obtain a more physically plausible 3D surface. To do this,
she simply switches to folding mode and draws strokes
that mark the presence of either ridges or valleys. She
can also specify the folds’ width and amplitude in an
intuitive way (see Figure 4).

Front/back modes. By default, the user’s strokes
affect both the garment’s front and back parts. Typically,



the two views share most lines. This is always true for sil-
houettes, which by definition join the front and back parts;
it’s often true of borders as well. However, our system also
lets users edit front and back borders independently by tog-
gling to the appropriate mode—so long as the contour
remains closed (see Figure 5). To avoid confusion, when
borders differ, the system renders the borders belonging
to the current view with a continuous stroke, while others
appear dashed. There is no constraint on how users edit
the folds, but it’s usually best to generate different folding
for the front and back parts.

Vertical symmetry. Garments often exhibit verti-
cal (that is, left to right) symmetry. Consequently, the
system has a mirror mode in which only half the canvas
is active; the other half automatically reproduces mir-
rored versions of the strokes. When a stroke crosses the
symmetry axis, the system cuts it at the intersection and
joins the left and right parts. Users can deactivate the
symmetry mode by pressing a key.

Gestural interface components

The system interprets the user’s marks as gestures;
in contour mode, it defaults to silhouette and border-
line segment construction. As Figure 6 shows, other
gestures add classification-process breakpoints, delete
breakpoints, delete a segment or segment chain, and
clear all segments.

The folding mode default gesture creates a new fold-
ing line. Stroke deletion gestures are valid, but because
breakpoints are irrelevant in this mode, the system
replaces corresponding gestures with other gestures to
control fold profiles (see Figure 7 on the next page).

The breakpoint-deletion gesture is similar to the stan-
dard proofreader’s deletion mark; other deletion ges-
tures require multiple intersections with existing strokes
to prevent accidental deletions.

Interpreting garment sketches

Reconstructing a 3D surface from a 2D drawing is
clearly an underconstrained problem; however, by con-
sidering clothing’s special nature we can generate a
plausible guess of the user’s intentions.

First, we want to find a model position and a 2D pro-
jection such that for every P(x,, y,) of the image plane,
the back-projected 3D ray possesses at most two inter-
sections z£ ,ZZ with the model’s body surface, because
then this property also holds for most one-layer gar-
ments. In other words, we need a pose that minimizes
surface overlappings (or maximizes the visible surface),
and lets us represent the garment with two height
fields—one for the front and another for the back. To
satisfy this constraint, we chose a standing stance with
spread-eagled arms that’s viewable from the front or
back. In this pose, the only body parts that don’t com-
ply with the desired property are the extremities (head,
hands, feet), which aren’t usually covered by cloth. Sec-
ond, users should be able to construct the front and back
parts with two different viewpoints so they can edit the
currently visible part. Because we want the two views
to share the same silhouette lines, we must use an ortho-
graphic projection.

(ﬂ%
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6 Contour mode gestures. The system draws an arrow-
head to indicate stroke direction and displays the
model using thick lines, prior strokes using medium
lines (with dots at breakpoints), and new strokes using
thin lines. (a) The user adds a segment and (b) deletes
a segment (the user’s stroke must intersect the seg-
ment at least five times). (c) To delete several
segments, the user’s stroke must intersect more than
one segment and intersect the set of segments at least
five times. If the stroke intersects segments from two
different chains, the system deletes both chains. (d) To
clear all segments, the user’s stroke must intersect some
segment and count at least 40 self-intersections. (e)
The user adds a breakpoint. (f) To delete a breakpoint,
the stroke must intersect the segments on either side
of the breakpoint and intersect itself once.

IEEE Computer Graphics and Applications

5 Using front
and back
modes. (a)
When the gar-
ment’s front is
displayed in
front mode, the
folds in the back
are rendered in
dashed rather
than solid lines.
(b) The result-
ing garment
front. (c) The
garment back in
back mode. (d)
The result.
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7 Folding mode gestures. The system draws new strokes using arrows. (a) Adding a fold (by default, a valley).
(b) Modifying the fold’s profile at one end (the closest to the intersection). The shape of the user’s stroke defines
the fold’s amplitude and width. A stroke that’s convex with respect to the fold’s endpoint results in a valley while
(c) a concave stroke results in a ridge. (d) By changing the fold’s other extremity, the user creates a pure ridge.

For the sake of clarity, we assume that the charac-
ter’s model is aligned with the xy-plane, viewed along
the z—direction. We also assume that clothing silhou-
ettes indicate points where the tangent plane to the
cloth contains the view direction and that they usual-
ly occur as the clothing passes around the body. This
lets us estimate a silhouette edge’s z-depth as being the
z-depth of the nearest point on the body. In other
words, we want the garment silhouettes to be as close
as possible to the body’s silhouettes. Moreover, the dis-
tance from a silhouette to the body can help us infer
the distance elsewhere, since a garment that fits the
body tightly in the xy-plane will also tend to fit tightly
in the z-direction, while a loose garment tends to float
everywhere.

Algorithm overview

At this point, we assume that we already have a valid
2D drawing of a garment, sketched with our interface.
Although we treat the garment’s front and back parts
separately, they possess the same silhouettes so they’re
easily joined together to construct a Co surface of the
whole garment. Therefore, we only describe the process
for one side, as follows.

In step 1, the system processes the 2D sketch of the
garment as follows:

B Find high-curvature points (breakpoints) that split
the contours into segments.

B Let user add and/or delete breakpoints.

B Classify curve segments between breakpoints into
borderlines (which cross the character’s body) or sil-
houette lines.

In step 2, the system infers the 3D position of silhou-
ette and borderlines as follows:

B For each breakpoint that does not lie over the body,

find the distance from the body, d, and set the point’s
depth, z, to the depth of the closest point on the body.
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B For each silhouette line, interpolate z linearly over the
line’s interior and use the interpolated z values to
compute d-values (distances to the body in the 3D
space) over the line’s interior. This allows for straight
junctions between the two parts.

B For each borderline, linearly interpolate d over the
interior to establish a desired distance from the
model, and set a z-value for each point on the line.

In step 3, the system generates the garment’s interi-
or shape as follows:

B Create a mesh consisting of points within the simple,
2D closed curve that the user has drawn, sampled on
arectangular grid in the xy-plane.

B Extend the d-values, which are known on this grid’s
boundary, over the interior.

B For each interior grid point (x,y), determine 2’s value
for which the distance from (x, y, 2) to the body is d’s
associated value.

B When appropriate, adjust this tentative assignment
of z-values to account for garment tension between
the character’s limbs (we describe this in more detail
later).

In step 4, the system applies the garment folds as fol-
lows:

B For each fold stroke, determine which grid points
(%, y) intersect the fold.

B For each intersected point, linearly interpolate the
two parameters (radius, amplitude) supplied by the
user at each stroke’s end.

B Evaluate a Gaussian within the pixel’s neighborhood.

B Apply the resulting displacement map to the z-
values.

Finally, in step 5, the system tessellates the grid with
triangles (clipped to the boundary curves) and renders
the triangles.



Precomputing a distance field

To accelerate algorithm steps 2 and 3, we precompute
adistance field to the character’s model when the model
isloaded. Thatis, for each point of a 3D grid around the
model, we use an octree-based algorithm to determine
and store the distance to the model’s nearest point. We
discretize the distance field on a regular grid. We could
use more advanced techniques—such as adaptive struc-
tures—to both represent and compute the distance field.
However, this computation is a preprocessing step and
performance is not crucial; moreover, accessing a regu-
lar grid during runtime is fast enough.

The system uses the distance field each time it needs
to find the z-coordinate to assign to a point p(xo, Yo) to
make it lie at a given distance from the model. It easily
accomplishes this by stepping along the ray R(z) =
(x0, Yo, 2) and stopping when it reaches the adequate
distance value (we interpolate trilinearly to estimate dis-
tances for nongrid points). When the system performs
this computation during a sweeping procedure, it starts
the stepping at a neighboring pixel’s existing z-value,
which ensures efficiency and the result’s spatial coher-
ence. Otherwise, it starts the process near the near plane
of the rectangular frustum on which the distance field
has been computed.

Results quality and computation time depends direct-
ly on the resolution of the 3D grid storing the distance
field. The size of the 3D grid is user configurable, but we
generally use a 128 x 128 x 128 grid to cover the whole
body.

Processing contour lines

To generate the garment’s 3D surface, the system
must analyze the user’s 2D strokes and assign them a
3D position.

2D processing

First, the system must classify the parts of the user’s
sketch. When the user starts or ends a new line with-
in a few pixels of an existing line’s endpoint, the sys-
tem assumes that the lines connect. While the user is
drawing, the system breaks finished lines into seg-
ments by detecting points of high 2D curvature (break-
points).

Once the sketch is complete—that is, it forms a sim-
ple, closed curve in the plane—the system further clas-
sifies all segments. It classifies a segment as a borderline
if the segment’s projection meets the body’s projection
in the xy-plane; otherwise, it classifies it as a silhouette.
To make such classification efficient, we precompute the
body’s projection mask and store it in a buffer (the body
mask). Users can see the resulting segmentation, and
can add or delete breakpoints indicating segment
boundaries as necessary. Following this, the system
reclassifies the segments.

Distance and z-value at breakpoints

We use the body mask to find breakpoints that are
located over the body model; these points indicate gar-
ment regions that fit tightly to the body. We assign such
points a zero distance from the model, setting their z-
value to the body’s z at this specific (x, y) location.

To assign a distance value d to a breakpoint that does-
n’t lie over the body, the system:

B steps along the ray from the eye in the direction of the
breakpoint’s projection into the xy-plane,

B checks distance values in the distance field data struc-
ture as it goes, and

B finds the z-value that minimizes this distance.

By assigning the breakpoint the discovered z- and d-val-
ues, we position the breakpoint in 3D.

Line positioning in 3D

We use the breakpoints’ computed 3D positions to
roughly position the garment in 3D, inferring the gar-
ment’s shape primarily from distances to the body along
the sketch silhouettes. To position the silhouette lines
in 3D, we interpolate z linearly along the edge between
the two breakpoints at the silhouette’s extremities. We
then set the d-values for interior silhouette points to
those stored in the precomputed distance field. Instead,
we could interpolate d directly, and compute associated
z-values. However, if the body curves away from the sil-
houette curve, the interpolated d-value might have no z-
value. Alternatively, we could compute d directly for
each interior point, then assign the closest body point’s
z-value (as with breakpoints). In practice, however, this
leads to wiggly lines because of the coarse grid on which
we precompute the approximate distance-to-body field.

So, having established the z- and d-values along sil-
houette edges, we must extend this assignment to the
borderlines. We do this in the simplest possible way: we
assign d linearly along each borderline. Thus, for exam-
ple,in Figures 2, 3, and 4, the d values at each end of the
waistline are small, so the entire waistline’s d-value will
be small. Likewise, the d-values for the hemline’s ends
are quite large, so the values along the rest of the hem-
line will be large, too.

3D reconstruction of the garment'’s
surface

To infer the garment’s surface position, we use infor-
mation gathered on the strokes.

Using distance to guess surface position

Aswith the contour lines, our main clue for inferring
the garment interior’s 3D position is the interpolation
of distances to the body. Propagating distance values
inside the garment consists of several steps.

First, we use the closed 2D contour lines to generate
an (x,y) buffer (sized to the sketch’s bounding box). As
Figure 8 (on the next page) shows, we assign each pixel
in the buffer a value—in, out, or border—based on its
position with respect to the contour. In a border pixel, a
contour line intersects a small vertical or horizontal line
in the pixel’s center. Other pixels are either inside or out-
side the contour, depending on the contour’s winding
number at the pixel center. We assign the border pixels
the distance values already computed along the silhou-
ette and borderlines.

We also want to minimize the distance variation
inside the garment, so that the resulting garment is as
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tight as possible, given the border constraints. Let Q be
the set of inside and boundary pixels and 8Q the bound-
ary. We already know f; |;, the predetermined distance
values on the boundary, and want to find an interpolant
fawithout extrema over Q. This interpolant satisfies

Af,=0over Q, with fd‘m=f;

50 €3]

Equation 1 is a Laplace equation with Dirichlet bound-
ary conditions, which we can solve by simply iterating
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8 Using distance to guess surface position. Each grid point represents a
small square (solid lines). If a contour (heavy line) meets a small vertical or
horizontal line through the pixel center (dashed lines), the pixel is classified
as a boundary (B); otherwise, pixels are inside (I) or outside (O) the con-
tour, depending on the winding number.

convolutions with a 3 x 3 neighbors averaging mask over
Q. We then sweep in the 2D grid for computing z-val-
ues at the inner pixels, corresponding to the distances
obtained with Equation 1.

Mimicking cloth tension

The previous computation gives us a first guess of the
garment’s 3D position, but still results in artifacts
between two limbs of the character. Due to tension in
the cloth itself, a garment should not fit tightly in the
region between two limbs (as in Figure 9a), but rather
smoothly interpolate the limbs’ largest z values. To
achieve this, we first erode the 2D body mask by a pro-
portion that increases with the underlying d-value (see
Figure 9b, left). We then use a series of Bezier curves in
horizontal planes to interpolate the z-values for the in-
between pixels. We chose horizontal gaps because of the
human body’s structure: for an upright human (or most
other mammals), gaps between portions of the body are
more likely to be bounded by body on the left and right
than to be bounded above and below.

To maintain garment surface smoothness near the
recomputed region, we extract distance values from the
new z-values and the distance field. We perform some
distance propagation iterations again in 2D before recom-
puting the z-values in the regions not lying over the body;
these regions were not previously filled with the Bezier
curves (as in the right side of Figures 9a and 9b).

Finally, we apply a smoothing step to the z-values to
get a smoother shape for cloth that floats far from the
character’s model. To do this, we compute a smoothed
version of the z-buffer by applying a standard smoothing
filter. We then take a weighted average, at each pixel, of
the old and smoothed z-values, with weighting coeffi-
cients depending on each pixel’s distance
from the model.

Adding surface folds

We express folds as a garment’s surface
deformation, where the deformation’s
magnitude in z is at a maximum on the fold
stroke, and decreases away from the stroke.
The deformation’s magnitude corresponds
to a 2D Gaussian centered on the stroke
point closest to the surface sample point.
The algorithm proceeds as follows.

For each segment in the fold stroke,
determine which pixels in the garment
map intersect the segment. For each pixel
intersected:

B Clip the segment to the pixel.

B Determine the segment’s center point
(the origin for sampling the pixel’s 2D
Gaussian).

B Sample the Gaussian within the pixel’s

9 Mimicking cloth tension. (a) Surface reconstruction without accounting for tension. neighborhood (see Figure 10).

(b) Surface reconstruction that takes tension into account. In the left images, the part of

the surface over the body mask is shown in green. At bottom left, the body mask is We want the effect of the Gaussian to fall
eroded and the system uses Bézier curves to infer the z-values between the legs. The to zero at the radius users specify. Because
middle images show the resulting z-buffers; the images on the right show the recon- 99.7 percent of the Gaussian’s support is

structed surfaces.
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within three standard deviations (o), we



set the Gaussian’s ¢ to be one-third of the radius. We lin-
early interpolate the Gaussian’s radius and amplitude
in each sampled pixel between the fold stroke’s extrem-
ities. This interpolated radius specifies the size of the
pixel’s neighborhood to sample.

Once we've computed all the folds’ contributions, we
apply the resulting offset to the previously computed
z-values.

Mesh generation

In the last step, we use the standard, diagonally sub-
divided mesh’s triangles as the basis for the mesh we
render. We retain all inside vertices, remove all outside
vertices and triangles containing them, and move
boundary vertices to new locations using a simple rule:

B If any segments end within the unit box around the
vertex, we move the vertex to the average of those seg-
ments’ endpoints. (Because segments tend to be long,
it’s rare to have more than one endpoint in a box.)

B Otherwise, some segments must intersect the box’s
vertical and/or horizontal midlines; we move the ver-
tex to the average of all such intersections.

Essentially, we provide this simple triangulation to let
users instantly visualize the garments. To produce mesh-
es suitable for simulation system use, for example, we
could replace this approach with a more elaborate
meshing scheme to generate more uniform meshes.

Fold stroke

Garment map depth grid

o y O Area of Gaussian

® Gaussian sample point

+ Center of clipped segment

10 Computing the z-offset generated by a fold. For each pixel intersecting

the fold line, a Gaussian is applied to the neighboring pixels.

Results and discussion

Our designer drew the examples in Figures 1 and 11
in less than 5 minutes each. The strokes’ jagged appear-
ance in the drawings resulted from our using a mouse
as the input device, rather than a more adequate graph-
ics tablet. Our gallery includes simple clothes such as
pants, skirts, robes, and shirts, as well as less-standard

11 Example garments created using the sketch-based approach.
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Sketch-Based Interaction

Related Work

Current interactive systems'? for designing garments and
dressing virtual actors can be quite tedious. Typically, users
must:

B draw each pattern piece on a planar virtual cloth,

B specify the edges to be stitched together,

M position the pieces around the virtual actor, and

B run a simulation to obtain a convincing garment rest shape
on the character model.

Not only is this a long process, it is fairly unintuitive for
users with no prior experience in fashion design.

Sketch-based modeling systems have become popular
for interactively generating 3D geometry from sketches.
This popularity exists not only within the research
community and among graphics enthusiasts, but also
among the general public and within large businesses—as
exemplified by Google’s recent acquisition of SketchUp
(see http:// sketchup.google.com), a user-friendly CAD
system. One trait these systems share is that, to infer the
third (missing) dimension, they make assumptions about
the objects the user is about to create. Such hypotheses are
often expressed by low-level geometrical considerations:
the widely cited Teddy program* helps users create smooth
volumes, whereas Cherlin and colleagues created a system
that can generate two kinds of parametric surfaces.® Such
systems can also be based on higher-level a priori
knowledge—as in Malik’s system,® which narrows the
range of expressible entities to hairstyles. Our system is part
of the latter category; we limit ourselves to surfaces-with-
boundaries to represent garments.

Two projects have combined the sketching idea with the
goal of designing clothes: Bourguignon provided a 3D
sketching method to design garments over virtual actors.’
Users could view the sketch from arbitrary viewing angles,

but the system didn’t reconstruct a 3D garment surface.
Igarashi and Hughes® described a sketch-based method for
positioning garment patterns over a 3D body, but users
couldn’t directly sketch the garment in the system and they
had to know which pattern shapes would result in the
garments they desired. That is to say, the program used
sketching to address the dressing and (to some extent)
simulation problems, but not the tailoring problem.
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garments such as a bohemian dress and eccentricoutfits ments for movie characters—and even more so for

suitable for haute couture collections. This wide range
of clothing types shows our system’s expressiveness.

We are aware that other approaches could be used for
cloth design. For instance, someone could create a para-
metric template for shirts and a program that lets users
place the template over a particular character and then
adjust the shirt’s neckline, overall size, and so on. How-
ever, this approach would limit design choices to a pre-
defined template library and limit users to standard
models as well. Nonetheless, such a model-based
approach would be quite reasonable for many applica-
tions, such as a virtual Barbie doll.

In addition to the approaches we described here, we
could use other methods or augmentations as well.
First, our automated shape inference is simple and easy
to understand, but might not be ideal in all cases. We’ve
also yet to provide a way for users to edit the solution
to make it better match their sketched ideas. Second,
our system currently generates only single-layer gar-
ments. This is a reasonable limitation for dressing
video-game characters, for example, but is certainly
too restrictive for prototyping complex digital gar-
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designing real clothing.

Finally, our system can be a first step in a pipeline
whose final product is a more physically realistic gar-
ment. Decaudin and colleagues, for example, have gen-
erated 2D flat panels from an initial garment that our
system produced.* This, coupled with a fast physical
simulation, could let users generate realistic garments
that closely match the input sketch.

Conclusion

We plan to offer users more control over the generat-
ed surface’s geometric properties. Currently, we can
only ensure a Cy surface continuity, notably at the sil-
houettes. A higher-order continuity might be desirable
in many situations. To provide greater continuity, we
plan to use an approximate (smoothed) distance field
instead of the Euclidean distance. This would also per-
mit faster convergence of the iso-sets toward a sphere,
which would result in smoother surfaces as users move
away from the body. We might also replace the harmon-
ic distance diffusion inside the garment with a more cus-
tomizable one.



We plan several other improvements as well. First, the
tessellation we use to generate the final mesh is simple;
we’d like to improve it to create uniformly triangulated
meshes and to account for fold directions. Second, we
could substantially improve system expressiveness by
letting users edit and modify garments from multiple
views. The system could then render the current surface
nonphotorealistically, displaying the silhouettes and
borders, which users could then oversketch.

Finally, we’ve sketched clothing as though it were sim-
ply astiff polygonal material unaffected by gravity. We’d
like to let users draw clothing, then indicate something
about the material’s stiffness to see how it would drape
over the body. For example, silk (almost no stiffness),
canvas (stiff), and tulle (very stiff) generate different
draping behaviors. We also plan to consider the inverse
approach, where the system would infer a fabric’s
mechanical properties from the fold patterns that users
draw. In the much longer term, we’d like to incorporate
a simulator that can simulate the difference between
bias-cut cloth and straight-grain, the former being far
more clingy than the latter. |
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