
HAL Id: inria-00171796
https://hal.inria.fr/inria-00171796

Submitted on 13 Sep 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Personalized Communities in a Distributed
Recommender System
Sylvain Castagnos, Anne Boyer

To cite this version:
Sylvain Castagnos, Anne Boyer. Personalized Communities in a Distributed Recommender System.
29th European Conference on Information Retrieval - ECIR’07, Fondazione Ugo Bordoni; BCS-IRSG;
ACM SIGIR, Apr 2007, Rome, Italy. pp.343-355, �10.1007/978-3-540-71496-5_32�. �inria-00171796�

https://hal.inria.fr/inria-00171796
https://hal.archives-ouvertes.fr

Personalized Communities in a Distributed

Recommender System

CASTAGNOS Sylvain and BOYER Anne

LORIA - Université Nancy 2
Campus Scientifique - B.P.239

54506 Vandoeuvre-lès-Nancy Cedex, France
{sylvain.castagnos, anne.boyer}@loria.fr

Abstract. The amount of data exponentially increases in information
systems and it becomes more and more difficult to extract the most rel-
evant information within a very short time. Among others, collaborative
filtering processes help users to find interesting items by modeling their
preferences and by comparing them with users having the same tastes.
Nevertheless, there are a lot of aspects to consider when implementing
such a recommender system. The number of potential users and the confi-
dential nature of some data are taken into account. This paper introduces
a new distributed recommender system based on a user-based filtering al-
gorithm. Our model has been transposed for Peer-to-Peer architectures.
It has been especially designed to deal with problems of scalability and
privacy. Moreover, it adapts its prediction computations to the density
of the user neighborhood.

1 Introduction

With the development of information and communication technologies, the size
of information systems all over the world has exponentially increased. Conse-
quently, it becomes harder and harder for users to identify relevant items in a
reasonable time, even when using a powerful search engine. Collaborative fil-
tering techniques [1] are a good way to cope with this difficulty. It amounts to
identifying the active user to a set of persons having the same tastes, based
on his/her preferences and his/her past actions. This system starts from the
principle that users who liked the same items have the same topics of interest.
Thus, it is possible to predict the relevancy of data for the active user by taking
advantage of experiences of a similar population.

There are several fundamental problems when implementing a collaborative
filtering algorithm. In this paper, we particularly pay attention to the following
significant limitations for industrial use:

– scalability and system reactivity: there are potentially several thousand users
and items to manage in real time;

– intrusions into privacy: we have to be careful to be as unintrusive as possible
and at least to guarantee the anonymity of users;

2

– novelty in predictions: according to the context, users want to have more
or less new recommendations. Sometimes their main concern is to retrieve
the items that they have high-rated, even if it means having less new rec-
ommendations. This is why we introduce an adaptive minimum-correlation
threshold of neighborhood which evolves in accordance with user expecta-
tions.

We propose an algorithm which is based on an analysis of usage. It relies on
a distributed user-based collaborative filtering technique. Our model has been
integrated in a document sharing system called ”SofoS”.1

Our algorithm is implemented on a Peer-to-Peer architecture because of the
document platform context. In a lot of companies, documents are referenced
using a common codification that may require a central server2 but are stored
on users’ devices. The distribution of computations and contents matches the
constraints of scalability and reactivity.

In this paper, we will first present the related work on collaborative filtering
approaches. We will then introduce our Peer-to-Peer user-centered model which
offers the advantage of being fully distributed. We called this model ”Adaptive
User-centered Recommender Algorithm” (AURA). It provides a service which
builds a virtual community of interests centered on the active user by selecting
his/her nearest neighbors. As the model is ego-centered, the active user can
define the expected prediction quality by specifying the minimum-correlation
threshold. AURA is an anytime algorithm which furthermore requires very few
computation time and memory space. As we want to constantly improve our
model and the document sharing platform, we are incrementally and modularly
developing them on a JXTA platform3.

2 Related work

In centralized collaborative filtering approaches, finding the closest neighbors
among several thousands of candidates in real time without offline computations
may be unrealistic [2]. By contrast, decentralization of data is practical to comply
with privacy rules, as long as anonymity is fulfilled [3]. This is the reason why
more and more researchers investigate various means of distributing collaborative
filtering algorithms. This also presents the advantage of giving the property of
profiles to users, so that they can be re-used in several applications.4 We can
mention research on P2P architectures, multi-agents systems and decentralized
models (client/server, shared databases).

There are several ways to classify collaborative filtering algorithms. In [4],
authors have identified, among existing techniques, two major classes of algo-
rithms: memory-based and model-based algorithms. Memory-based techniques

1 SofoS is the acronym for ”Sharing Our Files On the System”.
2 This allows to have document IDs and to identify them easily.
3 http://www.jxta.org/
4 As the owner of the profile, the user can apply it to different pieces of software. In

centralized approaches, there must be as many profiles as services for one user.

3

offer the advantage of being very reactive, by immediately integrating modi-
fications of users profiles into the system. They also guarantee the quality of
recommendations. However, Breese et al. [4] are unanimous in thinking that
their scalability is problematic: even if these methods work well with small-sized
examples, it is difficult to change to situations characterized by a great num-
ber of documents or users. Indeed, time and space complexities of algorithms
are serious considerations for big databases. According to Pennock et al. [5],
model-based algorithms constitute an alternative to the problem of combina-
torial complexity. Furthermore, they perceive in these models an added value
beyond the function of prediction: they highlight some correlations in data, thus
proposing an intuitive reason for recommendations or simply making the hy-
potheses more explicit. However, these methods are not dynamic enough and
they react badly to insertion of new contents into the database. Moreover, they
require a penalizing learning phase for the user.

Another way to classify collaborative filtering techniques is to consider user-
based methods in opposition to item-based algorithms. For example, we have
explored a distributed user-based approach within a client/server context in [6].
In this model, implicit criteria are used to generate explicit ratings. These votes
are anonymously sent to the server. An offline clustering algorithm is then ap-
plied and group profiles are sent to clients. The identification phase is done on
the client side in order to cope with privacy. This model also deals with sparsity
and scalability. We highlight the added value of a user-based approach in the
situation where users are relatively stable, whereas the set of items may often
vary considerably. On the contrary, Miller et al.[7] show the great potential of
distributed item-based algorithms. They propose a P2P version of the item-item
algorithm. In this way, they address the problems of portability (even on mobile
devices), privacy and security with a high quality of recommendations. Their
model can adapt to different P2P configurations.

Beyond the different possible implementations, we can see there are a lot
of open questions raised by industrial use of collaborative filtering. Canny [3]
concentrates on ways to provide powerful privacy protection by computing a
”public” aggregate for each community without disclosing individual users’ data.
Furthermore, his approach is based on homomorphic encryption to protect per-
sonal data and on a probabilistic factor analysis model which handles missing
data without requiring default values for them. Privacy protection is provided
by a P2P protocol. Berkovsky et al. [8] also deal with privacy concern in P2P
recommender systems. They address the problem by electing super-peers whose
role is to compute an average profile of a sub-population. Standard peers have
to contact all these super-peers and to exploit these average profiles to compute
predictions. In this way, they never access the public profile of a particular user.
We can also cite the work of Han et al.[9], which addresses the problem of privacy
protection and scalability in a distributed collaborative filtering algorithm called
PipeCF. Both user database management and prediction computation are split
between several devices. This approach has been implemented on Peer-to-Peer
overlay networks through a distributed hash table method.

4

In this paper, we introduce a new hybrid method called AURA. It combines
the reactivity of memory-based techniques with the data correlation of model-
based approaches by using an iterative clustering algorithm. Moreover, AURA is
a user-based model which is completely distributed on the user scale. It has been
integrated in the SofoS document platform and relies on a P2P architecture in
order to distribute either prediction computations, content or profiles. We design
our model to tackle, among others, the problems of scalability, and privacy.

3 SofoS

SofoS is a document platform, using a recommender system to provide users with
content. Once it is installed, users can share and/or search documents, as they do
on P2P applications like Napster. We conceive it in such a way that it is as open
as possible to different existing kinds of data: hypertext files, documents, music,
videos, etc. The goal of SofoS is also to assist users to find the most relevant
sources of information efficiently. This is why we add the AURA recommender
module to the system. We assume that users can get pieces of information either
by using our system or by going surfing on the web. SofoS consequently enables
to take visited websites into account in the prediction computations.

We are implementing SofoS in a generic environment for Peer-to-Peer ser-
vices, called JXTA. This choice is motivated by the fact it is greatly used in our
research community.

In [7], the authors highlight the fact that there are several types of possible
architectures for P2P systems. We can cite those with a central server (such
as Napster), random discovery ones5 (such as Gnutella or KaZaA), transitive
traversal architectures, content addressable structures and secure blackboards.

We conceived our model with the idea that it could be adapted to different
types of architectures. However, in this paper, we will illustrate our claims by
basing our examples on the random approach even if others may have an added
value. The following subsection aims at presenting the AURA Algorithm.

3.1 AURA Algorithm

We presume that each peer in SofoS corresponds to a single user on a given
device.6 For this reason, we have conceived the platform in such a way that users
have to open a session with a login and a password before using the application.
In this way, several persons can use the same computer (for example, the different
members of a family) without disrupting their respective profiles. That is why
each user on a given peer of the system has his/her own profile and a single ID.
The session data remain on the local machine in order to enhance privacy. There

5 Some of these architectures are totally distributed. Others mixed centralized and
distributed approaches but elect super-peers whose role is to partially manage sub-
groups of peers in the system.

6 We can easily distinguish devices since SofoS has to be installed on users’ computers.

5

is no central server required since sessions are only used to distinguish users on
a given peer.

For each user, we use a hash function requiring the IP address and the login
in order to generate his/her ID on his/her computer. This use of a hash function
H is suitable, since it has the following features:

– non-reversible: knowing ”y”, it is hard to find ”x” such as H(x) = y;
– no collision: it is hard to find ”x” and ”y” such as H(x) = H(y);
– knowing ”x” and ”H”, it is easy to compute H(x);
– H(x) has a fixed size.

In this way, an ID does not allow identification of the name or IP address of
the corresponding user. The communication module uses a IP multicast address
to broadcast the packets containing addressees’ IDs. In order to reduce the in-
formation flow, we can optionally elect a super-peer which keeps a list of IDs
whose session is active: before sending a message, a peer can ask if the addressee
is connected. If the super-peer has no signal from a peer for a while, it removes
the corresponding ID from the list.

Users can both share items on the platform and integrate a feedback about
websites they consult. Each item has a profile on the platform. In addition to the
available documents, each peer owns 7 pieces of information: a personal profile,
a public profile, a group profile and 4 lists of IDs (list ”A” for IDs of peers
belonging to its group, list ”B” for those which exceed the minimum-correlation
threshold as explained below, list ”C” for the black-listed IDs and list ”O” for
IDs of peers which have added the active user profile to their group profile). An
example of the system run is shown on figure 1.

Fig. 1. Run of AURA.

In order to build the personal profile of the active user ua, we use both
explicit and implicit criteria. The active user can always check the list of items
that he/she shares or has consulted. He/She can explicitly rate each of these
items on a scale of values from 1 to 5. The active user can also initialize his/her
personal profile with a set of criteria7 proposed in the interface in order to
partially face the cold start problem. This offers the advantage of completing
the profile with more consistency and of finding similarities with other users
more quickly, since everyone can fill the same criteria rating form.

7 Ideally, the set of items in the criteria set should cover all the implicit categories
that users can find on the platform.

6

We assume that, despite the explicit voluntary completion of profiles, there
are a lot of missing data. We consequently add to AURA a user modeling func-
tion, as we did in [6]. The explicit ratings and the estimated numerical votes
constitute the active user’s personal profile. The public profile is the part of the
personal profile that the active user accepts to share with others.

The algorithm also has to build a group profile. It represents the preferences
of a virtual community of interests, and has been especially designed to be as
close as possible to the active user’s expectations. In order to do that, the peer
of the active user asks for the public profiles of all the peers it can reach through
the platform. Then, for each of these profiles, it computes a similarity measure
with the personal profile of the active user. The active user can indirectly define a
minimum-correlation threshold which corresponds to the radius of his/her trust
circle (cf. infra, figure 2).

Fig. 2. Virtual community centered on ua.

If the result is lower than this fixed threshold which is specific to each user,
the ID of the peer is added to the list ”A” and the corresponding profile is
included in the group profile of the active user, using the procedure of table 1.

Procedure AddToGroupProfile(public profile of un)
W = W + |w(ua, un)|
for each item i do

(ul,i) = (ul,i) ∗ (W − |w(ua, un)|)
(ul,i) = ((ul,i) + w(ua, un) ∗ (un,i))/W

end for

With: (ul,i) the rating for item i in the group profile;
(un,i) the rating of user n for item i;
W the sum of |w(ua, ui)|, which is stored;
w(ua, un) the correlation coefficient between the active user ua and un.

Table 1. Add a public profile to the group profile.

We used the Pearson correlation coefficient to compute similarity, since the
literature shows it works well [10]. Of course, if this similarity measure is higher
than the threshold, we add the ID of the peer to the list ”B”. The list ”C” is
used to systematically ignore some peers. It enables to improve trust – that is
to say the confidence that users have in the recommendations – by identifying
malicious users. The trust increasing process will not be considered in this paper.

When his/her personal profile changes, the active user has the possibility to
update his/her public profile pa. In this case, the active peer has to contact every

7

peer8 whose ID is in the list ”O”. Each of these peers re-computes the similarity
measure. If it exceeds the threshold, the profile pa has to be removed from the
group profile, using the procedure of table 2. Otherwise, pa has to be updated
in the group profile, that is to say the peer must remove the old profile and add
the new one.

Procedure RemoveToGroupProfile(old profile of un)
W = W − |w(ua, un)|
for each item i do

(ul,i) = (ul,i) ∗ (W + |w(ua, un)|)
(ul,i) = ((ul,i) − w(ua, un) ∗ (un,i))/W

end for

Table 2. Remove a public profile from the group profile.

By convention, we use the notation < id, p > for the peer-addition packet,
that is to say new arrivals. < id, p, s > corresponds to the packet of a peer which
is already connected and sends data to a new arrival. ”s” is the threshold value.
There is no need to specify the threshold value in the peer-addition packet, since
there is a default value (|correlation| >= 0). At last, < id, pt−1, pt, s > is the
notation for the update packet. In each of these packets, the first parameter
corresponds to the ID of the source of the message. In order to simplify the
notation, we do not include the addressees’ ID in figure 3.

Fig. 3. Example of user interactions.

Figure 3 illustrates how the system works. In this example, we consider 3
of the 5 users from figure 1. We show the registers of the active user ua and
the user u4. At time t1, the active user ua tries to contact, for the first time,
other peers by sending his/her public profile and his/her ID to neighbors. This
is the packet < ida, pa >. u3 receives the packet and answers at t2. ua computes
the distance between the public profiles p3 and pa. As the Pearson coefficient is
inevitably within the default threshold limit, ua adds id3 to his/her list ”A”. If
the computed correlation coefficient is higher than ”s3” which is the threshold
of u3, ua adds id3 to his/her list ”O”. Meanwhile, some of the reached peers will

8 A packet is broadcasted with an heading containing peers’ IDs, the old profile and
the new public profile.

8

add pa to their list ”A” if the correlation is higher than their threshold (this is
the case for u3). At time t2, u4 arrives on the platform and sends a packet to
u3. At time t3, u3 replies to u4 and sends the packet of u4 to peers that he/she
already knows. ua receives it and adds id4 to his/her list ”A”. He/She also adds
id4 to the list ”O”, since u4 is a new arrival and has a default threshold. At
time t4, ua consequently gives his/her public profile to u4. At the same time, u4

has changed his/her threshold and considers that ua is too far in the user/item
representation space, that is to say the correlation coefficient between ua and u4

exceeds the limit. Thus, u4 adds ida in the list ”B”. In the packet < ida, pa, sa >,
”sa” allows u4 to know that he/she must complete the list ”O” with ida. At last,
u4 updates his/her public profile. Afterwards, he/she notifies the change to the
IDs in the list ”O”. This is the packet < ida, p4,t4 , p4,t5 , s4 >. p4,t4 and p4,t5 are
respectively the old and new public profiles of u4. When ua receives this packet,
he/she updates the list ”O” by removing id4 since s4 is too high for him/her.

3.2 Adaptive minimum-correlation threshold

As shown in the previous subsection, the active user can indirectly define the
minimum-correlation threshold that other people must reach in order to be a
member of his/her community (radius of the circle on figure 2). Concretely, a
high correlation threshold means that users taken into account in prediction
computations are very close to the active user. Recommendations will be con-
sequently extremely similar to his/her own preferences. On the contrary, a low
correlation threshold sets forth the will of the active user to stay aware of gener-
alist information by integrating distant users’ preferences. In this way, the user
avoids freezed suggestions by accepting novelty. In the SofoS interface, a slide
bar allows the active user to ask for personalized or generalist recommendations.
This allows AURA to know the degree to which it can modify the threshold9.
The default threshold value is 0, which means that we take all the peers into
account. The default step of threshold is 0.1, but it can be adapted to the density
of population.

As shown in figure 4, we split the interval of the Pearson coefficient’s pos-
sible values [−1;+1] into subsets. For each subset, we keep the count of peers
which have got in touch with the active user and whose correlation coefficient is
contained in the interval corresponding to the subset. Thus, when a user sends
a packet to ua, the Pearson coefficient is computed in order to know if the ac-
tive user’s group profile has to be updated according to the threshold value. At
the same time, we update the corresponding values in the population distribu-
tion histogram. For example, if ua receives an update packet and the Pearson
coefficient changes from 0.71 to 0.89, we decrement the register of the interval
[0.7; 0.8) and we increment the register of the interval [0.8; 0.9). In this way, we
constantly have the population density for each interval.

9 By ”threshold”, we mean the minimum absolute value of Pearson coefficients to con-
sider in the group profile computation. For example, if the system sets the threshold
to 0.1, it means that only peers ui whose correlation coefficient |w(ua, ui)| is higher
than 0.1 will be included in the group profile of the active user.

9

Fig. 4. Adaptive threshold based on density.

When the total number of users whose Pearson coefficient is higher than
(threshold+0.1) exceeds a given limit (dashed line on figure 4), we increase the
threshold. If there are too many users in the next subset, the threshold increase
is lower. For the moment, the maximum threshold value is 0.2 for users who
want a high degree of novelty and 0.9 for those who expect recommendations
close to their preferences.10 These values have been arbitrarily chosen. We plan
to do statistical tests to automatically determine the ideal thresholds according
to the context.

4 Discussion

In order to define the degree of privacy of our recommender system, we refer to 4
axes of personalization [11]. Cranor assumes that an ideal system should be based
on an explicit data collection method, transient profiles, user initiated involvment
and non-invasive predictions. In our system, the users have complete access to
their preferences. They have an effect on what and when to share with others.
Only numerical votes are exchanged and the logs of user actions are transient.
Even when the active user did not want to share his/her preferences, it is possible
to do predictions since public profiles of other peers are temporarily available on
the active user device. Each user has a single ID, but the anonymity is ensured by
the fact that there is no table linking IDs and identities. This privacy-enhanced
process requires more network traffic than in [8], but it allows the system to
perform user-centered rather than community-centered predictions.

As regards scalability, our model no longer suffers from limitations since the
algorithms used to compute group profiles and predictions are in o(b), where b is
the number of commonly valuated items between two users, since computations
are made incrementally in a stochastic context. In return, AURA requires quite
a lot of network traffic. This is particularly true if we use a random discovery
architecture. Other P2P structures can improve communications [7].

Furthermore, we assume that quality of predictions in real situation should be
better – providing that we found enough neighbors – since the virtual community
of interests on each peer is centered on the active user (cf. infra, figure 2). We can
influence the degree of personalization by adjusting the threshold according to

10 That is to say they want to retrieve items that they have high-rated

10

the density of the active user’s neighborhood. The system just has to increase the
threshold in order to ensure users to retrieve the items that they have high-rated
among their recommendations. To highlight this phenomenon, we generated a
rating matrix of 1,000 users and 1,000 items. The votes follow a gaussian law and
we can see the average number of neighbors as regards Pearson coefficient scaling
on figure 5. We randomly removed 20% of these votes and applied the AURA
algorithm. Then, we compute the Recall which measures how often a list of
recommendations contains an item that the user have already rated in his/her
top 10. When increasing the threshold in the system, this measure becomes
higher.

Fig. 5. On the left, average distribution of users as regards Pearson coefficient. On the
right, recall as threshold grows.

We have also evaluated our model in terms of prediction relevancy. We used
the Mean Absolute Error (MAE). MAE is a widely used metric which shows the
deviation between predictions and real user-specified values. Consequently, we
computed the average error between the predictions and 100,000 ratings of the
GroupLens test set11.

We simulate arrivals of peers by progressively adding new profiles. As shown
on figure 6, we get predictions as good as using the PocketLens algorithm [7].
PocketLens relies on a distributed item-based approach. This comparison con-
sequently demonstrates that AURA provides as relevant results as a performant
item-based collaborative filtering.

At last, we compared our recommender system with two centralized al-
gorithms (Item-Item [2] and the Correlation-based Collaborative Filter Cor-
rCF [12]) to illustrate the added value of the distributed approach. In order
to determine the computation times of these algorithms, we have generated ran-
dom public profiles with different numbers of items. In this simulation, the votes
of each user follow a Gaussian distribution centered on the middle of the repre-
sentation space. Moreover, only 1% of data in the generated profiles is missing.12

Since the Item-Item and CorrCF are centralized, we first aggregate the profiles
in a vote matrix.

11 http://www.grouplens.org/
12 Only 1% of missing data is not realistic but can potentially increase the computation

time what is interesting in this case.

11

Fig. 6. MAE as neighborhood size grows.

The results of the tests in term of computation time are shown in the table 3.
The announced times for the AURA algorithm do not include the duration
required to scan the network in search of public profiles. Of course, the difference
between AURA and the two others is mainly due to the fact that we use as many
peers as users for computations. However, these results illustrate the considerable
gain in comparison with centralized techniques. AURA allows to do real-time
predictions. There is no need to do offline computations since we can take into
account 10,000 profiles and 150 items in less than an half-second. Moreover, the
system does not have to wait until all similarity measures end. As the algorithm
is incremental, we can stop considering other peers at any moment.

Items 100 150 1000
Users AURA CorrCF It-It AURA CorrCF It-It AURA CorrCF It-It

200 0”01 2”60 2”14 0”01 3”17 2”71 0”07 11”09 52”74

1,000 0”03 30”22 8”56 0”05 40”68 12”84 0”30 3’06” 3’25”

10,000 0”31 7:30’ 1’22” 0”48 - 2’05” 1”90 - 49’28”

100,000 3”04 - - - - - - - -

Table 3. Computation times of three collaborative filtering algorithms.

5 Conclusion

SofoS is a document sharing platform including a recommender system. To cope
with numerous problems specific to information retrieval, we proposed a Peer-to-
Peer collaborative filtering model which is totally distributed. It allows real-time
personalization and manages the degree of personalization that users want. We
implement it on a JXTA platform which has been used by researchers all over
the world. We show in this paper that we can deal with important problems such
as scalability, privacy and quality. We highlight the benefits of our system by
doing offline performance analysis. We plan on validating these points by testing
our model with real users in real conditions.

Our algorithm is anytime and incremental. Contrary to PocketLens, our
model is user-based because we consider that the set of items can change. Even

12

if an item is deleted, we can continue to exploit its ratings in the prediction com-
putations. Moreover, the stochastic context of our model allows the system to
update the modified profiles instead of resetting all the knowledge about neigh-
bors. At last, our model is very few memory-consuming because it does not need
to store any neighbors’ ratings, similarity matrix, dot product matrix and so on.
It only requires the sum of pearson coefficients and four lists of user IDs.

Currently, we are developing our protocols further to cope with other lim-
itations, such as trust and security aspects by using specific communication
protocols as in [13].

References

1. Goldberg, D., Nichols, D., Oki, B., Terry, D.: Using collaborative filtering to
weave an information tapestry. In: Communications of the ACM, Special Issue on
Information Filtering. Volume 35(12)., ACM Press (1992) 61–70

2. Sarwar, B.M., Karypis, G., Konstan, J.A., Reidl, J.: Item-based collaborative
filtering recommendation algorithms. In: World Wide Web. (2001) 285–295

3. Canny, J.: Collaborative filtering with privacy. In: IEEE Symposium on Security
and Privacy, Oakland, CA (May 2002) 45–57

4. Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms
for collaborative filtering. In: Proceedings of the fourteenth Annual Conference on
Uncertainty in Artificial Intelligence (UAI-98), San Francisco, CA (July 1998)

5. Pennock, D.M., Horvitz, E., Lawrence, S., Giles, C.L.: Collaborative filtering by
personality diagnosis: a hybrid memory- and model-based approach. In: Proceed-
ings of the sixteenth Conference on Uncertainty in Artificial Intelligence (UAI-
2000), San Francisco, USA, Morgan Kaufmann Publishers (2000)

6. Castagnos, S., Boyer, A.: A client/server user-based collaborative filtering algo-
rithm: Model and implementation. In: Proceedings of the 17th European Confer-
ence on Artificial Intelligence (ECAI2006), Riva del Garda, Italy (August 2006)

7. Miller, B.N., Konstan, J.A., Riedl, J.: Pocketlens: Toward a personal recommender
system. In: ACM Transactions on Information Systems. Volume 22. (July 2004)

8. Berkovsky, S., Eytani, Y., Kuflik, T., Ricci, F.: Hierarchical neighborhood topology
for privacy enhanced collaborative filtering. In: in CHI 2006 Workshop on Privacy-
Enhanced Personalization (PEP2006), Montreal, Canada (April 2006)

9. Han, P., Xie, B., Yang, F., Wang, J., Shen, R.: A novel distributed collabora-
tive filtering algorithm and its implementation on p2p overlay network. In: Proc.
of the Eighth Pacific-Asia Conference on Knowledge Discovery and Data Mining
(PAKDD04), Sydney, Australia (May 2004)

10. Shardanand, U., Maes, P.: Social information filtering: Algorithms for automating
“word of mouth”. In: Proceedings of ACM CHI’95 Conference on Human Factors
in Computing Systems. Volume 1. (1995) 210–217

11. Cranor, L.F.: Hey, that’s personal! In: the International User Modeling Conference
(UM05). (2005)

12. Resnick, P., Iacovou, N., Suchak, M., Bergstorm, P., Riedl, J.: Grouplens: An
open architecture for collaborative filtering of netnews. In: Proceedings of ACM
1994 Conference on Computer Supported Cooperative Work, Chapel Hill, North
Carolina, ACM (1994) 175–186

13. Polat, H., Du, W.: Svd-based collaborative filtering with privacy. In: Proc. of ACM
Symposium on Applied Computing, Cyprus (2004)

