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ABSTRACT

This work is dedicated to the numerical computations of the primi-
tive equations (PEs) of the ocean without viscosity with the nonlocal
(mode by mode) boundary conditions introduced in [RTT05b]. We
consider the 2D nonlinear PEs, and firstly compute the solutions in a
"large” rectangular domain €}y with periodic boundary conditions in
the horizontal direction. Then we consider a subdomain €2y, in which
we compute a second numerical solution with transparent boundary
conditions. Two objectives are achieved. On the one hand the absence
of blow-up in these computations indicates that the PEs without vis-
cosity are well-posed when supplemented with the boundary conditions
introduced in [RTTO05b]. On the other hand they show a very good co-
incidence on the subdomain §2; of the two solutions, thus showing also
the computational relevance of these new boundary conditions. We
end this study with some numerical simulations of the linearized prim-
itive equations, which correspond to the theoretical results established
in [RTTO5b], and evidence the transparent properties of the boundary
conditions.

1. INTRODUCTION : MOTIVATIONS AND OBJECTIVES

In this work, we intend to present our numerical simulations of the

2D primitive equations (PEs) without viscosity supplemented with the

nonreflective and nonlocal boundary conditions introduced in [RTT05b].

To this aim, we first compute the PEs in a "large” (z,z) domain

Q = (0,L) x (—H,0), with no-flux boundary conditions at top and

bottom, and periodic boundary conditions in the horizontal direction
1
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(see Figure 1).

z w=0
. v
Periodic B.C —) Q, &~ Periodic B.C
-H
0 4\ L X
w=0

FiGURE 1. Domain €

We then consider a sub-domain €; = (a,b) x (—H,0), where 0 < a <
b < L, so that Q; C Qy. We perform numerical simulations of the PEs
on €y, with the no-flux boundary condition at top and bottom, but
we use the transparent boundary conditions at £ = a and z = b (the
actual values are taken taken from the calculations in €y). The initial
condition is the same as on §y (restriction to Q;): ’

Z/F v\vj/:O

0, i
i i
: |
Transparent B.C 9; Q. ié Transparent B.C

| i
i |
"' :

x=a ’]\ x=b x

w=0
FIGURE 2. Subdomain €,

Our objectives are twofold: firstly in view of extending the theoreti-
cal results of [RTTO05b] to the nonlinear PEs, we test boundary con-
ditions similar to those in [RTT05b]; secondly to show that the pro-
posed boundary conditions are well-suited for the problem of numerical
simulations in a limited domain. This is done by observing that the
solutions computed on §2; only (with the nonreflecting boundary con-
ditions) match well, on €;, with the solutions computed on the whole
domain 2.
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This article is organized as follows. In Section 2, we present the equa-
tions and the so-called normal mode expansion. Then we introduce in
Section 3 the numerical schemes that we use in order to solve the prim-
itive equations (2.1). The spectral method is employed for the vertical
direction, whereas the x and t derivatives are discretized using finite
differences. In Section 4, we present the numerical computations of the
nonlinear PEs. The first results are dedicated to the periodic bound-
ary conditions for (y; then we implement the nonreflective boundary
conditions introduced in [RT'T05b] for 2;, and we end this section with
a comparison between the two different numerical solutions.

2. THE EQUATIONS AND THE NORMAL EXPANSION

In this study we consider the nonlinear primitive equations without
viscosity, independant of y, see e.g. [RTTO05b]:

ou ou Oou | 3¢’

(2.1a) —5{+(Uo+u)5—+ 5, vty = Fu
(2.1b) gt+(Uo+u)g—v+wg—v+fu = Fv—fﬁq,
(2.1c) aa‘tb+(U0+ )——+(N2+g¢ = Fy,
(2.1d) gﬁ % g =9
(2.1¢) ny o

We consider the equations in the bidimensional domain Qg = (0, L) x
(—H,0), and supplement them with an initial data wug,vo, 9. The
boundary condition taken at z = —H and z = 0 is classically w =
0, and we will consider in this study two different sets of boundary
conditions in the horizontal direction: the periodic ones and the non-
reflective ones.

2.1. The Linearized Primitive Equations. We first start with the
linearized version of (2.1) on which the study of (2.1) is based. The
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linearization of the PEs (2.1) around the steady flow (Up, 0, 0) reads

du  — Ou o

(2.2a) % tUog —fvto = K,
Ov v —
(2.2b) 5% ‘|‘an +fu = F,— fU,,
o oY
(22C) E+U0—8_+N2 — F,,/,,
0 _ _p  _
Oou Ow

(226) 8_117 + 5 = 0,

where N is the so-called buoyancy frequency, assumed to be constant.
In this study, we assume that the constant Uy is positive. Naturally,
this hypothesis is not restrictive and the study could easily be extended
to the case where Uy is negative.

Classically we proceed by separation of variables and actually look for
the unknown functions (u, v, w, ¢, %) under the form (see [RTTO05b)] for
more details):

(23)  (uv,0) =U(2) (29,9) (2,1), (w,d)):W(Z)(lD,?Z)(w,t),

where the functions 4, 9, w, and qAB only depend on z and ¢. Introducing
the decomposition (2.3) into equations (2.2) shows that W (and then
U) solves a two-point eigenvalue problem with the boundary condition
W = 0 at top and bottom (z = 0, —H). We thus obtain the normal
modes W,,(2) and U,,(2) such that

(2.4) Un(z) = \/_%‘COS(N Am 2), Uo(2) = %,
(2.5) Wi(z) = \/%sin(N Am 2),

m
2. m = .
(2.6) A N
We then look for the general solution in the form a series
(2.7) (u,v,¢) = ZL{ ) (s Oy Pm) (2, ),
m=>0 . :
(2.8) (W, ) =Y Win(2) (thm, Pm) (2, 1).

m>1
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We notice that Vm’ > 0,m > 1, we have the usual orthogonality

properties:
/ U (2)Un(2)dz = O m,
Ls
(2.9) . / Ui (2) Win(2)dz = 0,
" UL(2) = —NAnWn(2),
\ W/ (2) = NAnlUn(2).

In the numerical simulations, we will truncate the series after M terms.
Naturally, the larger M is, the more accurate the method is expected
to be, but the heavier the computations are. Typically, M = 10 is
satisfying from the physical point of view.

The case of the steady mode m = 0 is very simple, and is explained in
[RTTO05b]. From now on we only consider the modes m > 1.

Writing the linear PEs mode by mode, and writing (Um, Um, Wi, Ym,
ém) instead of (4, D, Wm, Ym, Gm), We obtain the followmg system
of integrodifferential equations (1 < m < M):

6Um aum a(bm

(2.10a) =i Uo7 = fum+ g = Tum
(2.10b) a;"W""JFUOEJ;)—"‘+fum—Fm,
(2.10c) 8;[’;" + Uy a;p;,, + N? W, = Fym.
(2.10d) bm = A‘f Moo

(2.10e) W = —']71)—\-": %l;—m;

Taking equations (2.10d) and (2.10e) into account, equations (2.10a)-
(2.10c) become:

OUm, = OUp 1 8¢m _
OV, Ovp, 4 .
(2.11b) o + Uy =2 o "ttty = Fym,
OYm Mm N Oup,
. I Zm_ R
(2.11c) o TV T ae =
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We have M systems of three coupled integro-differential equations
(time dependant with one space variable). We will discretize this sys-
tem in Section 3 below.

For every m < M, we introduce &, = Um — Y /N, m = Um + ¥m/N,
and let v,, unchanged. In terms of these variables, the system (2.10)
becomes:

Om Om

(212&) W + (Uo + E) a— f’Um Fg,m,
a’l)m a fm + Mm

(2.12b) 5 T U, 5 ~+ f 5 = Fom

anm ONm
(212C) 8'[; (Uo - E a—x - f’Um = F,,,,
The physical quantities can be obtained from &, 7, and v, with:
(2.13a) i (3, ) = 5’"%(@ ),

‘ _ Um
(2.13b) ‘ W (z,t) = N 2 (z,t),
(2.13¢) () = M(x,t),
__ Ym

It is crucial to notice that Uy, Uy + 1/\,, are always positive, whereas
Uy — 1/Am, can either be positive or negative', depending on the value
of m < M; actually, the sign of these three characteristic values will
determine the way we discretize the equations (2.12) in the horizontal
direction.

Thanks to (2.6), there exists a critical value m,, such that Ug— 1/Ap, is
negative (resp. positive) if m < m, (resp. m > m,). The correspond-
ing modes are then called subcritical (resp. supercritical).

2.2. Boundary Conditions for the Linear Case. We now recall
the boundary conditions first introduced in [RTT05b]. The subcritical
modes (m < m,) and the supercritical ones (m > m,.) have to be

IThis is actually why the PEs in a bounded domain are ill-posed with any set of
local boundary conditions, see [0S78, TT03, PR05, RT'T05a, RTTO05b).
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handled separately. Namely, we pfescribe for m < mg:

(2.14a) Em(0,1) = &, 4(0),
(2.14b) vm(0,8) = vl (1),
(2.14c) Mm(L, 1) = 1, 6(2),
where the quantities £, , v%, , and 7], , are some given functions that

depend on time. The boundary conditions for the supercritical modes
(m > m,) are

(215&) Em(07t) = in,g(t)a
(2.15b) Um(0,8) = v}, 4 (1),
(2.15¢) M (0, 8) = 1, o (2)-

where &, , v} and 7},  are also given. We notice that (2.14) differ

from (2.15), since two characteristics (resp. three) enter the domain at
z = 0 (resp. = = L) for subcritical modes (resp. the supercritical ones).

From the continuous viewpoint, the boundary conditions (2.14) can be -
written in the form of integral equations:

(2.16a) / u(0, 2) Up(2) dz — e ¥(0, 2) Win(2)dz =0,

—Ls N —Ls

(2.16b) /0 v(0, 2) U (2) dz = 0,

—Ls3

0 1 0
(2.160) /_ U () et [ (T2, Wal2)dz =0

The supercritical boundary conditions (2.15) can similarly be rewritten
in the form of an infinite sequence of integral equations:

(2.17a) / " w0, ) () dz = 0,
(2.17b) /0 (0, 2) U (2) dz = 0,
(2.17c¢) | ’ ¥(0, 2) Wi(2)dz =0,

We recall that the linearized PEs (2.2) supplemented with the boundary
conditions (2.16)-(2.16) lead to a well-posed problem. See [RT'T05b]
for more details.
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2.3. The Modal Form of the Nonlinear Primitive Equations.
We return to equations (2.1), and perform the same normal mode
decomposition. We obtain the nonlinear form of equations (2.10a)-
(2.10c), (2.10d) and (2.10e) beeing unchanged. For 1 < m < M we
have:

8um 6um a¢’m —
(2.18a) 5 + Uy == 5y~ vmt 5t Bum(U) = Fym,
Ovp, Ovp,
(2.18b) 2t Uy 5y TS umt Bym(U) = Fym,
(2.18c¢) agp: + U % + N? W + By m(U) = Fym,

where By m, Bym and By, are the following modal parts of the non-
linearities:

0 du ou

(2.192) Bu,m_/ (1 o+ 0 5 U i,
O v ov

(2.19b) Bv@ —/ (ua—m—l—wa YU dz,
[° 31/) 3@”

(2.19) By = / (52 +w ) W dz.

with u, v, %, w truncated to M modes.

2.4. Boundary Conditions for the Nonlinear Case. We make the
same change of variables &, = Uy — Um/N, Dm = Um + ¥m/N, and
obtain the nonlinear version of (2.12), namely:

{'m . 8§m _ —
(2.20a) 5 T To+ /\m) 5~ vm+ Bem(U) = Fem,
0 O, m + Tm
(2.20D) g +T0— +f5 +77 + Byn(U) = Fom,
[ O
(2.20¢) gt + (Uo - m) (';]x = fvm + Bym(U) = Fym,

where Bg,m = Bu,m — B’(ﬁ,m/N and B’r],m = Bu,m + Bq/;,m/N

We assume in the following that the initial data is such that the nonlin-
ear part is small compared to the stratified flow (Uy, 0, 0), so that the -
characteristic values do not change sign, at least during a certain pe-
riod of time. Assuming so, we conjecture that the boundary conditions
provided for the linearized system will give a well-posed problem for
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the nonlinear equations, at least for some time. We leave the theoreti-
cal analysis to subsequent studies, and perform here the corresponding
numerical simulations based on this hypothesis, which is conforted by
the lack of numerical blow-up. Hence the boundary conditions that we
consider for the nonlinear case are (2.16)-(2.17).

3. NUMERICAL SCHEME

3.1. Vertical Discretization by Spectral Method. In the vertical
direction, we proceed by normal modes decomposition as in (2.7), (2.8).
From the numerical point of view, we will need to transform some grid-
data into modal coefficients in the U,, or W, bases of L?(—H, 0), and
vice versa.

Given a function f represented by its values f; on a grid 2, = —H+1Az,
0 <1 < lmazy Az = H [ ljpes, we want to transform it into coefficients
fm, 0 < m < M. To this aim we use the second order central point
integration method, with the z; as collocation points. For the functions
u, v and @, we decompose them in the U,, basis of L?(—H,0). For
0<m< M:

(3.1)

lmaz—1 Up(z) - {u,v, d}(21) + Unm(z141) - {1, v, 9} 2141)
{um,'Um, ¢m} = Az Z ! . 1+ 1+ ’

1=0
and for w and ¥, 1 <m < M:

(3.2) |
{Wm, Y} = Az mf: Win(21) - {w, ¥} (2) + gvm(zl+1) Aw, ¢}(zl+1).

=0

This approach which is that proposed by the physicists is different
from the more mathematical approach to spectral and pseudo-spectral
methods (as in e.g. [BM97, GHO1]). The advantage of such a choice is
that the orthogonality relations (2.9) are satisfied from the numerical
point of view. Further studies and comparisons of the two approaches
will be needed in the future. ‘ '

On the contrary, if the function is given by its modal coefficients, the
values on the z-grid z;, 0 <[ < ;141 is simply given by:
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M

(33) (ua v, ¢) (zl) = Z(uma Um, d)m) um(zl)a
(34) (wa w)(zl) = Z(wma wm) Wm(zl)-

In the numerical simulations, we are given some initial data on the
physical grid (2)o<i<im..- We transform them into modal coefficients
thanks to formulas (3.1) or (3.2), and if the problem is linear, we keep
them all along the computations, except for graphic purposes, for which
we use inverse formulas (3.3)-(3.4) to return to physical space. Natu-
rally, in the nonlinear case, we need to operate (3.1)-(3.4) once at every
time step, in order to avoid the computation of a convolution product,
that would cost too much in term of CPU time and is not considered an
appropriate numerical procedure. We compute the nonlinear terms of
the equations in the physical space (z, z) thanks to Fourier and inverse
Fourier transforms. ‘

3.2. Finite Differences in Time and Space (Horizontal Direc-
tion). Looking at the form of (2.20), we choose to discretize these
equations in the horizontal direction with the finite differences method.
Naturally, care has to be taken to the sign of the characteristic values,
in order to take an upwind (hence stable) spatial discretization of the
z-derivative. Whereas Uy and Uy + 1/, are always positive, the third
characteristic value of the mth mode - in the linear case - is Up— 1/ .
and can either be positive or negative for the actual physical values
that we consider.

In the non linear case, since the initial data is small compared to Ug
([TT03]), we implicitly assume that m, remains unchanged for a cer-
tain period of time. Until a full nonlinear theory is performed, a first
step in the verification of this hypothesis would be to linearize Equation
(2.18) (or (2.11)-(2.20)) around the current state which may amount to
replacing Uy by U + u, but may also involve a more complex analysis
already in the linearized case. These involved issues are investigated in
a work in progress.
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That is, for every subcritical mode m < m,, we discretize (2.20) as
follows:

(3.5a)
&.n €n ,_7 g’n m,j 577;,_7'—-1 n n n
At (U + )\m) Aw - vmfj = F57m’j - B{amyj’
(3.5b)
Ui~ Umyj T Um,j ~ Ym,g—1 m.g T Tmj _ pn B
I ey v A s
(3.5¢)
,'777::}1 B nm,] TT 1 7777:%.7'4‘1 B 1777:%]' n n n
NG + (Uo — m) Az —fom;=F g — Brmg

where the right-hand-side of (3.5) contains the nonlinear terms, com-
puted explicitly thanks to an Adams-Bashforth scheme.

Equations (3.5a) and(3.5b) hold for 1 < j < J, whereas (3.5¢) is
written for 0 £ 5 £ J—1. There are no equations for {,’,‘;‘61, v,’,‘fol
and nm J, these quantities being given by the boundary conditions as
requlred in [RTTO05b]. On the contrary, if m > m, (supercritical case),

we choose for 1 < j < J:

(3.6a) 1
nt n n
S 4 4 3) S = R B
(3.6b)
v,’ﬂ}lA;nsz,j LT, Upn.j ; Zgz,j—l +f ™. “2‘ T, — P —B
(3.6¢) 1
n+ n n
P 4 T 5 ) R = = B

Either &4}, v and 04!} are given by the boundary conditions defined
as in [RTTOSb] (transparent boundary conditions case), or they satisfy
the periodicity conditions (4.2) below (periodical case).
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For every function f(z, z,t), f, ; represents fn(z;,t,) for 0 < j < J,
0 < n < Nypag, With

(3.7) O=z<z1<..<z;<..<z5=1L,
(3.8) O=th<tr1 <..<th < ..<tp,..=17T,
L
(3.9) Az =zj4 — ;= 7
(3.10) At = tpy1 — tn.

In the numerical experiments, we choose an homogeneous space dis-
cretization (Az = const = L/J). For the sake of simplicity, we choose
an explicit time-scheme, with a constant time-step At, which will be
restricted by the well-known CFL condition to guarantee stability in
the linear case:

(3.11) At < Az Az

-
e (0o To+ 5 (o —|) To+

A1

Naturally, when the equatlons are nonlinear, the CFL condition is not
enough to guarantee stability. Actually, the characteristic values de-
pend on time since Uy has to be replaced by u+Uj, but we assume that
the initial data is such that |ug| << Up, which is physically relevant,
[TTO03]. We actually base our computations on those of the quoted
article [TT03]: in this article the initial data is such that the ratio be-
tween the perturbation and the reference flow U ey is less than 10%,
which is physically relevant. In the case of numerical simulations with
periodic boundary conditions, we multiply the initial data of [TT03] by
sin(m /L) to make it periodic and avoid any boundary layer at t = 0.

4. NUMERICAL SIMULATIONS

We present hereafter two different sets of numerical results. In Section
4.1 we resolve the nonlinear PEs in a domain Qy = (0,L) x (—H,0)
with periodic boundary conditions in the horizontal (z) direction, and
w = 0 at 2 = —H,0. These numerical results will provide the bound-
ary conditions needed for the computations of Section 4.2 below, and
we evidence in Section 4.3 the transparent properties of the boundary
conditions introduced, thanks to a comparison between the solutions
computed in Section 4.1 and those of Section 4.2.

The computations are done as follows. We fix M (the number of modes)

and compute (u,, v, ¥ )o<m<ar from the given data u°, v°, ¢° thanks
o (3.1)-(3.2).

Then, for every mode m < M, we consider the modal equations (2.20)
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and their discretization (3.5)-(3.6), and supplement them with the ap-
propriate boundary conditions, either (4.3) for the periodical case or
(4.7)-(4.8) for the case of transparent boundary conditions. We recall
here that for every m, (&m, Mm)=(Um — Um/Am, Um + Um/Am) will be
the numerical unknowns to be computed. , so that (U, W, Ym, dm)
can be obtained with

(4.1a) (3, £) = ‘2”’"’ (z,1),
(4.1b) wn(e,1) = ~ 752 1),
(410) Yz, t) = I =En) gy
(4.1d) bm(z,) = —Ni;";( 1)

As a consequence, we will only consider the quantities (&, Um, m) in
the sequel, the other physical quantities beeing easily computed thanks
to (4.1).

. v
Periodic B.C 9 Qo é Periodic B.C
-H
0 ™ L p
) w=0

FIGURE 3. Domain )

4.1. Periodic boundary conditions for the large domain 4. In
the periodical case, we consider the following modal boundary condi-
tions:

(42&) €m(07 t) = §m(L’ t)’
(4.2b) Um(0,t) = vm (L, 1),
(4.2¢) Thm(0,t) = 7hm (L, 1).

For each time step At" = At satisfying (3.11) we compute the un-
known functions (€%, v+, nt) thanks to (3.5) and (3.6), with the
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numerical boundary conditions:

(43&) 'Zl—,'bl = 77::}’
(4.3b) v,’;fol = v;::'},
(4.3¢) Tto =TIt

The following figures plot u, v and 1 in the domain Qg at two different
times. Figures 4, 5 and 6 represent the initial data (¢ = 0) for these
three quantities, whereas Figures 7, 8 and 9 represent u, v and % at
t=1; >0.

FIGURE 4. Periodic Boundary Condition. Initial data wy.
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—1000

—2000

—4000

—5000

—~6000

FIGURE 7. Periodic Boundary Condition. Values of u

at t =t;.

15
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o

—1000
—2000
—3000
—4000
—5000
—6000
—7000
~8000

—~9000
o

—10000
o

—10000 o

-a

x, 10

10
x 10°

FIGURE 9. Periodic Boundary Condition. Values of ¢

at t = tl-
z 4\ w=0
0, l
Transparent B.C éi 0, ié Transparent B.C
" |
x=a N =b x

FiGURE 10. Subdomain €

4.2. Transparent boundary conditions for the subdomain 2, C
Q. We now intend to simulate the PEs in the subdomain €; = (a,b) x
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(—H,0) and the boundary conditions are the nonlinear version of those
introduced in [RTTO05b]. In the numerical simulations below we will
consider a domain Q; = (a,b) X (—H,0) such that 0 < a < b < L,
so that € is actually imbedded in Q4 = (0,L) x (—H,0). The space
discretization is now changed to z; = a+j(b—a)/J, 0 < j < J.

At the boundaries x = a and x = b, we will consider the nonhomoge-
neous form of the transparent boundary conditions of [RT'T05b]. We
use the computations of Section 3.1 above to provide the right-hand-
side of the boundary conditions (4.5) and (4.6) below, and afterwards
use them for comparison in the subdomain €2;. These boundary condi-
tions, expressed in a general way, are given in [RTT05b]. They consist
in an infinite set of integral boundary conditions. For example:

(4.4) / v(a,z,t)um(z)dz=/ 9(a, 2, t) Un(2)dz, Vm < M,

-H —L3

where U =(ﬂ,17,1b,zZ, q~5) are some known functions, computed in the
domain €y with some periodic boundary conditions (see Section 3.1
above). S

Hence, for every subcritical mode (m < m,) and every time ¢ > 0, we
have:

(458’) gm(aa t) = Em(a’ t)a
(4.5b) Um(a,t) = Up(a, t),
(4.50) nm(ba t) = ﬁm(by t)a

where &,, and Nm are defined as usual.
For the supercritical modes, we set for every ¢t > 0:

(46&) {:m(a; t) = gm(aa t)’
(4.6b) Um(a,t) = n(a,t),
(4.6¢) Nm(a,t) = T (a,t).

To implement these boundary conditions, we discretize equations (2.20)
with the finite differences method, taking into account the sign of Uy —
1/\, for the discretization of the first z-derivative of Nm i equation
(2.20c) (see equations (3.5) and (3.6) of Section 3 above).

For each time step At"™ = At satisfying (3.11) we compute the un-
known functions (£7!, v, n2+1) thanks to (3.5) and (3.6), with the
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numerical boundary conditions:

(4.7a) o = m(a,tas),
(4.7b) Upto = Tm(, tnpr),
(4.7¢) Mg = (s tnt1)s
if m is subcritical (m < m,). If m is supercritical (m > m.), we set
(4.8a) 5227)1 = &m(a, tns1),
(4.8b) o = B (0, ),
(4.8¢) o = Tim (@, tnt1).

The following figures plot u, v and % in the domain €; at two different
times. Figures 11, 12 and 13 represent the initial data (¢ = 0) for these
three quantities, whereas Figures 14, 15 and 16 represent u, v and %
att=1t; > 0.

Here, one can see that Figures 14, 15 and 16 respectively match with
Figures 7, 8 and 9 in the domain €2;.
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data vy.

FIGURE 13. Transparent Boundary Condition. Initial
data ’lb().
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FIGURE 14. Transparent Boundary Condition. Values
of uatt =t;.
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FIGURE 15. Transparent Boundary Condition. Values
of vatt=t;.

-=

FIGURE 16. Transparent Boundary Condition. Values

of Y at t =ty.
z w=0
0 \]/ :
Periodic B.C 9 E/ (—- Periodic B.C

Tra Q, :é tansparent B.C

H :
4\ x=b L x
w=0

FIGURE 17. Subdomains €2y and 24

4.3. Comparisons. In order to confirm what can be observed, we fi-
nally choose an interior point (g, 29) = (5.8 x 105, —4.0 x 10%) € Q,
and plot in Figure 18 the values of (u,v,¥)(zo, 20,t) computed in 4
with transparent boundary conditions, compared to (u, v, ¥)(zo, 20, t)
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computed in 0y with periodic boundary conditions. The results are
similar if one considers another choice of (z, 29); this shows the trans-
parency property of the boundary conditions (4.5)-(4.6).

2 0.03
Y
0 __Y, 0.02
) 0.01
-4 0
o 2 4 6 8 10 0o 2 4 6 8 10
4 4
2 x10 0.2 x 10
—Va,
1 Ve 0.15
0 0.1
1 , 0.05 ,
R 4 6 8 10 o 2 4 6 8 10
4 4
0.02 x10 0.03 x10
— Vo
0.015
: __Yo 0.02
0.01
0.01
0.005
0 0
0 2 4 6 8 10 o 2 4 6 8 10
x10* x 10

FIGURE 18. Two different computations of v(zo, 2, t)
(left). Relative error (right).

On the left part, we plot the different quantities (u, v, ¥)(zo, 20, t) com-
puted with the two types of boundary conditions. On the right part,
we plot the corresponding relative errors |fa, — fa,|/|fa,| where f is
successively u, v and 1. The reader might think that the relative error
reaches some local high values, but this is actually due to the fact that
the quantity ug, (or ve,, ¥a,) vanishes; these local maximum are not
meaningful.

5. CONCLUSION

In this article, the primitive equations of the ocean are considered.

After recalling the study of the linearized version of these equations,
we present some numerical results on the nonlinear system of equa-
tions. The boundary conditions that are implemented are those of the
linear problem, which is physically relevant, at least for some time.
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We achieve here two goals: firstly we started here the extension of
the theoretical results of [RTT05b] to the nonlinear primitive equa-
tions. Secondly the proposed boundary conditions are well-suited for
the problem of numerical simulations in a limited domain, as shown by
the very good matching of the two different numerical solutions.
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