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On the adaptation of noise level for stochastic optimization

O. Teytaud and A. Auger

Abstract— This paper deals with the optimization of noisy
fitness functions, where the noise level can be reduced by
increasing the computational effort. We theoretically investigate
the question of the control of the noise level. We analyse two
different schemes for an adaptive control and prove sufficient
conditions ensuring the existence of an homogeneous Markov
chain, which is the first step to prove linear convergence when
dealing with non-noisy fitness functions. We experimentally
validate the relevance of the homogeneity criterion. Large-scale
experiments conclude to the efficiency in a difficult framework.

I. INTRODUCTION

Noise is present in many real-world optimization problems

and can have various origins as measurement limitations or

limited accuracy in simulation procedures. In general the

precision of a fitness function evaluation depends on the com-

putational effort (CE) and noise can be reduced by increasing

the CE. For instance, the fitness evaluation can result from

an expensive Monte-Carlo (quasi Monte-Carlo) simulation

where the number of samples used for the simulation directly

controls the precision of the accuracy of the evaluation.

The fitness function may involve the resolution of Partial-

Differential-Equation PDE where the control of the precision

is driven by the resolution of the integration scheme or by

POD-surrogate models (Proper Orthogonal Decomposition,

[14]).

Since the noise level depends on the CE for lots of real-

world situations, it is of major importance to understand

how to control it in a sound way so as to guarantee good

performances of optimization algorithms [8].

The terminology stochastic optimization, originally intro-

duced to design the problem of solving noisy problems [21],

[12], [9], [15], nowadays also refers to optimizing determin-

istic problems by means of stochastic algorithms. Among

stochastic optimization algorithms, Evolutionary Algorithms

(EAs) are well know to be suitable for optimizing real-world

problems and to be in particular quite robust with respect to

noise.

State-of-the-art EAs for continuous optimization are adap-

tive Evolution Strategies (ES), where the internal parameters

of the mutation operator (standard deviation and covariance

matrix) are adapted [11], [20], [19]. In practice the adaptation

mechanisms allow to obtain linear convergence1 for a wide

class of uni-modal fitness functions. The question of linear

convergence of adaptive ES can be theoretically addressed for
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1Linear convergence means that the log of the distance to the optimum
decreases linearly, for a fixed problem dimension, see Eq. (5) for the formal
definition.

simple fitness models by means of the theory of ϕ-irreducible

Markov Chains [5], [3].

For noisy fitness functions with a constant noise amplitude

(for instance Gaussian noise with constant standard devia-

tion), EAs will fail in converging linearly to the optimum.

In this paper, we address the question of how to control the

noise level and thus the CE to guaranty linear convergence.

We focus on a simple adaptive (1+1)-ES on the noisy fitness

model defined for x ∈ R
d as:

fk(x, η) = ‖x‖k + ηB with ‖x‖ =

√

√

√

√

d
∑

i=1

x2
i , (1)

where k ∈ R
+\{0}, B is an independent random variable

and η ∈ R
+ is the parameter allowing to control the noise

level. We present the first steps for the rigorous analysis of

the linear convergence.

Note that reevaluating fk allows to decrease the noise

level: if B is a Gaussian white noise, i.e. B = N (0, 1)
reevaluating n times fk (i.e increase the computational effort

by n) and average allows to decrease the noise level by a

factor of
√

n.

In Section II we recall how Markov chains theory allows to

prove linear convergence on the non-noisy version of Eq. (1)

and present the homogeneous Markov Chain associated to the

(1+1)-ES. In Section III-A we present a straightforward rule

to adapt η that preserve this homogeneity, but unfortunately

depends on some a priori information on the fitness. We

then propose in Section III-B an alternate solution without

prior knowledge of the fitness. In Section IV-A we present

experiments on the fitness function 1 that backups our

theoretical results. In Section IV-C we present experiments

on a difficult fitness function.

II. NOISE-FREE ANALYSIS: MARKOV CHAIN AND LINEAR

CONVERGENCE

We consider, in this Section, an adaptive (1 + 1)-ES

(Algorithm 1) minimizing f : R
d → R. At each generation

n, an offspring is sampled adding to the current parent xn a

Gaussian vectorNn with an identity covariance matrix scaled

by a step-size σn (Line 6). At each generation, the step-size

σn is increased in case of success (Line 11) and decreased

otherwise (Line 15):

σn+1 = α σn if f(xn + σnNn) ≤ f(xn) (2)

= β σn otherwise. (3)

with α > 1 and β < 0. For isotropic ES, i.e. where the

covariance matrix of the Gaussian vector is the identity, on

the sphere function

fs(x) = ‖x‖2,



the optimal adaptation scheme for the step-size σn is

σn = σc‖xn‖ (4)

where σc is a constant maximizing the (log)-progress rate

(see [4] for instance). The (1 + 1)-ES implementing this

adaptation scheme will converge linearly, i.e.

∃ c(d) < 0 such that
1

n
ln ‖xn‖ → c(d) (5)

and the convergence rate c(d) reaches the lower bound for

isotropic ES on the sphere [4], [23]. Of course the adaptation

scheme given in Eq. (4) is artificial since it requires to know

in advance the location of the optimum. The algorithm im-

plementing this optimal adaptation scheme is scale-invariant

on the sphere function. In particular, at each generation, the

probability of success defined as the probability that one

offspring is better than its parent is constant and roughly

equal to 1/5. From this 1/5 factor, Rechenberg proposed the

so-called one-fifth success rule for the adaptation of the step-

size, aiming at maintaining a success probability of 1/5 [19].

A robust implementation of the one-fifth success rule is to

take α = 2 and β = 2−1/4 in Algorithm 1 [13].

Proving the linear convergence of the scale-invariant al-

gorithm (where σn = σc‖xn‖) stated in Eq. (5) is relatively

easy [5]. However for “real” adaptation scheme like the one-

fifth success rule the task is more complicated and calls upon

the theory of ϕ-irreducible Markov Chains [17]. The basic

steps for the analysis were pointed out in [5] for the analysis

of self-adaptive ES and exploited in [3]. We recall here the

main lines in the context of the adaptation scheme defined

in Eqs. (2) and (3).

One iteration of Algorithm 1 can be summarized in the

two equations:

xn+1 = xn + δnσnNn (6)

σn+1 = σnLn (7)

whereNn is an independent Gaussian vector with covariance

matrix identity, δn is a random variable equal to 1 whenever

the offspring xn + σnNn is better than his parent and zero

otherwise:

δn = 1 if fs(xn + σnNn) ≤ fs(xn)

= 0 otherwise.
(8)

The random variable Ln is defined as

Ln = α if fs(xn + σnNn) ≤ fs(xn)

= β otherwise.
(9)

The proof of linear convergence of (xn)n∈N [3] relies on the

fact that (xn/σn)n∈N is an homogeneous Markov chain:

Proposition 1 Let xn and σn be the random variables de-

fined in Eq. (6) and Eq. (7). Then the sequence zn = xn/σn

is an homogeneous Markov chain. If zn admits an invariant

probability measure and is Harris recurrent, xn converges

linearly to zero, i.e. there exists a constant c1 such that:

1

n
ln ‖xn‖ −−−−→

n→∞

c1 (10)

where c1 can be expressed in terms of the invariant measure

of zn.

Proof: First, we rewrite
xn+1

σn+1
as

xn+1

σn+1

=
xn + δnσnNn

σnLn
(11)

=
1

Ln

xn

σn
+ δn

Nn

Ln
(12)

Besides, the offspring xn + σnNn is selected if:

‖xn + σnNn‖2 < ‖xn‖2

But since σn is positive the sign of the previous equation is

not changed if we divide it by σn, therefore the selection of

the offspring will take place if:

‖xn/σn +Nn‖2 < ‖xn/σn‖2

Therefore the distribution of δn and Ln defined in Eqs. (8)

and (9) does only depend on zn. Eq. (12) can be rewritten

as

zn+1 =
1

Ln
zn + δn

Nn

Ln
.

We see that zn+1 does only depend on zn (and not on

previous iterate of the chain). Therefore zn is a Markov

chain. Besides there is no explicit dependence in n, implying

that the Markov chain is homogeneous.

The second point of the proposition is to show that if

the chain zn is “stable”, here positive and Harris recurrent,

then linear convergence occurs, i.e. Eq. (10) is satisfied. First

remark that

1

n
(ln ‖xn‖ − ln ‖x0‖) =

1

n

n−1
∑

k=0

ln ‖xk+1‖/‖xk‖

and that ‖xk+1‖
‖xk‖

=
‖zk+1‖
‖zk‖

Lk

Therefore

1

n
(ln ‖xn‖ − ln ‖x0‖) =

1

n

n
∑

k=1

ln ‖zk+1‖Lk/‖zk‖ .

If one were able to apply the Strong Law of Large Numbers

(SLLN) to the right hand side of the previous equation, one

would obtain Eq. (10). The Harris recurrence property and

the existence of an invariant probability measure (positivity)

are precisely the conditions required to be able to apply the

SLLN.

As we see in the previous Proposition, the first step to

prove linear convergence is that xn/σn is an homogeneous

Markov chain. Proving the stability (existence of an invariant

probability measure and Harris recurrence) is then a difficult

second step, that can be addressed using drift conditions [3].

In this paper we will focus on the first step.

Note that since the selection in ES depends only on

the ranking, Proposition 1 will hold for any h ◦ fs where

h : R
+ → R

+ is any transformation preserving the rank

(typically a monotonically strictly increasing function).



Algorithm 1 An adaptive (1 + 1)-ES.

1: Input: a fitness function f .

2: Initialize x0, σ0, α > 1, β < 1.

3: Compute fit0 = f(x0).
4: Initialize n = 0.

5: while true do

6: x′

n = xn + σnNn [with Nn ind. isotropic Gaussian

vector]

7: Compute fit = f(x′

n).
8: if fit < fitn then

9: xn+1 = x′

n

10: fitn+1 = fit
11: σn+1 = ασn [Increase step-size]

12: else

13: xn+1 = xn

14: fitn+1 = fitn
15: σn+1 = βσn [Decrease step-size]

16: end if

17: n← n + 1
18: end while

III. NOISY ANALYSIS

Our focus is on the extension of the baseline Algorithm 1

for the optimization of noisy functions, where the noise

level is represented by a parameter η. We assume that

for a prescribed noise level η we are able to adjust the

computational effort associated to η: increase (resp. decrease)

the CE to decrease (resp. increase) the noise level. The fitness

model we consider for the theoretical analysis is defined in

Eq. (1) and we investigate which adaptation rule for η does

allow the (1 + 1)-ES to converge linearly. As a first step

towards proving linear convergence we provide two schemes

with underlying homogeneous Markov chains.

The noise parameter η being adapted, we denote ηn the

noise level at iteration n. In [1], Arnold et al. use the progress

rate approach to analyze the performance of the (1 + 1)-ES

on the noisy sphere and they normalize the noise level by

the distance to the optimum. In other words, η is adapted

proportionately to the distance to the optimum, i.e. ηn =
σǫ‖xn‖ with σǫ ∈ R

+\{0}. The first adaptation rule we

study here is in the same vein but instead of considering the

optimal adaptation rule for the step size, i.e. proportional to

the norm, we consider a realistic update rule. In Section III-

A ηn is proportional to the step-size σn, i.e. at each iteration

n
ηn = (σn)k′

(13)

where k′ ∈ R
+ is the tradeoff factor: k′ larger leads to a

larger computation time but a better precision. We show that

k′ = k is a sufficient condition to have an homogeneous

Markov chain on fk.

The previous adaptation scheme depends on k and has no

sense in discrete domains since it relies on σn. Therefore,

we analyze in Section III-B the following rule

ηn+1 = µηn + γ(1− µ)|fitn − fitn−1| (14)

with fit−1 = 0, µ ∈]0, 1[ and γ > 0.

A. Adaptation using step-size

In this section the noise level η is adapted at each

generation using the step-size σn following Eq. (13). Let yn

denote the computed fitness at point xn, i.e.

yn = ‖xn‖k + σk′

n′Bn′

where n′ < n is the index of the last acceptance, Bn′ the

noise associated to this last acceptance. If k′ > 0, this leads

to more precise computations when the step-size is small.

Let bn be the bias (or overvaluation [1]) of the evaluated

fitness at iteration n, i.e.

bn = yn − ‖xn‖k = σk′

n′Bn′ (15)

As a first step towards proving linear convergence we

try to identify an homogenous Markov chain associated to

the algorithm and we show below that we can find an

homogeneous Markov chain for k′ = k. For the definitions

below we consider that k′ = k.

The (1 + 1)-ES can be summarized in the following

equations:

xn+1 = xn + δnσnNn

σn+1 = σnLn

bn+1 = δnσk
nBn + (1− δn)bn

(16)

where

Ln = α if ‖xn + σnNn‖k + σk
nBn < ‖xn‖k + bn

= β otherwise
(17)

and

δn = 1 if ‖xn + σnNn‖k + σk
nBn < ‖xn‖k + bn

= 0 otherwise.
(18)

Theorem 1 Let xn, σn and bn be the sequences of random

variables defined in Eq. (16), Eq. (17) and Eq. (18). Then

Zn =

(

xn

σn
,
bn

σk
n

)

.

is an homogeneous Markov chain. In other words for k′ = k
the sequence of random variable Zn induced by Algorithm 2

with ηn = (σn)k′

is an homogeneous Markov chain.

Proof: Let denote rn = xn/σn and qn = bn/σk
n. Then,

rn+1 =
xn+1

σn+1

=
xn + δnσnNn

σnLn

=
1

Ln

xn

σn
+ δn

Nn

Ln

=
1

Ln
rn + δn

Nn

Ln

qn+1 =
bn+1

σk
n+1

=
δnBnσk

n + (1 − δn)bn

(Lnσn)k

=
1

(Ln)k
(δnBn + (1− δn)qn)



Besides the selection step is determined by:

‖xn + σnNn‖k + σk
nBn < ‖xn‖k + bn

But since σn is positive the sign of the previous equation

is not changed if we divide it by σk
n, therefore the selection

step can be rewritten as:

‖rn +Nn‖k + Bn < ‖rn‖k + qn

Therefore Zn+1 only depends on Zn and is defined as

rn+1 =
1

Ln
rn + δn

Nn

Ln

qn+1 =
1

(Ln)k
(δnBn + (1 − δn)qn)

with

Ln = α if ‖rn +Nn‖k + Bn < ‖rn‖k + qn

= β otherwise
(19)

and

δn = 1 if ‖rn +Nn‖k + Bn < ‖rn‖k + qn

= 0 otherwise.
(20)

Algorithm 2 (1 + 1)-ES with adaptive rule for noise

1: Input: a noisy fitness function f .

2: Initialize x0, σ0, η, α > 1, β < 1.

3: Compute fit0 = f(x0, η).
4: Initialize t = 0.

5: while true do

6: η = . . . (eq. 13 or 14) [adaptation of η]

7: x′

n = xn + σnNn [with Nn ind. isotropic Gaussian

vector]

8: Compute fit = f(x′

n).
9: if fit < fitn then

10: xn+1 = x′

n

11: fitn+1 = fit
12: σn+1 = ασn [Increase step-size]

13: else

14: xn+1 = xn

15: fitn+1 = fitn
16: σn+1 = βσn [Decrease step-size]

17: end if

18: n← n + 1
19: end while

B. An adaptive algorithm for noise

In this section the precision parameter η is chosen in a

way that does not depend on the parameter k of the fitness.

However we show that the result of Theorem 1 still holds.

As in the previous section yn denotes the computed fitness

at xn. The (1 + 1)-ES can be summarized as follows:

xn+1 = xn + δnσnNn

σn+1 = σnLn

yn+1 = (1 − δn)yn + δn‖xn‖k + δnηnBn

(21)

with

δn = 1 if ‖xn + σnNn‖k + ηnBn < yn

= 0 otherwise
(22)

and

Ln = δnα + (1 − δn)β (23)

The adaptation of the noise level ηn is done with the

following rule

ηn+1 = µηn + γ(1− µ)|yn+1 − yn| (24)

where µ ∈]0, 1[ and γ ∈ R
+.

Theorem 2 Let xn, σn, yn, ηn be defined by Eqs. (21), (22),

(23), (24). Then

Zn =

(

xn

σn
,

yn

(σn)k
,

ηn

(σn)k

)

is an homogeneous Markov chain.

Proof: The evolution-equations can be rewritten as

follows:

xn+1

σn+1

=
1

Ln

(

xn

σn
+ δnNn

)

yn+1

σk
n+1

= (1− δn)
yn

Lk
nσk

n

+
δn

Lk
n

(

xk
n

σk
n

+
ηnBn

σk
n

)

ηn+1

σk
n+1

= µ
ηn

Lk
nσk

n

+ γ(1− µ)

∣

∣

∣

∣

yn+1

σk
n+1

− 1

Lk
n

yn

σk
n

∣

∣

∣

∣

and Ln only depends on δn, with δn only depending on

‖xn‖k + ηnBn < yn, i.e. only depending on ‖xn‖k/σk
n +

ηnBn/σk
n and yn/σk

n.

Therefore, (xn+1/σn+1, yn+1/σk
n+1, ηn+1/σk

n+1) only

depends on (xn/σn, yn/σk
n, ηn/σk

n), Nn and Bn indepen-

dently of n. This is a Markov chain and the transition does

not depend on n: the Markov Chain is homogeneous.

IV. EXPERIMENTS

In this section we present experiments on the fitness

function fk (Section IV-A and IV-B) and on a fitness for

the scrambling of quasi random sequences (Section IV-C).

In all the experiments, we took α = 2 and β = 2−1/4

implementing the one fifth-success rule [13]. The random

variable B for the noise is uniform in [0, 1] and the initial

point x0 is drawn uniformly on the unit hypersphere.

Section IV-A shows experimentally that ‖x‖2 + σk′

B is

solved linearly for k′ ≥ 2 (Theorem 1 states the homogeneity

for k′ = 2) and not solved at all for k′ < 2. Section IV-B

shows that the adaptive rule (14) works also whereas reduc-

ing the CE below the adaptive rule recommendation by an

exponent < 1 does not work (this shows the optimality of our

approach). Section IV-C shows an application to an important

and difficult fitness function, namely the scrambling of quasi-

random sequences.



A. Artificial experiments with fitness-specific precision Eq.

(13)

Figure 1 shows that (xn)n∈N fails to converge lineraly

on fk as soon as ηn = (σn)k′

with k′ < k. For k′ = 2
we observe a linear convergence. This suggests that the

homogeneous Markov Chain of Theorem 1 is stable.

Figure 2 shows log(‖x11111‖) on fk for different values

of k′. We see that k′ = k is optimal, suggesting that the

homogeneity is a good criterion for choosing the noise level.

B. Artificial experiments with adaptive precision Eq. (14)

We consider now f2 = ‖x‖2 + ηzB in dimension 10 and

Algorithm 2 with the adaptive rule given in (Eq. (14)). For

z = 1, Theorem 2 states the homogeneity of the chain.

In Fig 3, experiments for z = 0.9, z = 1 and z = 1.1
are shown for comparison. Once again, the homogeneity is

emphasized as a good criterion for choosing the minimum

CE for convergence to the optimum.

C. Minimization of L2 discrepancy of a set of 10d2 points

The theoretical analysis above is done in a continuous

framework, with the noisy sphere-function, but Algorithm 2

with Eq. (14) used in Section IV-B can be used for dis-

crete optimization also. Eq. (14) can indeed be used in any

optimization algorithm (also non-evolutionary algorithms).

The fitness investigated now is the L2-discrepancy of a

set of 10d2 points in dimension d generated thanks to a

family of permutations; the domain is therefore a family

of permutations (with some constraints that can be encoded

in mutations). Several methods for choosing this family of

permutations have been proposed in the literature: [6], [27],

[7], [26], [18], [10], [29], [22], [28], [24], [2], [16]. All these

solutions are analytically-designed thanks to mathematical

analysis. In [25], a very efficient hand-designed solution,

termed reverse-scrambling, is proposed. We here use a simple

EA (Algorithm 3), with an approximated fitness by Monte-

Carlo integration. Due to length constraints, we do not

provide all details about the fitness; the interested reader is

referred to [25] for all details.

We run this algorithm with d = 3, 4, 5, 6, 7, 8, 9 respec-

tively, with 5d time-steps and µ = 0.9. For each run, we

compute the total computational cost and run the algorithm

with η constant and the same overall computational cost. The

results are presented in Table I. Note that the comparison

with constant-CE is unfair in the sense that constant-CE

has a prior information: the constant-CE benefits from the

results performed by the CE-rule by using the average CE

suggested by the CE-rule. Previous experiments for hand-

tuning the noise level have been performed and it was a

huge work; the success of the constant-CE-rule itself shows

that the CE-level chosen by the CE-rule is a good one. On

the other hand, the comparison with reverse scrambling is

unfair; reverse scrambling is of course much faster (as it is

analytically designed).

The success of our approach on this important problem

shows the strong relevance of EA for such problems.

(a) k’=1.5

(b) k’=1.8

(c) k’=2

Fig. 1. Test on fk using the adaptive rule (13): ηn = (σn)k
′

for k′ =
1.5, 1.8, 2 in dimension 10. x-axis: number of iterations. Non-presented
experiments show that the linear convergence is seemingly preserved for
k′ ≥ 2. For each value of k, we present (clockwise) the log of the norm of
xn (i.e. a noise-free version of the fitness), the log of the fitness (including
noise), the moving-average of the success rate, and log(σ). Dotted lines
show the standard deviations.



Method L2-Discrepancy

Dimension 4

Reverse Scr. 0.00714421 ± 1.01972e-05
RandomPoints 0.0155917 ± 0.000664881
Random Scr. 0.00778082 ± 0.000178898

CE-rule 0.00690391 ± 4.81381e-05
No scrambling 0.00833954 ± 1.2631e-05

constant-CE 0.00694316 ± 2.98309e-05

Dimension 5

Reverse Scr. 0.00505218 ± 7.28368e-06
RandomPoints 0.00985676 ± 0.000452852
Random Scr. 0.00501275 ± 5.63656e-05

CE-rule 0.00468606 ± 3.34753e-05
No scrambling 0.00566526 ± 1.14062e-05

constant-CE 0.00468644 ± 3.20345e-05

Dimension 6

Reverse Scr. 0.00325176 ± 4.94837e-06
RandomPoints 0.00638895 ± 0.000383821
Random Scr. 0.00355869 ± 4.18383e-05

CE-rule 0.00319954 ± 2.5507e-05
constant-CE 0.0032253 ± 1.7522e-05

No scrambling 0.00382715 ± 6.40585e-06

Dimension 7

Reverse Scr. 0.00221943 ± 3.48892e-06
RandomPoints 0.00385059 ± 0.000164151
Random Scr. 0.00238406 ± 2.61057e-05

CE-rule 0.0022312 ± 7.87e-06
constant-CE 0.00225177 ± 1.20619e-05

No scrambling 0.00288602 ± 6.46388e-06

Dimension 8

Reverse Scr. 0.00189975 ± 4.76932e-06
RandomPoints 0.00233921 ± 5.65993e-05
Random Scr. 0.00166693 ± 1.79506e-05

CE-rule 0.0015512 ± 1.28362e-05
No scrambling 0.00241595 ± 9.10999e-06

Dimension 9

Reverse Scr. 0.00115382 ± 4.99428e-06
RandomPoints 0.00152759 ± 3.83705e-05
Random Scr. 0.00118502 ± 2.72275e-05

CE-rule 0.00106472 ± 4.15664e-06
No scrambling 0.00171113 ± 4.40706e-06

TABLE I

WE COMPARE HERE (I) REVERSE SCRAMBLING (II) RANDOM POINTS

(III) RANDOM SCRAMBLING (IV) OUR CE-RULE (V) UNSCRAMBLED

HALTON (VI) η CONSTANT AND OVERALL COST AS IN OUR CE-RULE.

THE DIMENSIONALITY HERE REFERS TO THE DIMENSIONALITY OF THE

UNDERLYING QUASI-MONTE-CARLO SEQUENCE AND NOT TO THE

DIMENSIONALITY OF THE OPTIMIZATION PROBLEM. THE DOMAIN FOR

DIMENSIONALITY d IS E1 × E2 × · · · × Ed , WHERE Ed IS THE SET OF

PERMUTATIONS OF [[1, pd]] WHERE pi IS THE ith PRIME NUMBER. THE

CONSTRAINTS ARE THAT 0 MUST BE FIXED POINT OF ALL

PERMUTATIONS. IN ALL CASES, RANDOM SCRAMBLING WAS

OUTPERFORMED BY THE CE-RULE, AND IN ALL BUT ONE CASE (DIM 7),

REVERSE SCRAMBLING IS SIGNIFICANTLY OUTPERFORMED BY THE

CE-RULE.

(a) dim=2

(b) dim=10

Fig. 2. Final log of fitness value at the 11111th iterate in dimension
2 (top) and 10 (bottom) for various values of k′ for the sphere function
f2 = ‖x‖2 + ηB (left) and f3 = ‖x‖3 + ηB (right). x-axis: k′. y-values:
final log-fitness. We see that k′ = 2 = k (left) and k′ = 3 = k (right)
are the minimal possible choices ensuring convergence, as expected from
theory. Dotted lines are the 10% and 90% percentiles.

V. CONCLUSION

In this paper we have investigated the question of the

adaptation of the noise level when optimizing noisy fitness

function. This investigation is motivated by the fact that for

many real-world problems the noise level can be reduced by

increasing the computational effort. We have analyzed two

different schemes. The first one is using the step-size σn of

adaptive ES to control the noise level η, at iteration n:

ηn = (σn)k′

We have proved on the function fk(x) = ‖x‖k + ηB, that

k′ = k is a sufficient condition to have an homogeneous

Markov Chains, first step to prove linear convergence when

investigating non-noisy fitness functions. The experiments

performed show that for k′ < k, the algorithms fails to

converge linearly and suggest that k′ = k is the optimal

choice. Thus an adaptation scheme allowing linear conver-

gence depends on the knowledge of the fitness function: the



(a) z=0.8

(b) z = 1.0

(c) z = 1.2

Fig. 3. Test with z = 0.8, z = 1.0, z = 1.2 in f(x, η) = ‖x‖2 + ηzB.
Theory predicts a linear behavior for z = 1; we here verify on experiments
that z ≥ 1 is seemingly necessary for convergence. x-values: iterations. For
each value of z, we present (clockwise) the log of the norm of xn (i.e. a
noise-free version of the fitness), the log of α (with title ”precisionk”), the
moving-average of the success rate, and log(σ). Interestingly, for z < 1,
we see that the algorithm is not only slow: it does not converge and σ → 0
(until the machine precision) without further improvement of the fitness. On
the other hand, increasing z, in spite of the larger CE, does not improve the
result.

Algorithm 3 A (1 + 1)-EA with noise for scrambling-

optimization.

1: Initialize x0 (constant permutations, i.e. unscrambled

Halton-sequence), η.

2: Compute fit0 = f(x0, η).
3: Initialize n = 0.

4: while true do

5: η ← µη + γ(1− µ)(fitn − fitn−1)
6: Set x′

n equal to xn, plus some random transposition

respecting the constraints.

7: Compute fit = f(x′

n, η).
8: if fit < fitn then

9: xn+1 = x′

n

10: fitn+1 = fit
11: else

12: xn+1 = xn

13: fitn+1 = fitn
14: end if

15: n← n + 1
16: end while

factor k.

The second adaptation scheme investigated is independent

of the knowledge of fitness function and is adaptive:

ηn+1 = µηn + γ(1− µ)|fitn − fitn−1|
We also prove the existence of an homogeneous Markov

chain for this scheme. We apply this scheme to optimize an

important and difficult fitness function, namely the scram-

bling of Quasi-Random sequences. The algorithm found the

right level of CE in this very hard framework.

We presented the very first steps of the mathematical

analysis of the linear convergence since we only exhibited

homogeneous Markov chains. Our experiments confirmed the

relevance of the homogeneity criterion for choosing the CE.

Deriving the stability of the different Markov chains to prove

the linear convergence is the object of further research.

The algorithms we propose are probably not the optimal

possible ones. It is reasonnable to improve the precision of

the current iterate, when too much time is spent on the same

point, in particular for elitist strategies; this is not done in our

work and could be done while preserving the homogeneity.

This will be the object of a further analysis.

One final remark is that in the case of additive noise, one

looses the invariance to order preserving transformations.
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P. Koumoutsakos. Learning Probability Distributions in Continuous
Evolutionary Algorithms - A Comparative Review. Natural Comput-

ing, 3:77–112, 2004.
[14] F. Leibfritz and S. Volkwein. Reduced order output feedback control

design for PDE systems using proper orthogonal decomposition and
nonlinear semidefinite programming. Linear Algebra and Its Applica-

tions, 415:542–757, 2006.
[15] K. Marti. Stochastic Optimization Methods. Springer, 2005.
[16] M. Mascagni and H. Chi. On the scrambled halton sequence. Monte

Carlo Methods Appl., 10(3):435–442, 2004.
[17] S. Meyn and R. Tweedie. Markov Chains and Stochastic Stability.

Springer-Verlag, New York, 1993.
[18] W. Morokoff and R. Caflish. Quasi-random sequences and their

discrepancies. SIAM J. Sci. Comput., 15(6):12511279, 1994.

[19] I. Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme

nach Prinzipien des Biologischen Evolution. Fromman-Hozlboog
Verlag, Stuttgart, 1973.

[20] H.-P. Schwefel. Numerical Optimization of Computer Models. John
Wiley & Sons, New-York, 1981. 1995 – 2nd edition.

[21] J. K. Sengupta. Stochastic Programming. Methods and Applications.
North-Holland, Amsterdam, 1972.

[22] A. Srinivasan. Parallel and distributed computing issues in pricing
financial derivatives through quasi-monte carlo. In Proceedings of the
16th International Parallel and Distributed Processing Symposium,
2002.

[23] O. Teytaud and S. Gelly. General lower bounds for evolutionary
algorithms. In 10th International Conference on Parallel Problem
Solving from Nature (PPSN 2006), 2006.

[24] B. Tuffin. A new permutation choice in halton sequences. Monte

Carlo and Quasi-Monte Carlo, 127:427435, 1997.
[25] B. Vandewoestyne and R. Cools. Good permutations for deterministic

scrambled halton sequences in terms of l2-discrepancy. Computational

and Applied Mathematics, 189(1,2):341:361, 2006.
[26] X. Wang and F. Hickernell. Randomized halton sequences. Math.

Comput. Modelling, 32:887–899, 2000.
[27] T. Warnock. Computational investigations of low-discrepancy point

sets. In In: S.K. Zaremba, Editor, Applications of Number Theory
to Numerical Analysis (Proceedings of the Symposium, University of

Montreal, page 319343, 1972.
[28] T. Warnock. Computational investigations of low-discrepancy point

sets ii. In In: H. Niederreiter and P.J.-S. Shiue, Editors, Monte Carlo
and Quasi-Monte Carlo Methods in Scientific Computing, Springer,

Berlin, 1995.
[29] G. Okten and A. Srinivasan. Parallel quasi-monte carlo methods

on a heterogeneous cluster. In in: H. Niederreiter, K.-T. Fang, F.J.

Hickernell (Eds.), Monte Carlo and Quasi-Monte Carlo Methods 2000,

Springer, Berlin, Heidelberg, page 406421, 2002.


