
HAL Id: inria-00173124
https://hal.inria.fr/inria-00173124v2

Submitted on 19 Sep 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design of the CGAL Spherical Kernel and application to
arrangements of circles on a sphere

Pedro M. M. de Castro, Frédéric Cazals, Sébastien Loriot, Monique Teillaud

To cite this version:
Pedro M. M. de Castro, Frédéric Cazals, Sébastien Loriot, Monique Teillaud. Design of the CGAL
Spherical Kernel and application to arrangements of circles on a sphere. [Research Report] RR-6298,
INRIA. 2007, pp.46. �inria-00173124v2�

https://hal.inria.fr/inria-00173124v2
https://hal.archives-ouvertes.fr

appor t
de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
62

98
--

FR
+E

N
G

Thème SYM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Design of the CGAL 3D Spherical Kernel and
application to arrangements of circles on a sphere

Pedro M. M. de Castro — Frédéric Cazals — Sébastien Loriot — Monique Teillaud

N° 6298

Septembre 2007

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)

Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

Design of the cgal 3D Spherical Kernel and application

to arrangements of circles on a sphere

Pedro M. M. de Castro∗ , Frédéric Cazals †, Sébastien Loriot † , Monique

Teillaud †

Thème SYM � Systèmes symboliques
Projet Geometrica

Rapport de recherche n° 6298 � Septembre 2007 � 46 pages

Abstract: This paper presents a cgal kernel for algorithms manipulating 3D spheres, cir-
cles, and circular arcs. The paper makes three contributions. First, the design of the kernel
concept is developed, following the best practices for the design of kernels geared towards
curved objects. Second, we show how two di�erent frameworks can be combined: one for
the general setting, and one dedicated to the case where all the objects handled are located
on a reference sphere. In both cases, the mathematical derivations for predicates and con-
structions are detailed. Third, an application to the construction of the exact arrangement
of circles on a sphere is overviewed.

Key-words: Robustness, Curved objects, Generic programming, Spheres, Predicates,
Constructions, Geometric kernels, CGAL

∗ Pedro.Machado@sophia.inria.fr
† firstname.name@sophia.inria.fr

Pedro.Machado@sophia.inria.fr
firstname.name@sophia.inria.fr

Architecture du noyau 3D Spherical Kernel cgal et

applications aux arrangements de cercles sur une sphère

Résumé : Ce travail décrit un nouveau noyau cgal conçu pour les algorithmes manipulant
des sphères, des cercles, et des arcs de cercles en 3D. Trois contributions sont présentées.
Premièrement, on dé�nit l'architecture du concept du noyau en se référant aux principes
propres à la conception de noyaux pour objets courbes. Deuxièmement, on montre comment
combiner deux cadres: l'un pour le cas général; l'autre dans le cas où tous les objets manipu-
lés sont sur une même sphère, dite de référence. Dans les deux cas, les bases mathématiques
sur lesquelles s'appuient les prédicats et les constructions sont décrites. Troisièmement,
nous illustrons l'utilisation du noyau pour le calcul de l'arrangement exact de cercles sur
une sphère.

Mots-clés : Robustesse, Objects courbes, Programmation Générique, Sphères, Prédicats,
Constructions, Noyaux geométriques, cgal

cgal 3D Spherical Kernel 3

1 Introduction

Linear versus curved primitives in computational geometry. Geometric algorithms
traditionally limit their framework to linear objects in a�ne Euclidean space (points, seg-
ments, triangles, . . .), curved objects being discretized by linear elements. On the other
hand, handling directly curved objects allows one to skip this discretization process, and
also yields algorithms with better combinatorial complexity, as the number of primitives
involved is usually much smaller. For these reasons, the direct manipulations of curved
objects is an important challenge in computational geometry.

In the realm of curved objects, the simplest primitives are circles and spheres. These
primitives are used in various domains, either for representing objects or for approximating
them. Manipulations of circular arcs in the plane are of capital importance in some industrial
domains like manufacturing and printed or integrated circuit design [18], and there is a
recent increasing interest in the computational geometry community for approximations of
curves by circular arcs due to their interesting properties [20, 3]. Spheres are also central in
molecular modeling.

Spheres and applications in molecular modeling. Two of the most widely used mod-
els in molecular modeling are the Van der Waals (VdW) model, where each atom is repre-
sented by a ball whose radius depends on the atom type and its chemical environment, and
the Solvent Accessible model, where each VdW radius is enlarged by the radius of a water
molecule to account for a continuous solvation layer. Such models are ubiquitous in struc-
tural studies. For example, the so-called buried surface area [16], derived from the solvent
accessible surface (SAS), is one of the main parameters allowing one to classify protein-
protein complexes [12]; the SAS allows a simple and physically founded classi�cation of
amino-acids in terms of hydrophobicity [38]; solvent accessible surfaces and volumes are in-
strumental in deriving hydrophobic force �elds [30]; surface related quantities have been used
to de�ne scoring functions [1]. Apart from these molecular surfaces related quantities, geo-
metric objects underlying collections of balls also proved important to describe VdW models.
In particular, α-shapes [22] have been used to describe pockets within macro-molecules [21].

Interestingly, from a geometric standpoint, the previous constructions essentially focused
on the boundary of a union of balls, and on the interaction between at most 4 balls �an
intrinsic property of α-shapes. In order to go beyond these traditional models, we re�ned
surface area models �see the companion paper [11] for statistics on the so-called ESBI
model, which called for the development of an algorithm computing the exact arrangement
of circles on a sphere. This arrangement is being used to investigate properties of ligand-
binding pockets [2], and to select conformers in the realm of protein �exibility [5]. The
development of this algorithm triggered that of speci�c predicates for circles lying on a
reference sphere, as presented in this paper.

RR n° 6298

4 P.M.M. de Castro & F. Cazals & S. Loriot & M. Teillaud

From algorithms to implementations. In dealing with curved objects, previous work
focused on the design of important functionalities, and on the development of robust, e�cient
and �exible code, geared towards applications in academia and industry.

Andrade and Stol� proposed selected exact manipulations of 3D circular objects lying
on a given sphere, with an implementation in Modula-3 [4]. Regarding code development,
mapc was probably the �rst geometric library handling general algebraic curves, but it seems
that it did not handle all degenerate cases [32]. The Exacus prototype library allows to
exactly compute arrangements of conics and cubics in the plane [24]. The cgal arrangement
package can compute an arrangement of circular arcs, conics or Bézier curves [39]. cgal
now o�ers a kernel of exact basic manipulations of circular arcs in the plane [37].

Contributions and paper overview. This work provides the �rst complete and e�cient
implementation of essential basic functionalities to manipulate spheres, circles and circular
arcs in 3D, as well as their intersections, in an exact way. Following best practices, a clear
distinction is made between the algebraic and the geometric aspects on one hand, and on the
concepts of a kernel and its implementation on the other hand. The concept is accompanied
by an implementation, which is used to compute the exact arrangement of circles on a
sphere. As a quality label, this package has been submitted to the cgal Editorial board
and is currently under review.

The paper is organized as follows. Section 2 puts the 3D Spherical Kernel in context
with respect to best practices in geometric software development, and with respect to cgal
in particular. The 3D Spherical Kernel design and an extension to the case where all objects
manipulated lie on a reference sphere are discussed in sections 3 and 4. An application to
compute the exact arrangement of circles on a sphere is presented in section 5. Section 6
develops the mathematical foundations of the predicates and constructions provided by the
kernel. Finally, section 7 gives an overview of the proposed implementation of the concepts
presented earlier.

2 Geometric programming and CGAL

2.1 CGAL

The goal of the cgal project is to promote research in computational geometry, so as to
make reference algorithms available for academic research, and also to translate results into
robust programs for industrial applications [13]. The project formally started in 1996 under
the initiative of a consortium of a several teams in Europe and Israel �including our group,
and was supported by the European Community for three years. It evolved to an Open
Source project, allowing other researchers to participate. GeometryFactory 1, a start-up
launched in January 2003, is selling commercial licenses and supports speci�c developments
based on cgal.

1http://www.geometryfactory.com/

INRIA

cgal 3D Spherical Kernel 5

At the same period, the Computational Geometry Impact Task Force Report, coordinated
by Bernard Chazelle, insisted on a few recommendations [14, 15]. Two of them were the
production of useful and usable geometric software, and the need for the creation of a
rewarding structure for implementations in the academic world. cgal is striving to meet
these two recommendations.

cgal has high quality standards, which are ensured by a number of di�erent means.
First, an editorial board, created in 2001 and currently consisting of 12 members, is in
charge of making technical decisions and coordinating cgal promotion. The committee
evaluates proposals of new packages, and manages a review process similar to that of papers
submitted to journals. This process guarantees the coherence, homogeneity and quality of
the library, and is also rewarding for authors whose packages are getting integrated within
cgal. Second, a detailed documentation featuring a user and a reference manual for each
package is made available �over 3000 pages for 57 packages as of July 2007. Third, tests
are run every night on internal versions so as to avoid code regressions.

2.2 Predicates versus Constructions in the Exact Geometric Com-

putation Paradigm

Recent implementations of geometric algorithms usually distinguish predicates and construc-
tions. In standard folklore, a predicate is a test function returning an element of a discrete set
of values (for instance: do the two curves c and c′ intersect?). A construction is a function
that constructs new objects (for instance: compute the intersection points between curves
c and c′). Implementing geometric algorithms is notoriously di�cult, especially because of
numerical issues. Although geometric algorithms are basically of combinatorial and discrete
nature, the branching decisions are based upon continuous predicate evaluations, subject to
rounding errors when �oating point arithmetic is used, which often produces inconsistencies
[31].

To get around these di�culties, Yap pioneered the Exact Geometric Computation paradigm
[40], which we follow for our kernel design. In this paradigm, predicates are evaluated in an
exact way, which guarantees that algorithms relying on them do not fail.

Some predicates may seem to require constructions: for instance, the classical Bentley-
Ottmann algorithms for computing an arrangement of input line segments [6] requires com-
paring the x-coordinates of two intersection points of line segments. Note however that these
intersections need not be actually constructed. Such comparisons can indeed be performed
by functions of the input line segments, and boil down to evaluations of signs of polynomial
expressions in the input data [9], thus avoiding rounding errors inherent to the computation
of the coordinates of the intersection points.

Still, evaluating a predicate requires constructing numbers involved in its evaluation,
these numbers being functions of the input geometric objects. Instead of evaluating the
predicate from the input data each time an object is involved in a decision, we may want
to store selected constructed numbers for later use. In that case, a predicate may compare

RR n° 6298

6 P.M.M. de Castro & F. Cazals & S. Loriot & M. Teillaud

the x-coordinates of two intersection points using these constructed numbers instead of
performing a calculation directly involving the coe�cients of the line segments.

The previous discussion is of special interest for curved algebraic objects where the two
alternatives correspond to two philosophies to evaluate exact predicates.

On one hand, using an implicit encoding of an algebraic number, by some polynomial
vanishing on it, corresponds to an evaluation strategy resorting to resultant-like calculations
on the input polynomials. For instance, comparing the x-coordinates of two intersection
points of circles again boils down to simply evaluating signs of polynomial expressions in the
input data [19]. Though these coordinates are algebraic numbers, computations of square
roots are avoided.

On the other hand, constructing e�ectively the algebraic numbers by relying on speci�c
number types like Core::Expr or leda::real [17, 33], that accommodate exact computations
on algebraic numbers, requires in the end running multi-precisions calculations down to
separation bounds in the worst cases [10, 34]. But in doing so, one reuses intermediate
calculations, and the design of predicates, a di�cult task for algebraic objects, is made
easier.

An important point must be emphasized here: evaluating predicates, expressed as signs
of polynomial expressions, in an exact way, does not necessarily subsume an expensive exact
arithmetic. Indeed, one only requires a su�cient precision to make the correct predicate
evaluation. This is the fundamental idea that led to the development of many arithmetic
�ltering techniques [35]. In a nutshell, computations are carried out using a fast number
type that supports only inexact arithmetic operations, typically �oating point numbers, and
are accompanied by an upper bound evaluation on the error made. This error, which may
be pre-computed for static �lters, or may be computed on the �y using interval arithmetic,
allows one to certify the predicate evaluation in most of the cases. Only if certi�cation fails,
the computation is re-launched using an exact arithmetic.

We may also mention that future work on �ltered constructions [27, 25] may reconcile
the evaluation of predicates and constructions. The implementation of such a framework
still needs to be worked out to surpass the approach relying on predicates only.

2.3 CGAL Kernels and Traits Classes

C++ generic programming identi�es an abstraction making extensive use of C++ class-
templates and function-templates. It is a formal hierarchy of abstract requirements on
data types referred to as concepts, and a set of classes that conform precisely to the speci�ed
requirements, referred to as models [28].2 As detailed in [26], the cgal library follows the

2Let us mention here the cgal naming scheme that will also be used in this paper:
- Words in the names of everything except concepts should be separated by underscores. For example, one
would use function_name or Class_name instead of functionName or Classname.
- Words in the names of concepts (e.g., template parameters) should be separated using capital letters. The
only use of underscores in concept names is before the dimension su�x. For example, one should use a name
such as ConvexHullTraits_2 for the concept in contrast to Convex_hull_traits_2 for the name of the class
that is a model of this concept.

INRIA

cgal 3D Spherical Kernel 7

generic programming paradigm: the geometric algorithms are generic, and the geometric
classes are instantiated with a Traits class, a traits class being a class o�ering the minimum
set of functionalities required by a speci�c class. Such a template parameter is supposed to
ful�ll a set of requirements, described and documented as a concept.

Let us mention here that the requirements listed in a Traits concept are only syntactical:
they list a set of functionalities, with precise signatures, that must be made available to
some geometric class so that its algorithms can run. However, the concept does not assume
that these functionalities must be exact; some models may rely on inexact �oating point
arithmetic for instance. cgal algorithms are guaranteed to return the correct result if an
exact traits class is provided, otherwise they may crash.3

In the cgal library, constant size geometric primitive objects, together with general
purpose predicates and constructions on them are made available in kernels. cgal currently
o�ers kernels for linear objects (points, segments, lines, triangles...), and the �rst version of
a kernel for circles and circular arcs in 2D was released in cgal 3.2 [37]. As kernels can
be directly used as traits classes by several cgal classes, cgal kernels are documented as
C++ concepts. A kernel can also be wrapped into a traits class o�ering the interface for a
selected cgal class.

The fact that the distinction between predicates and constructions is ambiguous is of
no di�culty in designing a kernel concept, as one only needs to make constructions and
predicates coherent. On our example above, given two intersecting line-segments, a predicate
may indeed be passed the constructed intersection points, or an implicit encoding of its
coordinates in terms of input data.

In the case of algebraic objects, again, in designing a kernel concept, both implementation
options remain open.

3 Global Software Design

In this section, we present the design perspective of cgal kernels in general, with an appli-
cation to the 3D spherical kernel.

3.1 Extensibility of CGAL kernels

The general design of a kernel concept for curved objects proposed in [23] is driven by the
following concerns:

� interoperability of any model of the kernel concept with cgal geometric algorithms,

� re-usability of the existing cgal kernel models for linear objects,

� genericity and �exibility: ability to use other linear kernels than the cgal ones, and
independence from a particular implementation of the algebraic operations needed.

3See also �The CGAL Philosophy� on http://www.cgal.org/.

RR n° 6298

http://www.cgal.org/

8 P.M.M. de Castro & F. Cazals & S. Loriot & M. Teillaud

The extensibility and adaptability of the cgal kernel design [29] allows to answer all these
concerns. The declaration of a kernel for curved objects is the following:

template < typename LinearKernel, typename AlgebraicKernel > class Curved_kernel;

The 2D Circular kernel follows such a design [37]. The geometric level interface provides
types already de�ned by the linear kernel, plus three new types: types for points on circles,
circular arcs, and line segments whose endpoints are two points of this new point type. The
3D Spherical Kernel also follows this scheme.

The LinearKernel concept will not be presented here. It coincides with the basic cgal
Kernel concept extensively documented in the cgal manual. The main functionalities of
the user interface of the 3D Spherical Kernel is detailed in Section 3.2. The requirements
on the AlgebraicKernel concept listed in Section 3.3 are guided by the functionalities of
the 3D Spherical Kernel that we want to provide the user with. In fact these requirements
also describe the user interface of the algebraic kernel. Finally Section 3.4 explains how the
algebraic and the geometric layers communicate.

3.2 User Interface

Here we give a summary of the main geometric functionalities available to the user after
instantiation of a model of the 3D Spherical Kernel concept.

In the sequel, to indicate whether an object is a member of the 3D Spherical Kernel or
of the Algebraic Kernel, we use the following pre�xes SK:: and AK:: respectively.

Let us mention here that the representation data of all objects of the linear kernel
(coordinates for points, coe�cients of equations for lines, planes, spheres) is supposed to lie
in a �eld number type (i.e., a type providing elementary operations +,−,×, /), that will
typically be the rationals. In the sequel, for simplicity, we will always refer to the basic
number type as rational, and we will say that points, planes, spheres whose equations have
rational coe�cients are rational.

Types
In a way similar to what the 2D Circular kernel does, the 3D Spherical Kernel presented in
this paper extends the 3D linear kernel by

� providing in its interface types taken from the linear kernel, such as
� SK::Point_3 that represents rational 3D points;
� SK::Line_3 that represents rational lines in 3D;
� SK::Plane_3 that represents rational planes in 3D;
� SK::Sphere_3 that represents rational spheres;

� de�ning new basic objects:
� SK::Circle_3 that represents circles in 3D;
� SK::CircularArcPoint_3 that represents points on 3D circles;

INRIA

cgal 3D Spherical Kernel 9

� SK::CircularArc_3 that represents circular arcs delimited by two SK::CircularArcPoint_3;
� SK::LineArc_3 that represents line-segments delimited by two SK::CircularArcPoint_3.

The 3D Spherical Kernel also provides several predicates and constructions, de�ned on
objects of those types, as functors.4

Access functions.
We list in the following what we call access functions, that must be provided as class member
functions.

Note that access functions do not assume any speci�c representation of the objects:
speci�c models may store objects in such a way that access functions are simply accessing
data members, but other models may perform computations to return the result.

� SK::Circle_3

�center() returns the center of the circle;
�squared_radius() returns the squared radius of the circle;
�supporting_plane() returns the plane containing the circle;
�diametrial_sphere() returns the diametrical sphere de�ned by the circle;

� SK::CircularArcPoint_3

� x(), y() or z() returns the x,y or z coordinate of the point;
� SK::LineArc_3

�source(),target() return the endpoints (as SK::CircularArcPoint_3s) of the segment;
�supporting_line() returns the line the segment is drawn on;

� SK::CircularArc_3

�source(),target() returns the endpoints of a circular arc, as SK::CircularArcPoint_3;
�supporting_circle() returns the circle circular arc is drawn on.

Note that a circular arc can be given by a supporting circle and two endpoints. It is
unambiguously de�ned as the set of points lying on the circle, when walking counterclockwise
from its source to its target in the positive plane5 containing the circle.

Predicates.
� Comparing coordinates:
Functors SK::CompareX_3, SK::CompareY_3, SK::CompareZ_3 compare Cartesian coordinates of
two points of type SK::CircularArcPoint_3;
Functors SK::CompareXY_3 and SK::CompareXYZ_3 provide a lexicographic comparison;
The value returned by these functors belongs to {<,=, >};

4Recall that a functor is a class object that can be used as a function by de�ning the operator(). Main
advantages of such an implementation are that we can inline the underlying methods and store variables in
the class �to take into account a current state for example.

5In this de�nition, we say that a plane is positive if its equation is of the form ax + by + cz + d = 0 with
(a, b, c) > (0, 0, 0) (i.e. (a > 0) or ((a == 0) and (b > 0)) or ((a == 0) and (b == 0) and (c > 0))).

RR n° 6298

10 P.M.M. de Castro & F. Cazals & S. Loriot & M. Teillaud

� Testing equality:
Functor SK::Equal_3 tests whether any two objects of the 3D Spherical Kernel, of the same
type, are equal;
� Testing relative positioning:
Functor SK::HasOn_3 tests whether one primitive among plane, sphere, line, segment, circle
and circular arc lies on a second one;
Functor SK::HasOnBoundedSide that tests whether a point lies inside the ball associated with
a sphere;
Functor SK::CompareZAtXY_3 computes whether a point lies below, on or above a non vertical
plane �and similarly for SK::CompareYAtXZ_3 and SK::CompareXAtYZ_3;
Functor SK::DoOverlap_3 tests whether two segments or two circular arcs overlap, that is to
say their intersection is neither empty nor reduced to one or two points;
Functor SK::DoIntersect_3 tests whether the primitives intersect.

Construction.
� Functor SK::Intersect_3 returns an iterator over intersections (possibly none) of two or
three primitives.

Communication to algebra.
� Functor SK::GetEquation returns a polynomial of the algebraic kernel providing an equation
of a plane, sphere, line or circle.

3.3 Algebraic kernel

The operations provided by the cgal 3D Spherical Kernel make heavy use of algebraic
operations. The AlgebraicKernel parameter has a crucial role in particular for the robustness
of the 3D Spherical Kernel.

As mentioned already in [23], the algebraic kernel must provide basic types (polynomials
and roots of systems), and basic functionalities on them (solving polynomial systems, com-
paring roots of systems, and computing the sign of a polynomial at the roots of a system).

Let us now list the most important requirements forming the AlgebraicKernel concept
for manipulating spheres, circles and circular arcs in 3D:

Types
� Polynomial types to store the equations of geometric objects, basically: a special type of
polynomial of degree two in three variables, AK::PolynomialForSpheres_2_3 that represents
spheres, and a degree one polynomial in three variables, AK::Polynomial_1_3 that represents
planes;
� Type to store roots of systems of three trivariate polynomials of the types just listed
above. This type AK::RootForSpheres_2_3 is used to encapsulate and abstract the algebraic
representation of points on 3D circles.

INRIA

cgal 3D Spherical Kernel 11

Main algebraic predicates:
� Several functors are provided to compare the Cartesian coordinates of an AK::RootForSpheres_2_3:
they re�ect the 3D Spherical Kernel user interface;
� Functor AK::SignAt computes the sign6 of an AK::PolynomialForSpheres_2_3 or of an
AK::Polynomial_1_3 at an AK::RootForSpheres_2_3. Basically, it will be used to compute
the position of a point wrt a sphere or plane.

Main algebraic construction:
� Functor AK::Solve solves a system of equations de�ning a zero-dimensional system, i.e. it
returns a (possibly empty) iterator over the solutions, each speci�ed by a AK::RootForSpheres_2_3.
For example, such systems are de�ned by two spheres and one plane (two AK::PolynomialForSpheres_2_3
and one AK::Polynomial_1_3), by three spheres (three AK::PolynomialForSpheres_2_3),. . .

3.4 Communication algebra-geometry

Figure 1 illustrates how algebra and geometry communicate in this design. In this example,
to compute the (non-empty) intersection of a 3D circle and a plane, we �rst retrieve simpler
underlying geometric objects and solve the system of corresponding equations.

6< 0, > 0, = 0

RR n° 6298

12 P.M.M. de Castro & F. Cazals & S. Loriot & M. Teillaud

Figure 1 Example of a geometric construction: computing the intersection of a circle and
a plane. Names in boxes represent 3D Spherical Kernel or Algebraic Kernel functors, while
names in ellipses are access functions.

AK::Polynomial 1 3

SK::Sphere 3 SK::Plane 3

SK::Circular arc point 3

AK::Polynomial for spheres 2 3

SK::Root for spheres 2 3

SK::Intersect 3

AK::Polynomial 1 3

AK::Solve

SK::Circle 3 SK::Plane 3

diametral sphere() supporting plane()

SK::Get equation SK::Get equation SK::Get equation

4 Expanding the 3D Spherical Kernel for objects on a

reference sphere

4.1 Objects on a reference sphere

In this section, we expand the basic functionalities of the 3D Spherical Kernel in the special
case where all objects handled lie on a common sphere, called a reference sphere and denoted
S0 thereafter. We assume the reference sphere is equipped with cylindrical coordinates.
This case is naturally more restrictive, but yields new problems, as one may for example
wish to compare the cylindrical coordinates of the endpoints of two circular arcs on the
same reference sphere. Developing this expansion requires more types together with related
predicates and constructions. Note that the Algebraic Kernel is not expanded since being
in such a setting does not modify the underlying algebraic objects and methods. This
expansion is actually motivated by the computation of arrangements of circles on a sphere,
as explained in section 5.

INRIA

cgal 3D Spherical Kernel 13

Let Mθ be a parametrized meridian on S0, with θ ∈ [0, 2π(. We �rst de�ne a classi�cation
of circles on the same reference sphere, and related quantities:

De�nition. 1 Consider a circle on a reference sphere S0. Such a circle is said to be polar
(bipolar) if it goes through one pole (the two poles) of S0. A circle which separates the
poles into two connected components of S0 is said to be threaded. Any other circle is termed
normal.

Figure 2 The four types of circles on a reference sphere. Black dots are the θ-extremal
points.

N

S

Normal

Threaded

Bipolar

Polar

Mθ

O

For polar and normal circles, we de�ne the notion of θ-extremal points.

De�nition. 2 The θ-extremal points of a normal circle are given by the two points where a
meridian of S0 is tangent to the circle. The θ-extremal point of a polar circle is the pole the
circle goes through.

For all but threaded circles, we de�ne the notion of θ-extremal value(s):

De�nition. 3 For a normal circle, the θ-extremal values are the values of θ of its θ-extremal
points. For a polar circle, the θ-extremal values are the two values of θ such that Mθ is
tangent to the circle at the pole. For a bipolar circle, the θ-extremal values are the two
values of θ such that Mθ is contained in the plane of the circle.

Notice that in standard analysis and geometric folklore, the extremal points are usually
called critical points. Notice also that the extremal points should not be confused with the
extremities (i.e. the endpoints) of an arbitrary circular arc.

De�nition. 4 A circular arc on a reference sphere is said to be θ-monotonic if its intersec-
tion with any half-plane bounded by the line going through the two poles is empty or reduces
to one point.

RR n° 6298

14 P.M.M. de Castro & F. Cazals & S. Loriot & M. Teillaud

Consider the four types of circles, as illustrated on Fig. 2. A circular arc on a normal
circle is θ-monotonic if it contains none of its circle θ-extremal point, excepted maybe as an
endpoint. The same remark is valid on a polar circle, considering its θ-extremal point. Any
circular arc constructed on a threaded circle is by de�nition θ-monotonic. No θ-monotonic
circular arc can be found on a bipolar circle.

4.2 User Interface

Types. As an expansion of the previously introduced primitives, we introduce the following
new objects: � SK::CircleOnReferenceSphere_3 that represents circles on a given reference
sphere;
� SK::CircularArcPointOnReferenceSphere_3 that represents points on such circles;
� SK::CircularArcOnReferenceSphere_3 that represents circular arcs delimited by such points;
� SK::ThetaRep that represents the θ coordinate of a point.

These expanded primitives are introduced in order to extend the user interface that
now provides several predicates and constructions speci�c to this setting. Note that the
corresponding C++ concepts re�ne7 those corresponding to types introduced in section 3,
so that the functionalities of the basic concepts are also provided.

Access functions.
Access functions are associated to the previously introduced types:
� SK::CircleOnReferenceSphere_3

� reference_sphere() returns S0;
� type_of_circle_on_reference_sphere() indicates whether a circle is normal, threaded,

polar or bipolar;
� SK::CircularArcPointOnReferenceSphere_3

� reference_sphere() returns S0;
� theta_rep() returns an exact representation, of type SK::ThetaRep, of the θ coordinate

of a point by means of its tangent or cotangent, the alternative being speci�ed by an index
corresponding to the decomposition of the unit disk x2 + y2 ≤ r2

0 �see section 6.3.
� SK::CircularArcOnReferenceSphere_3

� reference_sphere() returns S0.

Predicates.
The following predicates (returning a value in {<,=, >}) are available:
� Functor SK::CompareTheta_3 compares the θ values of two points of type
SK::CircularArcPointOnReferenceSphere_3 or two values of θ encoded using SK::ThetaRep.
� Functor SK::CompareThetaZ_3 compares two points of type SK::CircularArcPointOnReferenceSphere_3
using lexicographic order on (θ, z).

7In the generic programming terminology, this means exactly that these concepts extend the requirements
of previous concepts.

INRIA

cgal 3D Spherical Kernel 15

� Functor SK::CompareZAtTheta_3 compares two circular arcs along a meridian Mθ of S0

included in a rational plane.
Similarly, it compares the position of a point on S0 with respect to a θ-monotonic circular

arc drawn on the same sphere. As a precondition, the θ value of the point must be enclosed
between the θ values of the endpoints of the circular arc.
� Functor SK::CompareZToLeft_3 compares two θ-monotonic circular arcs along a meridian
located just before the θ value of a point common to both circular arcs.

Constructions.
� Functor SK::Intersect_3 returns an iterator over the solutions (possibly none) when in-
tersecting two expanded primitives. Note that the solutions are expanded primitives.
� Functor SK::ThetaExtremalPoint_3 returns an iterator over (possibly none) elements of
type
SK::CircularArcPointOnReferenceSphere_3, which are the θ-extremal points of a circle or a
circular arc.
� Functor SK::MakeThetaMonotonic_3 returns an iterator over elements of type
SK::CircularArcOnReferenceSphere_3 de�ning the θ-monotonic decomposition of a circular
arc of type SK::CircularArcOnReferenceSphere_3 or of a circle of type SK::CircleOnReferenceSphere_3.

5 Application to compute exact arrangements of circles

on a sphere

In this section, we present the connexion between the 3D Spherical Kernel and a Bentley-
Ottmann like algorithm computing the exact arrangement of circles on a sphere [11]. In a
nutshell, the algorithm takes as input a collection of circles, and returns a decomposition of
the sphere into regions whose interiors are connected �the decomposition being stored in a
half-edge data structure. In the following, we explain how primitives from the 3D Spherical
Kernel are used, and refer the reader to the companion paper [11] for the details on the
algorithm itself.

5.1 Arrangements of circles on a sphere

To the best of our knowledge, there exist two algorithms computing the exact arrangement
of circles on a sphere. The �rst one is generic as its speci�cation handles general curves on a
parametric surface, the strategy consisting of sweeping the parametric domain of the surface
[8]. But for a surface which is a sphere, great circles only are supported in the current
implementation. The second one is an algorithm which consists of sweeping a sphere with a
meridian anchored at the poles, developed in [11]. The algorithm handles all types of circles
and any degenerate case.

For the sake of completeness, one should also mention papers dealing with arrangements
of quadrics. The �rst complete and exact implementation computing a planar map induced

RR n° 6298

16 P.M.M. de Castro & F. Cazals & S. Loriot & M. Teillaud

by the intersection curves of a set of quadrics running on the surface of one of them is
described in [7]. In theory, this algorithm could be adapted to the special case of spheres.
In [36], an algorithm to compute exact 3D arrangements of quadrics is developed, but no
implementation is provided.

It should be noticed that our implementation of the 3D Spherical Kernel concept should
open the possibility to write a traits class providing the predicates required to handle all
types of circles in the general sweep-line algorithm for curves on a surface [8]. In principle,
this endeavor is indeed equivalent to embedding the critical and intersection points into the
parameter space of the surface �the reference sphere here.

5.2 Sweeping the sphere using the 3D Spherical Kernel

Algorithm outline. Consider a collection of circles on a reference sphere. Normal and
polar circles are �rst decomposed into θ-monotonic circular arcs, this decomposition being
induced by the θ-extremal points. The sweep process consists of sweeping the sphere with
a meridian Mθ anchored at the poles, using cylindrical coordinates. This process is tanta-
mount to the classical sweep-line process in the plane, as each θ-monotonic circular arc is
intersected in at most one point by the sweep meridian. An event corresponds to an inter-
section/tangency point between two circular arcs, or to a critical point of a circle. To handle
degeneracies, that is events associated to the same point of the reference sphere, events are
gathered into a data structure called the event site [11]. The vertical ordering V stores θ-
monotonic circular arcs, while the event queue E stores event sites �which are created upon
insertion of intersection/tangency/critical events. The algorithm is summarized on Table 1.
The numerical primitives involved are typeset in typewriter font. These primitives are those
from the 3D Spherical Kernel involved in the implementation of the geometric predicates
required by the algorithm. To discuss these primitives in the context of the 3D Spherical
Kernel, we consider constructions and predicates.

Constructions. These are twofold:
� constructing the intersection point(s) of circles using functor SK::Intersect_3,
� constructing the critical point(s) of a circle with functor SK::ThetaExtremalPoint_3.

Predicates. Predicates are involved in the manipulation of V and E . Let us �rst examine
the vertical ordering V. The initialization of V requires comparing the position of circular
arcs along meridian M0 (at θ = 0) using predicate SK::CompareZAtTheta_3 with two circular
arcs, as shown on Fig. 3(a). For intersections occurring on M0, one further needs to compare
the circular arcs to the left of this point using predicate SK::CompareZToLeft_3, as illustrated
on Fig. 3(b).

To update V, the only predicate involved is that required to insert the circular arcs of
a normal circle starting at a given event point. To do so, we locate along the meridian the

INRIA

cgal 3D Spherical Kernel 17

start point 8 of the normal circle amongst circular arcs present in V, the predicate involved
being SK::CompareZAtTheta_3 with one point and one circular arc. This is illustrated on Fig.
4. A comment is in order about the reversal of the order of circular arcs when processing
an event site, so as to maintain the vertical ordering V. Our algorithm does not use any
predicate to perform this update, as it is shown in [11] that this operation can be handled
in a purely combinatorial fashion.

Let us now analyze the event queue E . Its initialization requires all critical points. Given
all but threaded circles �using circle access function type_of_circle_on_reference_sphere_3(),
such points are constructed using functor SK::ThetaExtremalPoint_3 9. The detection of
new intersection points from new adjacencies along V uses predicate SK::DoIntersect_3. Fi-
nally, all intersection and critical points are sorted using predicates SK::CompareTheta_3 and
SK::CompareZ_3.

Table 1 The sweep algorithm of [11], together with the primitives of the 3D Spherical
Kernel involved.

0. Classify circles as normal/polar/bipolar/threaded.
� SK::CircleOnReferenceSphere_3::type_of_circle_on_reference_sphere_3()

Compute extremal points and decompose circles into θ-monotonic circular arcs.
�SK::ThetaExtremalPoint_3

1. Initialize V: Fill V with circular arcs intersected by the meridian at θ = 0.
� SK::CompareZAtTheta_3, SK::CompareZToLeft_3

2. Initialize E :
(a) Look for intersections between circular arcs adjacent in V at θ = 0,

� SK::DoIntersect_3

and insert the corresponding intersection points into E .
�SK::Intersect_3, SK::CompareTheta_3, SK::CompareZ_3

(b) For all but threaded circles, insert critical points into E .
�SK::CompareTheta_3, SK::CompareZ_3

3. While E is not empty do
(a) Insert into/remove from V the circular arcs of the event(s) starting/ending �if any.

�SK::CompareZAtTheta_3
(b) Reverse the order of circular arcs in vertical ordering V.
(c) Insert into E the intersection detected from the new adjacencies along V.

�SK::DoIntersect_3, SK::Intersect_3, SK::CompareTheta_3, SK::CompareZ_3

8The start(end) point is the extremal point of the circle from which the circle starts (ends) being swept
by the meridian.

9see section 6.3.8 for critical points of polar and bipolar circles.

RR n° 6298

18 P.M.M. de Castro & F. Cazals & S. Loriot & M. Teillaud

Figure 3 Initializing V requires sort-
ing circular arcs along the meridian M0.
Black dots represent critical points.

M0
M0

M0

(a)

(b)

Figure 4 Inserting the circular arcs of
a starting circle C0i requires locating
its start point amongst the circular arcs
found in V. Black dots represent critical
points.

Mθ

C0i

C0j

C0k

C0l

6 Mathematical foundations

This section details the analytical geometry involved in the predicates and constructions.
Because our focus is a kernel concept, notice di�erent models may use these mathematics
di�erently by storing or recomputing the geometric quantities involved.

6.1 Preliminaries and notations

The center of sphere Si is denoted ci = (xi, yi, zi), and its radius ri. The Cartesian coordi-
nates of the center and the squared radius are called the sphere parameters, and recall that
we shall assume these parameters are rational numbers. Without loss of generality, we will
consider a reference sphere S0 centered at the origin.

The x coordinate of point p and vector u are denoted px and ux, and similarly for
coordinates y and z. The dot and vector products of two vectors u and v are respectively
denoted < u, v > and u∧ v. The squared norm of vector u is denoted u2 =< u, u >, and its
norm ‖u‖. The sign of a real number, denoted Sign(x), is such that Sign(x) ∈ {−1, 0, 1}. If
o stands for the origin, and p is a point, the vector op is denoted p.

INRIA

cgal 3D Spherical Kernel 19

The power of point p wrt sphere Si is de�ned by π(p, Si) = pc2
i − r2

i . The radical plane
RPij of any two spheres Si and Sj is the plane containing the points having equal power
with respect to the two spheres. Whenever the spheres intersect, the intersection circle is
also de�ned as the intersection between either sphere and the radical plane.

When considering two intersecting spheres Si and Sj , the intersection circle is denoted
Cij , whose center and radius are denoted cij and rij . When considering the reference sphere
model, if C0j is a normal circle �refer to Def. 1, the two circular arcs delimited by the
θ-extremal points are called the upper or lower circular arcs as evidenced by their relative
position along the z-axis. By extension, a θ-monotonic circular arc included into a upper
(lower) arc is also termed upper (lower) and a θ-monotonic circular arc on a polar circle
passing by the north (south) pole is termed lower (upper).

A root of a degree n polynomial with rational coe�cients is called an algebraic number
of degree n. As algebraic numbers of degree two play a central role in our predicates and
constructions, we just recall the following properties:

Observation. 1 Consider two algebraic numbers a and b, of degree at most two in the same
algebraic extension. Then a + b, a × b and 1/a �if a 6= 0, are algebraic numbers of degree
at most two, and they also belong to the same algebraic extension.

Practically, the operations to be performed involve algebraic numbers of degree two in the
same extension, as well as sign evaluation. Implementation details are provided in section
7.

Observation. 2 An equation of the radical plane between spheres Si and Sj is:

2 < p, cicj > +ci
2 − cj

2 + r2
j − r2

i = 0

Proof. The radical plane between the spheres Si and Sj contains the set of points p satisfying:{
cip

2 − r2
i = 0

cjp
2 − r2

j = 0

since ckp2 − r2
k = (−ck + p)2 − r2

k = ck
2 + p2 − 2 < p, ck > −r2

k, the di�erence of the two
equations of the previous system implies:

2 < p, cj > −2 < p, ci > +ci
2 − cj

2 + r2
j − r2

i = 0

which leads to the equation of the radical plane: 2 < p, cicj > +ci
2 − cj

2 + r2
j − r2

i = 0 �

6.2 Constructions

6.2.1 Computing intersections

The developments presented in this section are naturally involved in the implementation of
SK::Intersect_3, but also in those of a number of constructors (that of a circle from a sphere
and a plane, for example), and access functions.

RR n° 6298

20 P.M.M. de Castro & F. Cazals & S. Loriot & M. Teillaud

Given the primitives introduced in section 3, we shall consider the following six three
dimensional objects: plane, sphere, circle, circular arc, segment and line. We examine the
pairwise intersection of any two such primitives, as the intersection of an arbitrary number of
them can always be computed from pairwise intersections. When dealing with two objects,
we shall assume without loss of genericity that (i) they are di�erent, (ii) they do not overlap
�for circular arcs and for segments only, (iii) they do not include one another �circle on
sphere and line on a plane, (iv) their intersection is non empty. Since we provide methods
to test the excluded case, we cover all cases. The following 21 cases, sorted into four classes
as a function of the expected intersection type, have to be accommodated:
� Line: {plane ∩ plane}
�Point with rational Cartesian coordinates: {plane ∩ line, line ∩ line, plane ∩ segment,
segment ∩ segment, line ∩ segment }
� Circle: { plane ∩ sphere, sphere ∩ sphere}
� Point(s) whose Cartesian coordinates are algebraic numbers of degree two: {
sphere ∩ line, sphere ∩ segment, circle ∩ circle, sphere ∩ circle, plane ∩ circle, plane ∩
circular arc, sphere ∩ circular arc, circle ∩ circular arc, circular arc ∩ circular arc, circle ∩
line, circle ∩ segment, circular arc ∩ segment, circular arc ∩ line}.

It is easily seen that we just have to detail one construction per class �the most generic
one, since other intersections can be inferred from that case using the predicate testing
inclusion �using predicate SK::HasOn_3 described below.

Plane ∩ Plane. To parameterize the intersection line of two planes, we compute the
director vector of the line �the cross product of the normal vectors of the planes, and a
common point of the two planes.

Plane ∩ Line. A line can be parametrized by one parameter. So �nding the intersection
point of a plane and a line is equivalent to solving an equation of degree one.

Sphere ∩ Sphere. The characterization of the center and the squared radius of the in-
tersection circle of two spheres relies on the following:

Observation. 3 The center of the intersection circle of two spheres Si and Sj is a lin-
ear combination of the two spheres' centers, the coe�cients being quotients of polynomial
expressions of degree two of the parameters of the spheres.

The squared radius of an intersection circle is a quotient of polynomials of the same
parameters.

Proof. To �nd the coordinates of the center cij of the intersection circle, we seek the
intersection between the line joining the centers, and the radical plane of the two spheres.
If p = (x, y, z), we have the following system de�ning a line and a plane:{

cicij = αcicj α ∈ R
2 < p, cicj > +ci

2 − cj
2 + r2

j − r2
i = 0

INRIA

cgal 3D Spherical Kernel 21

The fact that cij lies on the radical plane can be written by

2 < cij , cicj > +ci
2 − cj

2 + r2
j − r2

i = 0 ⇐⇒ α =
cjc

2
j − r2

j + r2
i

2cic2
j

Whence

cicij =
cic

2
j − r2

j + r2
i

2cic2
j

cicj (1)

For the squared radius r2
ij , we use Pythagora's theorem: r2

ij = r2
i − cic

2
ij . �

Notice that the radical plane is orthogonal to the line joining the centers.

Sphere ∩ Line. An intersection point between a sphere and a line is characterized by:

Observation. 4 The Cartesian coordinates of intersection points of a sphere and a line are
algebraic numbers of degree two in the same extension.

Suppose the line is de�ned by (a1t + b1, a2t + b2, a3t + b3) and the sphere by (x− a)2 +
(y− b)2 +(z− c)2− r2 = 0. The Cartesian coordinates of the intersection points of a sphere
and a line are (a1t

′ + b1, a2t
′ + b2, a3t

′ + b3) with t′ solution of (a1t + b1 − a)2 + (a2t + b2 −
b)2 + (a3t + b3 − c)2 − r2 = 0.

6.2.2 Computing θ extremal points of a normal circle

This section is concerned with the foundations of the functor SK::ThetaExtremalPoint_3.
The following observation sets the case of normal circles on a reference sphere:

Observation. 5 Consider a normal circle C0i de�ned by the intersection of two spheres
with rational parameters. The z coordinate of its two critical points is the following rational
number:

z =
2zir

2
0

ci
2 + r2

0 − r2
i

Proof. Recall that the reference sphere S0 is centered at the origin, and let C0i be a normal
circle intersection of S0 and Si. If zi = 0, a symmetry argument with respect to the plane
z = 0 imposes that the z coordinate of the critical points is also null. In the following, we
therefore assume that zi 6= 0.

In the general case, the critical points of C0i are the two points where the intersection
between the meridian Mθ and C0i reduces to one point.

Consider the system involving circle C0i (or equivalently the radical plane RP0i), the
half plane P (θ) de�ning the meridian Mθ (that is Mθ = S0 ∩ P (θ)), and the sphere S0. If

RR n° 6298

22 P.M.M. de Castro & F. Cazals & S. Loriot & M. Teillaud

p = (x, y, z), the θ values of the critical points correspond to the solutions of the following
system:

P (θ) : −x sin(θ) + y cos(θ) = 0
RP0i : 2 < p, c0ci > +c0

2 − ci
2 + r2

i − r2
0 = 0

S0 : x2 + y2 + z2 − r2
0 = 0

(2)

Assuming x 6= 0, or equivalently θ 6= π
2 [π], we investigate this system using tan θ. If x = 0,

we work with cot θ by swapping the roles of x and y. Notice that x and y cannot vanish
simultaneously for a normal circle, as the poles are not critical for such a circle. The previous
system is tantamount to:

y = x tan θ

z = ci
2+r2

0−r2
i−2x(xi+yi tan θ)

2zi

x2 + x2 tan2 θ + (ci
2+r2

0−r2
i−2x(xi+yi tan θ))2

4z2
i

− r2
0 = 0

(3)

Rewrite the last equation
Ax2 + Bx + C = 0, (4)

with
A = (1 + tan2 θ) + (xi+yi tan θ)2

z2
i

B = − (xi+yi tan θ)(ci
2+r2

0−r2
i)

z2
i

C = (ci
2+r2

0−r2
i)2

4z2
i

− r2
0

(5)

The values of θ sought are such that Eq. (4) has a single solution, namely x = −B/(2A).
Imposing that the discriminant of this polynomial vanishes yields the condition D = 0, with
D = B2 − 4AC, whence tan θ as an algebraic number of degree two.

Letting T stand for tan θ and denoting λi = ci
2 + r2

0 − r2
i , we have:

D =

D2︷ ︸︸ ︷
(−λ2

i + 4r2
0z

2
i + 4r2

0y
2
i) T 2 +

D1︷ ︸︸ ︷
(8xiyir

2
0) T +

D0︷ ︸︸ ︷
(−λ2

i + 4r2
0z

2
i + 4r2

0x
2
i) (6)

We proceed by investigating the cases where polynomial D has degree two and one. As we
shall see, in the �rst case, no critical point lies in the plane x = 0, while the second one
corresponds to the situation where one critical point lies in plane x = 0.
Case I: D2 6= 0: polynomial D is of degree two. We �rst make the connexion between the
discriminant ∆ of D and the geometry, and proceed with the value of critical points.
. The discriminant ∆ of D may be written as:

∆ = 4

∆1︷ ︸︸ ︷
(−2r0zi + λi)

∆2︷ ︸︸ ︷
(2r0zi + λi)

∆3︷ ︸︸ ︷
(4r2

0ci
2 − λi)

INRIA

cgal 3D Spherical Kernel 23

Since the power of a pole of S0 wrt to sphere Si reads as (ci− (0, 0,±r0))2− r2
i = ci

2 + r2
0 −

r2
i ± 2zir0 = ±2r0zi + λi, polynomial ∆1 (∆2) is the power of the north (south) pole wrt

Si. The power of a point wrt to a sphere is negative (positive,zero) i� the point is inside
(outside, on) the sphere. Therefore, ∆1 is negative (positive,zero) if the north pole is inside
(outside, on) Si. The same observation holds for ∆2 and the south pole.

Let now consider ∆3, which we rewrite as: ∆3 =

∆31︷ ︸︸ ︷
(−ci

2 + (r0 + ri)2)

∆32︷ ︸︸ ︷
(ci

2 − (r0 − ri)2).
The combination of signs of ∆31 and ∆32 is reported in table 2, and the discussion of the
sign of ∆ is summarized in table 3. As expected, one has ∆ > 0 for all normal circles, so
that equation (6) can be canceled in two di�erent ways corresponding to the two critical
points.

. Finally, substituting any solution of equation (6) into the expression of z from the system

(3) yields z = 2zir
2
0

ci
2+r2

0−r2
i
, which corresponds to the z coordinate of the critical points of a

normal circle under the assumption D2 6= 0.

Table 2 Sign of ∆3. Abusing terminology, Si inside Sj stands for Si inside the ball associated
to Sj while Si outside Sj stands for balls associated to Si and Sj are disjoint.

∆31 ∆32 ∆3 sphere con�guration
+ + + S0 and Si intersect along a circle
+ − − Si inside S0 or S0 inside Si, no intersection
− + − Si outside S0, no intersection
− − + impossible
0 + 0 Si and S0 tangent, no inclusion
0 − 0 impossible
+ 0 0 Si and S0 tangent, Si inside S0 or S0 inside Si

− 0 0 impossible

Case II: D2 = 0: polynomial D is of degree one. We �rst show that the circle is a normal
circle if xi 6= 0 and yi 6= 0, and then derive the expression of the z value.

. Notice that D2 = ∆3 − 4r2
0x

2
i . D2 = 0 is equivalent to ∆3 ≥ 0.

Consider the product ∆1∆2 = (−2r0zi + λi)(2r0zi + λi). We have ∆1∆2 = λ2
i − 4r2

0z
2
i =

−∆3 + 4r2
0(x

2
i + y2

i). Since ∆3 = 4r2
0x

2
i , ∆1∆2 = 4r2

0y
2
i . So ∆1∆2 ≥ 0. First note that

according to table 3, if xi = 0, then S0 and Si are tangent, and if yi = 0 the circle goes
through at least one pole, which in both cases does not correspond to the case of a normal
circle. Assuming that xi 6= 0 and yi 6= 0, we have ∆ > 0, and according to table 3, the
intersection circle is normal.

. We now compute the z coordinate of the critical points of a normal circle such that D2 = 0,
xi 6= 0 and yi 6= 0. We directly have tan θ = −−λ2

i +4r2
0z2

i +4r2
0x2

i

8xiyir2
0

from equation (6). Since by

RR n° 6298

24 P.M.M. de Castro & F. Cazals & S. Loriot & M. Teillaud

hypothesis −λ2
i + 4r2

0z
2
i = −4r2

0y
2
i , one has tan θ = −x2

i−y2
i

2xiyi
. Substituting tan θ by −x2

i−y2
i

2xiyi

into the expression of z of system (3) gives z = λizi

2(z2
i +y2

i)
. The desired expression stems from

the fact that z2
i + y2

i = λ2
i

4r2
0
.

. The previous derivation gives the solution for only one critical point, since only one value
of tan θ is obtained. In fact, one value of tan θ is de�ned, since the second value corresponds
to ±∞, i.e. the second θ value is π/2 or 3π/2. Indeed, swapping x and y in the previous
derivation gives us the equations for determining the value of T = cot θ. In particular,
equation (6) becomes

D0T
2 + (8xiyir

2
0)T + D2 = 0, (7)

which is equivalent to {
T = 0
D0T + (8xiyir

2
0) = 0 if D0 6= 0

(8)

We �nd the solution cot θ = 0 which was expected, and using the symmetric role played by
x and y, the expression of z is the same than that obtained with tan θ. Notice that if D0

is also null, all what is written above stay valid, but tan θ becomes null for the �rst θ value
which means that the θ value of the corresponding critical point is 0 or π. This corresponds
to the situation where one critical point is on the plane x = 0 and the other one on the
plane y = 0.

To conclude the case analysis, notice that ci
2 +r2

0−r2
i = 0 corresponds to the case where

the circle is bipolar. �

INRIA

cgal 3D Spherical Kernel 25

Table 3 Sign of ∆. ∆1 (∆2) is the power of the north (south) pole wrt Si while ∆3 indicates
whether S0 intersects Si.

∆1 ∆2 ∆3 ∆ circle type
+ + + + normal circle
+ + − − S0 and Si do not intersect
+ − + − threaded circle
− + + − threaded circle
+ − − + impossible
− + − + impossible
− − + + normal circle
− − − − S0 and Si do not intersect
0 6= 0 ≥ 0 0 polar circle if ∆3 > 0, S0 and Si are tangent otherwise
6= 0 0 ≥ 0 0 polar circle if ∆3 > 0, S0 and Si are tangent otherwise
0 6= 0 − 0 impossible
6= 0 0 − 0 impossible
± ± 0 0 S0 and Si are tangent if sign of ∆1 = sign of ∆2, impossible otherwise
0 0 ∀ 0 bipolar circle if ∆3 > 0, impossible otherwise

The observation 5 has an interesting consequence:

Observation. 6 The critical points of a normal circle C0i are de�ned by the intersection
between the reference sphere, and the line intersection between the radical plane RP0i and

the horizontal plane de�ned by z = 2zir
2
0

ci
2+r2

0−r2
i
. The x and y coordinates of these points are

algebraic numbers of degree two by observation 4.

6.2.3 Decompositions into θ-monotonic circular arcs

Functor SK::MakeThetaMonotonic_3 decomposes a circular arc or a circle into θ-monotonic
circular arcs. This is trivial for circular arcs on threaded circles. For a circular arc on
a normal circle, this operation requires computing the critical points of the circle, and
checking whether these points lie on the circular arc. This later test requires comparing
the z coordinate values of the extremities of the circular arc with the values of the critical
points. For a circular arc on a polar circle the operation is similar, considering the pole the
circle goes through as critical point. For circles, the inclusion test is not necessary.

6.3 Predicates

6.3.1 Comparing Cartesian coordinates of points on 3D circles

As a general prerequisites observe that Cartesian coordinates of points on a sphere are
algebraic numbers of degree at most two �observation 4. Comparing these Cartesian coor-
dinates reduces to comparing these algebraic numbers.

RR n° 6298

26 P.M.M. de Castro & F. Cazals & S. Loriot & M. Teillaud

6.3.2 Evaluating the sign of a polynomial

The following is concerned with predicates AK::SignAt,SK::CompareZAtXY_3, SK::CompareYAtXZ_3,
SK::CompareXAtYZ_3 and SK::CompareZAtTheta_3.

We wish to evaluate the sign of a trivariate polynomial of degree at most two at a point
on a sphere. Since the Cartesian coordinates of a point on a sphere are algebraic numbers
of degree two in the same extension, following observation 1, the evaluation of the trivariate
polynomial is also an algebraic number of degree two in the same extension.

6.3.3 Testing equality

The following is concerned with predicate SK::Equal_3.
For objects whose representation is unique, i.e. points and spheres, the test is trivial. For

segments, we test equality of endpoints. For planes and lines, we test the non-independence
of coe�cients of the equations. For circles, we successively test the equality of containing
planes, circle centers and squared radii. For circular arcs, we test the equality of the circles
and that of the endpoints.

6.3.4 Testing inclusion

The following is concerned with predicate SK::HasOn_3.
Consider two objects of the 3D Spherical Kernel, assumed to be topologically closed. We

wish to test whether the �rst one is included into the second one. We examine separately
the case of points and the case of remaining primitives.

The case of points. We wish to test whether a point lies on a sphere, a plane, a line, a
segment, a circle or a circular arc. For a sphere and plane, this operation is equivalent to
the sign evaluation of their associated polynomials using AK::SignAt at the input point.
For a line, this is trivial using either two planes de�ning the line or its parametrization.
For a segment, we compute the signs of the dot products of the vectors involving the point
and the segment endpoints. For a circle, we test if the input point belongs to the plane of
the circle and to the diametrical sphere associated to the circle. For a circular arc we test
whether the input point belongs to the supporting circle �rst, and then check whether it
belongs to the arc itself. For this latter test, denote s, t, c the source, target, and center of
the circular arc and let N stands for the unit normal vector of the positive plane containing
the circle. We suppose that s 6= t else testing inclusion into the associated circle is enough.
A circular arc is such that we go counter clockwise from its source to its target as imposed
by the normal vector N . In addition, for two points p and q on the circle such that p 6= q,
let Spq = Sign(< cp ∧ cq,N >). Notice Spq tells us whether we move from p to q counter
clockwise according to N , following the smallest path. Whenever neither points s, t and c
nor points s, p and c nor points p, t and c are aligned, all possible cases are summarized on
table 4. If c, s, p or c, t, p are collinear, the input point lies on the circular arc i� Sst ≤ 0. If
c, s, t are collinear, the input point lies on the circular arc i� Ssp ≥ 0.

INRIA

cgal 3D Spherical Kernel 27

Table 4 Deciding whether point p belongs to the closed circular arc delimited by s and t.

Sst Ssp Spt SK::HasOn_3

1 1 1 true
1 -1 ±1 false
1 1 -1 false
-1 1 ± 1 true
-1 -1 1 true
-1 -1 -1 false

Other primitives. The test is trivial using SK::Equal_3 for circle or a circular arcs with
respect to a plane, and for a circular arc on a circle. A plane contains a line, i� the normal
vector of the plane and the director vector of the line are orthogonal and the plane contains
(SK::HasOn_3) one point of the line. A line or a plane contains a segment if it contains its
two endpoints. A circle belongs to a sphere S, i� sphere S belongs to the pencil of spheres
de�ned by the diametrical sphere of the circle and its supporting plane.

6.3.5 Testing overlap

The following is concerned with predicate SK::DoOverlap_3.
This predicate, which is only relevant for circular arcs and segments, returns true if two

arcs or two segments overlaps, that is to say if they have more than two points in common.
The test consists of �rst checking whether the circles (lines) associated to the arcs (segments)
are identical, and if so, of checking the position of the endpoints of one arc (segment) with
respect to the other arc using predicate SK::HasOn_3.

6.3.6 Testing intersection

The following is concerned with predicate SK::DoIntersect_3.
In the following, we suppose that the objects handled are di�erent and that they do

not overlap. Similarly to section 6.2.1, we focus on the description of one case per class of
intersection result, the other cases being handled from the base case together with predicate
SK::HasOn_3. The base cases are:
� Plane ∩ Plane 6= ∅ ⇐⇒ Normal vectors are not collinear.
� Plane ∩ Line 6= ∅ ⇐⇒ Normal vector and director vector are not orthogonal.
� Sphere ∩ Line 6= ∅ ⇐⇒ Number of real roots of the polynomial speci�ed in Observation
4 must be greater or equal to one.

� Sphere Si ∩ Sphere Sj 6= ∅ ⇐⇒
(
(ci − cj)2 − r2

i − r2
j

)2 ≤ 4r2
i r2

j .

RR n° 6298

28 P.M.M. de Castro & F. Cazals & S. Loriot & M. Teillaud

6.3.7 Classifying a circle on a reference sphere

The following is concerned with member function of the type representing circles on a ref-
erence
type_of_circle_on_reference_sphere_3().

To classify a circle on the reference sphere, as speci�ed in Def. 1, we intersect the circle
by the plane y = 0:

Observation. 7 A circle is:
�Threaded i� its intersection with the plane y = 0 yields two intersection points with x

coordinates of opposite signs.
�Polar i� its intersection with the plane y = 0 yields two intersection points such that

one has x 6= 0 and one x = 0, or a single intersection point at x = 0 and y = 0.
�Bipolar i� the circle lies in the plane y = 0, or if its intersection with the plane y = 0

yields two intersection points such that x = 0.

6.3.8 Comparing cylindrical coordinates of points on the reference sphere

The following is concerned with predicate SK::CompareTheta_3 and constructor of the class
SK::ThetaRep.

Predicate SK::CompareTheta_3 is available for points represented under the type
SK::CircularArcPointOnReferenceSphere_3 only. The comparison strategy consists of com-
paring tan θ or cot θ based on the Cartesian coordinates of the points. We �rst present the
general principle, and then indicate how to accommodate particular cases i.e. the poles.

Quadrants, tangents and cotangents. Assume the reference sphere is endowed with
cylindrical coordinates �which is most convenient when sweeping the sphere with a rotating
meridian as in section 5. Comparing the values of θ of two points involves inverse trigono-
metric functions and is non trivial. To avoid such calculations, we resort to a decomposition
of the punctured disk x2 + y2 ≤ r2

0 into open half-quadrants and line-segments, as depicted
on Fig. 5. Puncturing the disk corresponds to removing the origin, as poles only project
onto it. As explained in the next paragraph, poles deserve a special treatment. More pre-
cisely, we decompose the punctured disk into 16 cells: eight open half quadrants, and eight
line-segments. Each quadrant is associated an index in the range 1..8 in increasing order,
while the segments are assigned a rational index equal to the average of the two neighbors'
indices. (For the segment between half quadrants 1 and 8 we take 1/2 as a convention.)

To compare the θ values of two points, we �rst assign each point to its cell. Computing
the sign of x and y, we can easily isolate the containing segment or the two candidate
adjacent half quadrants. In this latter case, comparing | x | and | y | yields the solution.

Two points falling in di�erent cells are compared from the cells' indices. Inside a cell,
two points may have the same θ �all points on a ray meet this condition. To check this
condition or �nd the relative ordering of the points, we have tan θ = x/y or cot θ = y/x.
More precisely, as tan θ is not de�ned for θ = π/2 mod π, while cot θ is not so for θ = 0

INRIA

cgal 3D Spherical Kernel 29

mod π, comparison inside two-dimensional cells consists of comparing{
tan θ for cells of index 8, 1, 4, 5,

cot θ for cells of index 2, 3, 6, 7.
(9)

The Cartesian coordinates of a point being algebraic numbers of degree two in the same
extension, so are the ratios x/y and y/x �if de�ned.

Figure 5 Decomposition of the punctured disk x2 + y2 ≤ r2
0 into open half quadrants and

line segments.

| x |>| y |

| x |>| y |

| x |<| y |

| x |<| y |

1

2

3

45

6

7

8

x

y

θ-extremal values for polar and bipolar circles. The comparison strategy based on
the case analysis of (9) consists of comparing tan θ or cot θ based on the Cartesian coordi-
nates, which is valid away from poles but poses a problem at the poles. On the other hand,
the θ-extremal values of polar and bipolar circles have been de�ned in Def. 3.

In order to have a homogeneous comparison method based on Cartesian coordinates
for all critical and intersection points, we associate to each θ-extremal value of a polar or
bipolar circle a point away from the pole, whose x and y are such that tan θ = x/y and/or
cot θ = y/x. For circle C0i, the two points associated to the two θ-extremal values are
p1 = (yi,−xi, 0) and p2 = (−yi, xi, 0). The start and end point of a bipolar circle are such
that the θ value associated to the start point is smaller. For a polar circle, while sweeping
from its start point to its end points, the half-plane de�ning the meridian �as intersection
with S0, encounters the center of the circle.

Intersection points, critical points, and roots of degree two polynomials. Carte-
sian coordinates of intersection points between two circles, as well as critical points are

RR n° 6298

30 P.M.M. de Castro & F. Cazals & S. Loriot & M. Teillaud

algebraic numbers of degree two. As such points usually come into pairs, we explain in the
following how to identify the point of the pair having the smallest θ value for the ordering
just introduced. The case of points falling in di�erent cells or in the same line-segment being
trivial, assume the two points fall in the same quadrant. Let (xF , yF , zF) and (xS , yS , zS) be
two such points. To identify the smallest θ value, we need to compute Sign(yF xS − xF yS).
By observation 4, there exists four rational numbers a, b, c, d such that{

xF = aX + b yF = cX + d, with X algebraic number of degree two

xS = aY + b yS = cY + d, with Y algebraic number of degree two
(10)

Therefore, Sign(yF xS − xF yS) = Sign((bc − ad)(X − Y)). Since X and Y are roots of the
same polynomial, we only have to evaluate Sign(bc− ad).

6.3.9 Comparing circular arcs along a meridian

The following is concerned with predicate SK::CompareZAtTheta_3 involving two θ-monotonic
circular arcs.

Consider a meridian given by a rational half-plane, and assume we want to compare
θ-monotonic circular arcs along this meridian. We proceed in two steps. First, we consider
the plane containing the meridian and select intersection points with circular arcs that are
in the cell of the meridian. Second, the selected intersection points are sorted using their z
coordinates which are algebraic numbers of degree two �cf observation 4.

Notice that the case of a general meridian is not directly covered, since the circle asso-
ciated to such a meridian is not de�ned by a sphere with rational parameters in general.

6.3.10 Sorting circular arcs at a common point

The following is concerned with predicate SK::CompareZToLeft_3.
Given an intersection point p common to two θ-monotonic circular arcs and lying on

meridian Mθ, we wish to �nd the relative position (above, below) of the two arcs to the
left of p, i.e. for the angle value θ − ε with ε arbitrarily small. The two spheres de�ning
the corresponding circles on S0 are denoted Si and Sj . Notice that this predicate is not
de�ned if point p is a pole, and that the associated circles are of any type but bipolar as
no θ-monotonic circular arc is de�ned on such circles. The critical points of a normal circle
decompose it into one upper and one lower circular arcs, while a circular arc on a polar
circle passing by the north (south) pole is considered as a lower (upper) one.

The intersection point is also a critical point. Assume the common point matches
a critical point of at least one of the two circles �the corresponding circle being a normal
one:

Observation. 8 Consider two θ-monotonic circular arcs Ai and Aj sharing a common
point p. Suppose point p is a critical point of the normal circle of Ai. One has:

INRIA

cgal 3D Spherical Kernel 31

� If p is not a critical point for the circle of Aj, then Ai is above (below) Aj if Ai is a
upper (lower) arc of its circle.

� If p is a critical point for the normal circle associated to Aj, then (i) if a circular arc
is an upper arc, it is above one which is a lower arc (ii) if the circular arcs are both upper
(lower) arcs, then the one with largest (smallest) radius is above.

The intersection point is not a critical point. We �rst de�ne tangent vectors at the
common point, provide solutions depending on whether or not the intersection point features
a tangency or not, and conclude with the algebraic complexity analysis.

. Tangents to the circles at point p and their relative position. If the circular arcs are not
tangent at p, ordering them is tantamount to ordering their tangents. We shall denote tk,
k = i, j, the tangent vector associated to circle C0k at point p. Tangents ti and tj are chosen
so as, locally in the tangent space of S0, to point towards increasing values of θ. Because ti
and tj are orthogonal to p, the relative position of the tangents is given by Sign(∆), with

∆ =< ti ∧ tj , p > . (11)

The details are as follows. The tangent to a circle is supported by the direction of the line
intersection of the plane of the circle together with the tangent plane of S0 at p. More
precisely, consider the vectors ni = c0ip and nj = c0jp. For k = i, j the tangent vectors are
de�ned by:
� tk = βkc0k ∧ nk, with βk = −1 (1) if the circular arc where common point lies is an upper
(a lower) one, for a normal or a polar circle.
� tk = αkck ∧ nk with γk = ±1 such that γkck.z > 0, for a threaded circle.

. Case I: circles C0i and C0j are not tangent at p. Whenever ∆ 6= 0, the ordering along
Mθ is as follows:
� If ∆ < 0 (∆ > 0), the arc contributed by C0i is below (above) that contributed by C0j .
See Fig. 6.
. Case II: circles C0i and C0j are tangent at p. Denote pkz the z coordinate of the critical
points of a normal circle C0k. When ∆ = 0, we distinguish two sub-cases:

� If at least one of the two circles is threaded, say C0i:

� if C0j is not threaded, we conclude from the sign of pz − pjz.

� if C0j is also threaded, as threaded circles with centers having the same z coordi-
nate cannot be tangent, we compare the z coordinates of the centers of C0i and
C0j .

� None of the circles is threaded. See Fig. 7 for illustration.

For k = i, j, let rk = r2
0kSign(pz − pkz). Notice rk is always di�erent from 0 because

we suppose p is not a critical point.

RR n° 6298

32 P.M.M. de Castro & F. Cazals & S. Loriot & M. Teillaud

Figure 6 Ordering the circular arcs using the tangents to circles C0i and C0j at p: (a) The
arc of C0i is an upper arc, that of C0j a lower arc; to the left of p, the arc of C0i is below
the arc of C0j (b) The arcs of C0i and C0j are lower arcs; to the left of p, the arc of C0i is
above the arc of C0j

(a) (b)

c0j

c0i C0i

C0j

ni

ti

tj

nj
C0i

C0j

c0j

c0i

ti

tj

ni

nj

p

p

Mθ Mθ

INRIA

cgal 3D Spherical Kernel 33

Figure 7 Ordering about tangency point p; black dots are critical points: (a) rirj < 0 and
ri > 0: C0i is below C0j ; (b) rirj > 0, ri < 0 and ri < rj : C0i is above C0j ; (c) rirj > 0,
ri > 0 and ri < rj : C0i is below C0j ;

(a) (b) (c)

p

C0i

C0j

c0j

c0i

p

C0i

C0j

c0j

c0i

p

C0i

C0j

c0j

c0i

pj

pi p′
i

p′
j

pj

pi p′
i

p′
j

pj pi p′
i

p′
j

� if rirj > 0: if ri < 0 (ri > 0), assuming r0i < r0j , the arc contributed by C0i is
above (below) that contributed by C0j .

� if rirj < 0: if ri > 0 (ri < 0), the arc contributed by C0i is below (above) that
contributed by C0j .

. Algebraic complexity analysis. Let us now focus on the cost of evaluating the relative
position of the two circular arcs.

Case II is easily ruled out, as it relies on sign of pz − pkz, which is an algebraic number
of degree two. Note that if pz − pkz is negative (positive), the circular arc of C0k involved
is a lower (upper) one.

Case I relies on ∆, which is an algebraic number of degree two obtained doing 9 products
10

of algebraic numbers of degree two in the same extension. In the following we show that
Sign(∆) can actually be obtained with at most two products of algebraic numbers of degree
two in the same extension. Recall that the circles C0i and C0j are not bipolar, therefore
the tangent vectors are not in the plane of a meridian. We have the following elementary
observation:

10The vector (dot) product requires 6 (3) products of algebraic numbers of degree two.

RR n° 6298

34 P.M.M. de Castro & F. Cazals & S. Loriot & M. Teillaud

Observation. 9 Let ∆′ = tjz

‖tj‖ −
tiz

‖ti‖ . The sign of ∆ is the same than the sign of ∆′.

From which we conclude as follows:

Observation. 10 The sign of ∆′ can be evaluated using the sign of at most one algebraic
number of degree two obtained using at most two products of two algebraic numbers of degree
two in the same algebraic extension.

Proof. In the following cases, the sign of ∆′ is trivially inferred: tiz = 0 and tjz = 0; tiz = 0
or tjz = 0; tiz and tjz have di�erent signs.

In the following, we suppose the signs of tiz and tjz are identical and non null. Recall
that the center of circle C0k, k = i, j has been derived in Eq. (1). Since c0k and c0kp are
orthogonal, the sine of the angle between the vectors is 1 and we have:
� If tk = ±c0k ∧ c0kp,

t2k = c0k
2︸︷︷︸

α2
kck

2

c0kp2︸ ︷︷ ︸
r2
0k

and tkz = ±αk(ckxpy − ckypx)

with αk a rational number given in proof of observation 3.
� If tk = ±ck ∧ ckp,

t2k = ck
2 c0kp2︸ ︷︷ ︸

r2
0k

and tkz = ±(ckxpy − ckypx)

The sign of ∆′ is the same than that of ‖ti‖tjz − ‖tj‖tiz. But

t2i tj
2
z − t2j ti

2
z = (‖ti‖tjz + ‖tj‖tiz)(‖ti‖tjz − ‖tj‖tiz) (12)

And since we supposed that Sign(tjz) = Sign(tiz), we also have

Sign(∆′) = Sign(tjz)Sign(t2i (tjz)
2 − t2j (tiz)

2). (13)

Since Cartesian coordinates of p are algebraic numbers of degree two in the same exten-
sion, so are tiz and tjz. If tjz and tiz have the same sign, since the square norms of the
tangent vectors are rational numbers we need two products of algebraic numbers of degree
two to compute the squared value of tiz and tjz. �

Remark. 1 A special case of the previous predicate is involved with the initialization of the
vertical ordering of the Bentley-Ottmann algorithm while computing the spherical arrange-
ment of circles. Consider the case of the meridian M0 located at θ = 0. Given a set of
circular arcs intersecting at a point p located on this meridian, evaluations of the sign of the
∆′ need no manipulation of algebraic numbers. Indeed, we know that px > 0 and py = 0.
Using expressions of tkz in the previous proof, we can factorize by px or p2

x and compute the
sign of ∆′ using rational numbers only.

INRIA

cgal 3D Spherical Kernel 35

6.3.11 Locating a point wrt θ-monotonic circular arcs

The following is concerned with predicate SK::CompareZAtTheta_3 for one point and one
θ-monotonic circular arc and more generally with predicate SK::CompareZAtXY_3.

Given a θ-monotonic circular arc and a point p on a meridian Mθ intersecting this circular
arc, we would like to know the position (above, on, below) of point p w.r.t. the circular arc.
To do so, we shall partly rely on the plane supporting the circular arc. We distinguish two
cases.

The arc is associated to a normal circle. A normal circle C0i can be split in two
θ-monotonic circular arcs, a upper and a lower one. A such circle decomposes S0 into two
regions of unequal areas. (Great circles split S0 into regions of equal areas, but such circles
are bipolar or threaded). Given a normal circle C0i, we shall use a predicate stating whether
point p belongs to the cap of least area induced by circle C0i on S0. This predicate consists
of evaluating the sign (with AK::SignAt) of the polynomial expression obtained by plugging
the Cartesian coordinates of point p into the equation of the plane associated to the circle,
using as normal vector c0i. We examine the two following cases:
� If point p lies inside the spherical caps of least area: point p is below the upper circular
arc of C0i and above lower one.
� If not, the position of p is given by the sign of the di�erence of z coordinates of p and of
the critical point of C0i.

The arc is associated to a polar or a threaded circle. The position of p w.r.t. any
arc of such a circle is that of point p w.r.t. the plane of the circle, using as normal vector
u = ±ci such that uz > 0.

Figure 8 Position of point p wrt two normal circles, one threaded circle and one polar
circle. Point p is inside (outside) the spherical caps of smallest area de�ned by C0j (C0i). p
is above circles C0k and C0l

C0k

C0j

c0
p

S0

Mθ

C0i

C0l

RR n° 6298

36 P.M.M. de Castro & F. Cazals & S. Loriot & M. Teillaud

7 Implementation

In this section, we sketch our implementation of the kernel concept developed in this paper.
For a given class and to limit space requirements, the emphasis is on data members. To
make the presentation self-contained, we �rst present C++ prerequisites.

7.1 C++ prerequisites

Generalities. In C++, the keyword typedef allows to create a shortcut for a given type
name. Inside a template class, types provided by the template parameter are accessed using
the typename keyword. In the same way, inside a template class, while instantiating a nested
template type which depends on a template parameter of the class, the keyword template

is used to disambiguate the syntax. Finally, as a general remark, all classes of the 3D
Spherical Kernel are instantiated with the 3D Spherical Kernel itself, so as to access all
features provided by the 3D Spherical Kernel.

Reference counting. Reference counting is a classical strategy used to speed up copies
of complicated objects. The strategy is simple: the object allocated is accompanied by
an integer counting the number of references to that object. The value of this integer is
increased (decreased) when a copy of the object is created (deleted). When the value of
the integer vanishes, the object is de-allocated. This mechanism is implemented in cgal

using the template class CGAL::Handle_for<T>. To make reference counting optional �a
common practice for cgal kernels, we use a mechanism provided by the template class
SK::Handle<T>. This template class provides the SK::Handle<T>::type type, which is either
the template parameter T itself �no reference counting, or the CGAL::Handle_for<T> type
�reference counting. To accommodate both options, the CGAL::get function always returns
the object of type T.

Algebraic numbers. The 3D Spherical Kernel relies on two number types: a �eld number
type �see section 3.2, from the linear kernel �Linear_kernel::FT, and an algebraic number
of degree two type from the algebraic kernel �AK::Root_of_2. This former type �double

for example, may come with a built-in square root function. If not, the square root is
provided by the template class CGAL::Root_of_2<FT>, whose underlying representation is
α + β

√
γ where α, β and γ are of the template type FT. To accommodate both options,

the AK::Root_of_2 is retrieved from the template class CGAL::Root_of_traits<FT>, namely as
CGAL::Root_of_traits<Linear_kernel::FT>::Root_of_2.

7.2 3D Spherical Kernel

. A circle on a sphere is de�ned as the intersection of a sphere and a plane. The corresponding
class thus stores these two primitives. The class corresponding to circle on a reference sphere
inherits from the previous class, so that the reference sphere is retrieved from the data
member of the base class.

INRIA

cgal 3D Spherical Kernel 37

template <class SK>

class Circle_3{

typedef std::pair<typename SK::Sphere_3,typename SK::Plane_3> Rep;

typename SK::template Handle<Rep>::type base;

};

template <class SK>

class Circle_on_reference_sphere_3

:public Circle_3<SK>{

public:

const typename SK::Sphere_3& reference_sphere() const

{return CGAL::get(this->base).first;}

};

. The class used to represent the θ coordinate of a point stores one algebraic number of
degree two for the exact value of tan θ or cot θ, together with an index specifying whether
tan or cot is used �see section 6.3. The index is of type SK::Hq_indices, an enumerated
type.

template <class SK>

class Theta_rep{

typedef std::pair<typename SK::Hq_indices,typename SK::AK::Root_of_2> Rep;

typename SK::template Handle<Rep>::type base;

};

. The class representing a point on a sphere is fully speci�ed by the type of its coordinates,
this type being provided by the algebraic kernel. The class corresponding to points on
a reference sphere inherits from the previous class, and has two additional members: the
reference sphere, and the exact representation of the θ coordinate of the point.

template <class SK>

class Circular_arc_point_3{

typedef typename AK::Root_for_spheres_2_3 Rep;

typename SK::template Handle<Rep>::type base;

};

template <class SK>

class Circular_arc_point_on_reference_sphere_3

:public Circular_arc_point_3<SK>{

typedef std::pair<typename SK::Sphere_3,typename SK::Theta_rep> Expanded_rep;

typename SK::template Handle<Expanded_rep>::type expanded_base;

public:

const typename SK::Sphere_3& reference_sphere() const

{return CGAL::get(expanded_base).first;}

RR n° 6298

38 P.M.M. de Castro & F. Cazals & S. Loriot & M. Teillaud

const typename SK::Theta_rep& theta_rep() const

{return CGAL::get(expanded_base).second;}

};

. The circular arc class stores the circle supporting the arc and the two endpoints. The
circular arc on a reference sphere class inherits from this class, but the types of the circle
and that of the endpoints di�er. This di�erence accounts for the second and third template
parameters of the base class which are not the default ones.

template <class SK,class Circle=typename SK::Circle_3,

class Endpoint=typename SK::Circular_arc_point_3>

class Circular_arc_3{

typedef CGAL::Triple<Circle,Endpoint,Endpoint> Rep;

typename SK::template Handle<Rep>::type base;

};

template <class SK>

class Circular_arc_on_reference_sphere_3

:public Circular_arc_3<SK,typename SK::Circle_on_reference_sphere_3,

typename SK::Circular_arc_point_on_reference_sphere_3>{

typename SK::template Handle<typename SK::Sphere_3>::type ref_sphere;

public:

const typename SK::Sphere_3& reference_sphere() const

{return CGAL::get(ref_sphere);}

};

. The segment class is de�ned by a triple: a line and two endpoints.

template <class SK>

class Line_arc_3{

typedef CGAL::Triple<typename SK::Line_3,typename SK::Circular_arc_point_3,

typename SK::Circular_arc_point_3> Rep;

typename SK::template Handle<Rep>::type base;

};

7.3 Algebraic Kernel

. The class representing equations of planes, of the form ax + by + cz + d = 0, stores the 4
coe�cients in an array. The template parameter determines the number type used for the
coe�cients.

template <class FT>

class Polynomial_1_3{

FT rep[4]; // stores a, b, c, d

};

INRIA

cgal 3D Spherical Kernel 39

. The class representing equations of spheres, of the form (x−a)2+(y−b)2+(z−c)2−R2 = 0,
stores the 4 parameters in an array. The template parameter determines the number type
used for the parameters.

template <class FT>

class Polynomial_for_spheres_2_3{

FT rep[4]; // stores a, b, c, R^2

};

. The algebraic class representing a point on a sphere stores one algebraic number of degree
two per Cartesian coordinate. The template parameter determines the number type on
which are built the algebraic numbers.

template <class FT>

class Root_for_spheres_2_3 {

typename Root_of_traits<FT>::Root_of_2 x_;

typename Root_of_traits<FT>::Root_of_2 y_;

typename Root_of_traits<FT>::Root_of_2 z_;

};

7.4 An example

The following example piece of code checks whether three spheres intersect in two points.

#include <CGAL/Cartesian.h>

#include <CGAL/Algebraic_kernel_for_spheres_2_3.h>

#include <CGAL/Spherical_kernel_3.h>

#include <CGAL/MP_Float.h>

#include <CGAL/Quotient.h>

typedef CGAL::Quotient< CGAL::MP_Float> NT;

typedef CGAL::Cartesian<NT> Linear_k;

typedef CGAL::Algebraic_kernel_for_spheres_2_3<NT> Algebraic_k;

typedef CGAL::Spherical_kernel_3<Linear_k,Algebraic_k> SK;

int main(){

//construction of 3 spheres from their centers and squared radii

SK::Sphere_3 s1(SK::Point_3(0,0,0),2);

SK::Sphere_3 s2(SK::Point_3(0,1,0),1);

SK::Sphere_3 s3(SK::Point_3(1,0,0),3);

SK::Intersect_3 inter;

SK::Compare_xyz_3 cmp;

std::vector< CGAL::Object > intersections;

RR n° 6298

40 P.M.M. de Castro & F. Cazals & S. Loriot & M. Teillaud

inter(s1,s2,s3,std::back_inserter(intersections));

std::pair<SK::Circular_arc_point_3,unsigned> p1,p2;

//unsigned integer indicates multiplicity of intersection point

if (intersections.size() >1){

//as intersection can return several types (points with multiplicity,

//circle,...), CGAL::Object and CGAL::assign are used to recover

//the expected type

if (CGAL::assign(p1,intersections[0]) && CGAL::assign(p2,intersections[1]))

std::cout << "Two different intersection points" << std::endl;

else

std::cout << "Error" << std::endl;

}

//intersection points are sorted lexicographically

CGAL_assertion(cmp(p1.first,p2.first)==CGAL::SMALLER);

return 0;

}

8 Conclusion

High quality geometric code relies on four virtues: robustness, e�ciency, modularity, re-
usability. Although spheres are amongst the most elementary geometric objects, no virtuous
library of essential primitives was available to deal with them. This paper answers this need,
by developing the cgal 3D Spherical Kernel concept, i.e. a concept featuring the basic types
and operations required to deal with spheres, planes, circles, circle arcs and points in 3D.
A clear distinction is made between the algebraic and the geometric aspects on one hand,
and on the concepts of a kernel and its implementation on the other hand. The concept is
accompanied by an implementation. This implementation, together with a generalization
of the Bentley-Ottmann algorithm on a sphere developed in a companion paper, provide
the �rst solution to the problem of computing the exact arrangement of circles on a sphere.
Applications in structural biology to investigate protein-protein and protein-drugs interfaces
are being developed.

Acknowledgments

The authors wish to thank Sylvain Pion for helpful discussions.

INRIA

cgal 3D Spherical Kernel 41

References

[1] R. Abagyan and M. Totrov. Contact area di�erence (cad): A robust measure to evaluate
accuracy of protein models. J. Mol. Biol., 268, 1997.

[2] S. Afraoui, F. Cazals, S. Loriot, P. Tu�éry, and B. Villoutreix. A morphological study
of pockets in protein-drugs complexes. 2007. In preparation.

[3] Oswin Aichholzer, Franz Aurenhammer, Thomas Hackl, Bert Jüttler, Margot
Oberneder, and Zbynek Sir. Computational and structural advantages of circular
boundary representation. In Proc. 10th International Workshop on Algorithms and
Data Structures (WADS), 2007. To appear.

[4] M. V. A. Andrade and J. Stol�. Exact algorithms for circles on the sphere. Internat.
J. Comput. Geom. Appl., 11:267�290, 2001.

[5] K. Bastard, F. Cazals, C. Prevost, and S. Sachdeva. On the selection of best represen-
tative conformers. 2007. In preparation.

[6] J. L. Bentley and T. A. Ottmann. Algorithms for reporting and counting geometric
intersections. IEEE Trans. Comput., C-28(9):643�647, September 1979.

[7] E. Berberich, M. Hemmer, L. Kettner, E. Schömer, and N. Wolpert. An exact, complete
and e�cient implementation for computing planar maps of quadric intersection curves.
Proceedings of the twenty-�rst annual symposium on Computational geometry, pages
99�106, 2005.

[8] Eric Berberich, E� Fogel, Dan Halperin, and Ron Wein. Sweeping and maintaining
two-dimensional arrangements on surfaces. In Proceedings of 23rd European Workshop
on Computational Geometry, pages 223�226, Graz, Austria, March 2007. Technische
Universitaet Graz.

[9] Jean-Daniel Boissonnat and Franco P. Preparata. Robust plane sweep for intersecting
segments. SIAM Journal on Computing, 29:1401�1421, 2000.

[10] Christoph Burnikel, Stefan Funke, Kurt Mehlhorn, Stefan Schirra, and Susanne
Schmitt. A separation bound for real algebraic expressions. In Friedhelm Meyer auf der
Heide, editor, Proc. 9th European Symposium on Algorithms, volume 2161 of Lecture
Notes Comput. Sci., pages 254�265, 2001.

[11] F. Cazals and S. Loriot. Computing the exact arrangement of circles on a sphere,
with applications in structural biology. Research Report 6049, INRIA, 2006. https:

//hal.inria.fr/inria-00118781.

[12] F. Cazals, F. Proust, R. Bahadur, and J. Janin. Revisiting the voronoi description of
protein-protein interfaces. Protein Science, 15(9):2082�2092, 2006.

RR n° 6298

https://hal.inria.fr/inria-00118781
https://hal.inria.fr/inria-00118781

42 P.M.M. de Castro & F. Cazals & S. Loriot & M. Teillaud

[13] Cgal, Computational Geometry Algorithms Library.
http://www.cgal.org.

[14] Bernard Chazelle et al. Application challenges to computational geometry: CG impact
task force report. Technical Report TR-521-96, Princeton Univ., April 1996.

[15] Bernard Chazelle et al. Application challenges to computational geometry: CG impact
task force report. In B. Chazelle, J. E. Goodman, and R. Pollack, editors, Advances
in Discrete and Computational Geometry, volume 223 of Contemporary Mathematics,
pages 407�463. American Mathematical Society, Providence, 1999.

[16] C. Chotia and J. Janin. Principles of protein-protein recognition. Nature, 256:705�708,
1975.

[17] Core Number Library.
http://cs.nyu.edu/exact/core_pages.

[18] Pedro M. M. de Castro, Sylvain Pion, and Monique Teillaud. Exact and e�cient compu-
tations on circles in CGAL. In Abstracts 23rd. European Workshop on Computational
Geometry, pages 219�222. Technische Universität Graz, Austria, 2007. Full version
available as INRIA Research report No 6091, Exact and e�cient computations on circles
in CGAL and applications to VLSI design, https://hal.inria.fr/inria-00123259.

[19] Olivier Devillers, Alexandra Fronville, Bernard Mourrain, and Monique Teillaud. Al-
gebraic methods and arithmetic �ltering for exact predicates on circle arcs. Comput.
Geom. Theory Appl., 22:119�142, 2002.

[20] Scot Drysdale, Günter Rote, and Astrid Sturm. Approximation of an open polygonal
curve with a minimum number of circular arcs. In Proceedings of the 22nd European
Workshop on Computational Geometry (EWCG), pages 25�28, 2006.

[21] H. Edelsbrunner, M. Facello, and J. Liang. On the de�nition and the construction of
pockets in macromolecules. Discrete Appl. Math., 88:83�102, 1998.

[22] H. Edelsbrunner and E. P. Mücke. Three-dimensional alpha shapes. ACM Trans.
Graph., 13(1):43�72, January 1994.

[23] Ioannis Z. Emiris, Athanasios Kakargias, Sylvain Pion, Monique Teillaud, and Elias P.
Tsigaridas. Towards an open curved kernel. In Proc. 20th Annu. ACM Sympos. Comput.
Geom., pages 438�446, 2004.

[24] Exacus, E�cient and Exact Algorithms for Curves and Surfaces.
http://www.mpi-inf.mpg.de/projects/EXACUS.

[25] Andreas Fabri and Sylvain Pion. A generic lazy evaluation scheme for exact geometric
computations. In Proc. 2nd Library-Centric Software Design, 2006.

INRIA

https://hal.inria.fr/inria-00123259

cgal 3D Spherical Kernel 43

[26] E� Fogel and Monique Teillaud. Generic programming and the CGAL library. In Jean-
Daniel Boissonnat and Monique Teillaud, editors, E�ective Computational Geometry
for Curves and Surfaces. Springer-Verlag, Mathematics and Visualization, 2006.

[27] Stefan Funke and Kurt Mehlhorn. Look: A lazy object-oriented kernel for geometric
computation. In Proc. 16th Annu. ACM Sympos. Comput. Geom., pages 156�165, 2000.

[28] D. Gregor, J. Järvi, J. Siek, B. Stroustrup, G. Dos Reis, and A. Lumsdaine. Concepts:
linguistic support for generic programming in C++. Proceedings of the 21st annual
ACM SIGPLAN conference on Object-oriented programming languages, systems, and
applications, pages 291�310, 2006.

[29] Susan Hert, Michael Ho�mann, Lutz Kettner, Sylvain Pion, and Michael Seel. An
adaptable and extensible geometry kernel. In Proc. Workshop on Algorithm Engineer-
ing, volume 2141 of Lecture Notes Comput. Sci., pages 79�90. Springer-Verlag, 2001.

[30] G. Hummer. Hydrophobic force �eld as a molecular alternative to surface-area models.
J. Am. Chem. Soc., 121:6299�6305, 1999.

[31] Lutz Kettner, Kurt Mehlhorn, Sylvain Pion, Stefan Schirra, and Chee Yap. Classroom
examples of robustness problems in geometric computations. In Proc. 12th European
Symposium on Algorithms, volume 3221 of Lecture Notes Comput. Sci., pages 702�713.
Springer-Verlag, 2004.

[32] John Keyser, Tim Culver, Dinesh Manocha, and Shankar Krishnan. MAPC: a library
for e�cient and exact manipulation of algebraic points and curves. In SCG '99: Pro-
ceedings of the �fteenth annual symposium on Computational geometry, pages 360�369,
New York, NY, USA, 1999. ACM Press.

[33] Leda, Library for E�cient Data Types and Algorithms.
http://www.algorithmic-solutions.com/enleda.htm.

[34] C. Li and C. Yap. A new constructive root bound for algebraic expressions. In Proc.
12th ACM-SIAM Symposium on Discrete Algorithms, pages 496�505, 2001.

[35] Chen Li, Sylvain Pion, and Chee Yap. Recent progress in exact geometric computation.
Journal of Logic and Algebraic Programming, 64(1):85�111, July 2005. Special issue on
the practical development of exact real number computation.

[36] Bernard Mourrain, Jean-Pierre Técourt, and Monique Teillaud. On the computation of
an arrangement of quadrics in 3d. Computational Geometry: Theory and Applications,
30:145�164, 2005. Special issue, 19th European Workshop on Computational Geometry.

[37] Sylvain Pion and Monique Teillaud. 2D circular kernel. In CGAL Editorial
Board, editor, CGAL User and Reference Manual. 3.2 and 3.3 edition, 2006 and
2007. http://www.cgal.org/Manual/3.3/doc_html/cgal_manual/packages.html#

Pkg:CircularKernel2.

RR n° 6298

http://www.cgal.org/Manual/3.3/doc_html/cgal_manual/packages.html#Pkg:CircularKernel2
http://www.cgal.org/Manual/3.3/doc_html/cgal_manual/packages.html#Pkg:CircularKernel2

44 P.M.M. de Castro & F. Cazals & S. Loriot & M. Teillaud

[38] G.D. Rose, A.R. Geselowitz, G.J. Lesser, R.H. Lee, and M.H. Zehfus. Hydrophobicity
of amino acid residues in globular proteins. Science, 229:834�8, 1985.

[39] Ron Wein, E� Fogel, Baruch Zukerman, and Dan Halperin. 2D arrangements. In
CGAL Editorial Board, editor, CGAL User and Reference Manual. http://www.cgal.
org/Manual/3.3/doc_html/cgal_manual/packages.html#Pkg:Arrangement2.

[40] C. K. Yap and T. Dubé. The exact computation paradigm. In D.-Z. Du and F. K.
Hwang, editors, Computing in Euclidean Geometry, volume 4 of Lecture Notes Series
on Computing, pages 452�492. World Scienti�c, Singapore, 2nd edition, 1995.

INRIA

http://www.cgal.org/Manual/3.3/doc_html/cgal_manual/packages.html#Pkg:Arrangement2
http://www.cgal.org/Manual/3.3/doc_html/cgal_manual/packages.html#Pkg:Arrangement2

cgal 3D Spherical Kernel 45

Contents

1 Introduction 3

2 Geometric programming and CGAL 4
2.1 CGAL . 4
2.2 Predicates versus Constructions in the Exact Geometric Computation Paradigm

. 5
2.3 CGAL Kernels and Traits Classes . 6

3 Global Software Design 7
3.1 Extensibility of CGAL kernels . 7
3.2 User Interface . 8
3.3 Algebraic kernel . 10
3.4 Communication algebra-geometry . 11

4 Expanding the 3D Spherical Kernel for objects on a reference sphere 12
4.1 Objects on a reference sphere . 12
4.2 User Interface . 14

5 Application to compute exact arrangements of circles on a sphere 15
5.1 Arrangements of circles on a sphere . 15
5.2 Sweeping the sphere using the 3D Spherical Kernel 16

6 Mathematical foundations 18
6.1 Preliminaries and notations . 18
6.2 Constructions . 19

6.2.1 Computing intersections . 19
6.2.2 Computing θ extremal points of a normal circle 21
6.2.3 Decompositions into θ-monotonic circular arcs 25

6.3 Predicates . 25
6.3.1 Comparing Cartesian coordinates of points on 3D circles 25
6.3.2 Evaluating the sign of a polynomial 26
6.3.3 Testing equality . 26
6.3.4 Testing inclusion . 26
6.3.5 Testing overlap . 27
6.3.6 Testing intersection . 27
6.3.7 Classifying a circle on a reference sphere 28
6.3.8 Comparing cylindrical coordinates of points on the reference sphere . 28
6.3.9 Comparing circular arcs along a meridian 30
6.3.10 Sorting circular arcs at a common point 30
6.3.11 Locating a point wrt θ-monotonic circular arcs 35

RR n° 6298

46 P.M.M. de Castro & F. Cazals & S. Loriot & M. Teillaud

7 Implementation 36
7.1 C++ prerequisites . 36
7.2 3D Spherical Kernel . 36
7.3 Algebraic Kernel . 38
7.4 An example . 39

8 Conclusion 40

INRIA

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

	Introduction
	Geometric programming and CGAL
	CGAL
	Predicates versus Constructions in the Exact Geometric Computation Paradigm
	CGAL Kernels and Traits Classes

	Global Software Design
	Extensibility of CGAL kernels
	User Interface
	Algebraic kernel
	Communication algebra-geometry

	Expanding the 3D Spherical Kernel for objects on a reference sphere
	Objects on a reference sphere
	User Interface

	Application to compute exact arrangements of circles on a sphere
	Arrangements of circles on a sphere
	Sweeping the sphere using the 3D Spherical Kernel

	Mathematical foundations
	Preliminaries and notations
	Constructions
	Computing intersections
	Computing extremal points of a normal circle
	Decompositions into -monotonic circular arcs

	Predicates
	Comparing Cartesian coordinates of points on 3D circles
	Evaluating the sign of a polynomial
	Testing equality
	Testing inclusion
	Testing overlap
	Testing intersection
	Classifying a circle on a reference sphere
	Comparing cylindrical coordinates of points on the reference sphere
	Comparing circular arcs along a meridian
	Sorting circular arcs at a common point
	Locating a point wrt -monotonic circular arcs

	Implementation
	C++ prerequisites
	3D Spherical Kernel
	Algebraic Kernel
	An example

	Conclusion

