
HAL Id: inria-00174196
https://hal.inria.fr/inria-00174196

Submitted on 21 Sep 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Algorithm and Implementation of Dissimilarity
Self-Organizing Maps

Brieuc Conan-Guez, Fabrice Rossi, Aïcha El Golli

To cite this version:
Brieuc Conan-Guez, Fabrice Rossi, Aïcha El Golli. Fast Algorithm and Implementation of
Dissimilarity Self-Organizing Maps. Neural Networks, Elsevier, 2006, 19 (6-7), pp.855-863.
�10.1016/j.neunet.2006.05.002�. �inria-00174196�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50360335?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00174196
https://hal.archives-ouvertes.fr


in
ri

a-
00

17
41

96
, v

er
si

on
 1

 -
 2

1 
Se

p 
20

07

Fast Algorithm and Implementation of

Dissimilarity Self-Organizing Maps

Brieuc Conan-Guez a, Fabrice Rossi b,∗, and Aı̈cha El Golli b

aLITA EA3097, Université de Metz, Ile du Saulcy, F-57045 Metz, France

bProjet AxIS, INRIA, Domaine de Voluceau, Rocquencourt, B.P. 105, 78153 Le

Chesnay Cedex, France

∗ Corresponding author.

Email addresses: Brieuc.Conan-Guez@univ-metz.fr (Brieuc Conan-Guez),

Fabrice.Rossi@inria.fr (Fabrice Rossi), Aicha.ElGolli@inria.fr (Aı̈cha El

Golli).



Abstract

In many real world applications, data cannot be accurately represented by vectors.

In those situations, one possible solution is to rely on dissimilarity measures that

enable sensible comparison between observations.

Kohonen’s Self-Organizing Map (SOM) has been adapted to data described only

through their dissimilarity matrix. This algorithm provides both non linear projec-

tion and clustering of non vector data. Unfortunately, the algorithm suffers from

a high cost that makes it quite difficult to use with voluminous data sets. In this

paper, we propose a new algorithm that provides an important reduction of the

theoretical cost of the dissimilarity SOM without changing its outcome (the results

are exactly the same as the ones obtained with the original algorithm). Moreover,

we introduce implementation methods that result in very short running times.

Improvements deduced from the theoretical cost model are validated on simulated

and real world data (a word list clustering problem). We also demonstrate that the

proposed implementation methods reduce by a factor up to 3 the running time of

the fast algorithm over a standard implementation.

Key words: Fast implementation, Self Organizing Map, Clustering, Non linear

projection, Unsupervised learning, Dissimilarity Data, Proximity Data, Pairwise

Data

1 Introduction

The vast majority of currently available data analysis methods are based on

a vector model in which observations are described with a fixed number of

real values, i.e., by vectors from a fixed and finite dimensional vector space.

Unfortunately, many real world data depart strongly from this model. It is

2



quite common for instance to have variable size data. They are natural for

example in online handwriting recognition (Bahlmann and Burkhardt, 2004)

where the representation of a character drawn by the user can vary in length

because of the drawing conditions. Other data, such as texts for instance, are

strongly non numerical and have a complex internal structure: they are very

difficult to represent accurately in a vector space. While a lot of work has

been done to adapt classical data analysis methods to structured data such as

tree and graph (see e.g., Hammer et al., 2004 for neural based unsupervised

processing of structured data and also Hammer and Jain, 2004; Hammer and

Villmann, 2005), as well as to data with varying size, there is still a strong

need for efficient and flexible data analysis methods that can be applied to

any type of data.

A way to design such methods is to rely on one to one comparison between

observations. It is in general possible to define a similarity or a dissimilarity

measure between arbitrary data, as long as comparing them is meaningful.

In general, data analysis algorithms based solely on (dis)similarities between

observations are more complex than their vector counterparts, but they are

universal and can therefore be applied to any kind of data. Moreover, they

allow one to rely on specific (dis)similarities constructed by experts rather

than on a vector representation of the data that induces in general unwanted

distortion in the observations.

Many algorithms have been adapted to use solely dissimilarities between data.

In the clustering field, the k-means algorithm (MacQueen, 1967) has been

adapted to dissimilarity data under the name of Partitioning Around Medoids

(PAM, Kaufman and Rousseeuw, 1987). More recently, approaches based on

deterministic annealing have been used to propose another class of exten-

3



sions of the k-means principle (see Buhmann and Hofmann, 1994; Hofmann

and Buhmann, 1995, 1997). Following the path taken for the k-means, several

adaptation of Kohonen’s Self-Organizing Map (SOM, Kohonen, 1995) to dis-

similarity data have been proposed. Ambroise and Govaert (1996) proposed a

probabilistic formulation of the SOM that can be used directly for dissimilar-

ity data. Deterministic annealing schemes have been also used for the SOM

(Graepel et al., 1998; Graepel and Obermayer, 1999; Seo and Obermayer,

2004). In the present paper, we focus on an adaptation proposed in (Koho-

nen and Somervuo, 1998, 2002), where it was applied successfully to a protein

sequence clustering and visualization problem, as well as to string clustering

problems. This generalization is called the Dissimilarity SOM (DSOM, also

known as the median SOM), and can be considered as a SOM formulation of

the PAM method. Variants of the DSOM were applied to temperature time

series (El Golli et al., 2004a), spectrometric data (El Golli et al., 2004b) and

web usage data (Rossi et al., 2005).

A major drawback of the DSOM is that its running time can be very high,

especially when compared to the standard vector SOM. It is well known that

the SOM algorithm behaves linearly with the number of input data (see, e.g.

Kohonen, 1995). On the contrary, the DSOM behaves quadratically with this

number (see Section 2.2). We propose in this paper several modifications of

the basic algorithm that allow a much faster implementation. The quadratic

nature of the algorithm cannot be avoided, essentially because dissimilarity

data are intrinsically described by a quadratic number of one to one dissim-

ilarities. Nevertheless, the standard DSOM algorithm cost is proportional to

N2M + NM2, where N is the number of observations and M the number of

clusters that the algorithm has to produce, whereas our modifications lead to a

4



cost proportional to N2 +NM2. Moreover, a specific implementation strategy

reduces the actual computation burden even more. An important property

of all our modifications is that the obtained algorithm produces exactly the

same results as the standard DSOM algorithm.

The paper is organized as follows. In section 2 we recall the SOM adaptation

to dissimilarity data and obtain the theoretical cost of the DSOM. In section

3, we describe our proposed new algorithm as well as the implementation

techniques that decrease its running time in practice. Finally we evaluate the

algorithm in section 4. This evaluation validates the theoretical cost model

and shows that the implementation methods reduce the running time. The

evaluation is conducted on simulated data and on real world data (a word list

clustering problem).

2 Self-Organizing Maps for dissimilarity data

2.1 A batch SOM for dissimilarity data

We recall in this section the DSOM principle as proposed in (Kohonen and

Somervuo, 1998, 2002). Let us consider N input data from an arbitrary input

space X , (xi)1≤i≤N . The set of those N data is denoted D. The only available

information on the data set is the dissimilarities between its elements: the

dissimilarity between xi and xk is denoted d(xi,xk). We assume standard

dissimilarity behavior for d, that is: d is symmetric, positive and d(xi,xi) = 0.

As the standard SOM, the DSOM maps input data from an input space to a

low dimensional organized set of M models (or neurons) which are numbered

5



from 1 to M , and arranged via a prior structure (a grid in general). Model j is

associated to an element of D, its prototype, denoted mj (therefore, for each

j, there is i that depends on j, such that mj = xi): this is the first difference

with the standard SOM in which prototypes can take arbitrary values in the

input space.

The prior structure on the models is represented by an undirected graph G =

(V, E) whose vertices are model numbers (i.e., V = {1, . . . , M}). We denote

g(j, k) the length of the shortest path in G from j to k. Given a kernel like

function K, that is a decreasing function from R
+ to R

+, with K(0) = 1

and lims→∞ K(s) = 0, the neighborhood relationship between models j and

k, h(j, k), is defined by h(j, k) = K(g(j, k)). As for the standard SOM, the

kernel is modified during training: at the beginning, the neighborhood is very

broad to allow organization to take place. The kernel sharpens during training

and models become more and more adapted to a small subset of the data.

Given those information, the Dissimilarity SOM algorithm can be defined (see

Algorithm 1).

While some initialization techniques proposed for the standard SOM can be ex-

tended to the case of dissimilarity data (see (Kohonen and Somervuo, 1998)),

we use in this article a simple random choice: M0 is a random subset of the

data set.

After initialization, the algorithm runs for L epochs. One epoch consists in an

affectation phase, in which each input is associated to a model, followed by a

representation phase in which the prototype of each model is updated. The

DSOM is therefore modelled after the batch version of the SOM. As mentioned

above, the neighborhood relationship depends on l: at epoch l, we use hl (see

6



Algorithm 1 The Dissimilarity SOM

1: choose initial values forM0 = (m0
1, . . . ,m

0
M) {Initialization phase}

2: for l = 1 to L do

3: for all i ∈ {1, . . . , N} do {Template for the affectation phase}

4: compute

cl(i) = arg min
j∈{1,...,M}

d(xi,m
l−1
j ). (1)

5: end for

6: for all j ∈ {1, . . . , M} do {Template for the representation phase}

7: compute

ml
j = arg min

m∈D

N∑

i=1

hl(cl(i), j)d(xi,m). (2)

8: end for

9: end for

Equation 2).

At the end of the algorithm, an additional affectation phase can be done to

calculate cl+1(i) for all i and to define M clusters Cl+1
1 , . . . , Cl+1

M with Cl+1
j =

{1 ≤ i ≤ N | cl+1(i) = j}.

It should be noted that in practice, as pointed out in (Kohonen and Somervuo,

1998), the simple affectation phase of Equation 1 induces some difficulties: for

certain types of dissimilarity measures, the optimization problem of Equation

1 has many solutions. A tie breaking rule should be used. In this paper, we

use the affectation method proposed in (Kohonen and Somervuo, 1998). In

short, it consists in using a growing neighborhood around each neuron to

build an affinity of a given observation to the neuron. Details can be found

in (Kohonen and Somervuo, 1998). Other tie-breaking methods have been

7



proposed, for instance in (El Golli et al., 2004b,a). They give similar results

and have the same worst case complexity. However, the method of (Kohonen

and Somervuo, 1998) has a smaller best case complexity.

Algorithm 1 provides a general template. In the rest of this paper, we pro-

vide mostly partial algorithms (called Schemes) that fill the missing parts of

Algorithm 1.

2.2 Algorithmic cost of the DSOM algorithm

For one epoch of the DSOM, there is one affectation phase, followed by one rep-

resentation phase. The affectation phase proposed in (Kohonen and Somervuo,

1998) has a worst case complexity of M2 for one observation and induces there-

fore a total cost of O(NM2) (the best case complexity is O(NM) when the

optimization problem of Equation 1 has only one solution for each observa-

tion).

The major drawback of the DSOM algorithm is the cost induced by the rep-

resentation phase: there is no closed formula for the optimization used in

Equation 2 and some brute force approach must be used. The simple solution

used in (Kohonen and Somervuo, 1998, 2002; El Golli et al., 2004b,a) consists

in an elementary search procedure: each possible value for ml
j is tested (among

N possibilities) by computing the sum
∑N

i=1 hl(cl(i), j)d(xi,m). This method

is called the brute force Scheme (implementation is obvious and therefore is

not given here). The calculation of one sum costs O(N) and there are N sums

to test, for a total cost of O(N2). For the whole representation phase, the total

cost is therefore O(N2M).

8



The total cost for the DSOM for one epoch (with the brute force Scheme

and using the affectation rule of (Kohonen and Somervuo, 1998)) is therefore

O(NM2 + N2M). In general M is much smaller than N and therefore, the

representation phase clearly dominates this cost.

3 A fast implementation

3.1 Related works

A lot of work has been done in order to optimize clustering algorithms in terms

of running time. However, most of those works have two limitations: they are

restricted to vector data and they produce different results from the original

algorithms (see e.g. Kohonen et al., 2000 for this type of optimizations of the

SOM algorithm and Kohonen and Somervuo, 2002 for the DSOM). A review

and a comparison of optimized clustering algorithms for dissimilarity data are

given in (Wei et al., 2003): the four distinct algorithms give different results

on the same data set. While the algorithms try to solve the same problem as

the PAM method (Kaufman and Rousseeuw, 1987), they also give different

results from PAM itself. On the contrary, in this paper, we focus on modifying

the DSOM algorithm without modifying its results. We will therefore avoid

optimization techniques similar to the ones reviewed in (Wei et al., 2003), for

instance the sampling method used in (Kohonen and Somervuo, 2002).

9



3.2 Partial sums

The structure of the optimization problem of Equation 2 can be leverage to

provide a major improvement in complexity. At epoch l and for each model j,

the goal is to find for which k, Sl(j, k) is minimal, where Sl(j, k) is given by

Sl(j, k) =
N∑

i=1

hl(cl(i), j)d(xi,xk). (3)

Those sums can be rewritten as follows

Sl(j, k) =
M∑

u=1

hl(u, j)Dl(u, k), (4)

with

Dl(u, k) =
∑

i∈Cl
u

d(xi,xk). (5)

There are MN Dl(u, k) values, which can be calculated has a whole with

O(N2) operations: calculating one Dl(u, k) costs O(|Cl
u|). Then calculating

all the Dl(u, k) for a fixed u costs O(N |Cl
u|). As

∑M
u=1 |C

l
u| = N , the total

calculation cost is O(N2).

The calculation of one Sl(j, k) using pre-calculated values of the Dl(u, k) can

therefore be done in O(M) operations. The representation phase for model j

needs the values of Sl(j, k) for all k and the total cost is therefore O(NM).

As the Dl(u, k) can be calculated once for all models, the total cost of the

representation phase is O(N2 + NM2), whereas it was O(N2M) for the brute

force scheme. As M < N in almost all situations, this approach reduces the

cost of the DSOM. Scheme 1 gives the proposed solution.

10



Scheme 1 An efficient scheme for the representation phase

1: for all u ∈ {1, . . . , M} do {Calculation of the Dl(u, k)}

2: for all k ∈ {1, . . . , N} do

3: Dl(u, k)← 0

4: for all i ∈ Cl
u do

5: Dl(u, k)← Dl(u, k) + d(xi,xk)

6: end for

7: end for

8: end for

9: for all j ∈ {1, . . . , M} do {Representation phase}

10: δ ←∞

11: for all k ∈ {1, . . . , N} do {outer loop}

12: δk ← hl(1, j)Dl(1, k)

13: for all u ∈ {1, . . . , M} do {inner loop}

14: δk ← δk + hl(u, j)Dl(u, k)

15: end for

16: if δk < δ then

17: δ ← δk

18: ml
j ← xk

19: end if

20: end for

21: end for

3.3 Early stopping

While Scheme 1 is much more efficient in practice than the brute force Scheme,

additional optimizations are available. The simplest one consists in using an

early stopping strategy for the inner loop (line 13 of Scheme 1): the idea is

11



to move into the loop an adapted version of the test that starts on line 16

(of Scheme 1). It is pointless to calculate the exact value of Sl(j, k) (i.e., δk

in the algorithm) if we already know for sure that this value is higher than a

previously calculated one. This optimization does not reduce the worst case

complexity of the algorithm and has an overhead as it involves an additional

comparison in the inner loop. It will therefore be only useful when M is high

and when the data induce frequent early stopping. In order to favor early

stopping, both the inner loop and the outer loop should be ordered. During the

inner loop, the best order would be to sum first high values of hl(u, j)Dl(u, k)

so as to increase δk as fast as possible. For the outer loop, the best order

would be to start with low values of Sl(j, k) (i.e., with good candidates for the

prototype of model j): a small value of δ will stop inner loops earlier than a

high value.

In practice however, computing optimal evaluation orders will induce an un-

acceptable overhead. We rely therefore on “good” evaluation orders induced

by the DSOM itself. The standard definition of hl implies that hl(u, j) is small

when model u and model j are far away in the graph. It is therefore reasonable

to order the inner loop on u in decreasing order with respect to hl(u, j), that

is in increasing order with respect to the graph distance between u and j,

g(u, j).

For the outer loop, we leverage the organization properties of the DSOM:

observations are affected to the cluster whose prototype is close to them.

Therefore, the a priori quality of an observation xk as a prototype for model

j is roughly the inverse of the distance between j and the cluster of xk in the

prior structure. Moreover, the prototype obtained during the previous epoch

should also be a very good candidate for the current epoch.

12



To define precisely evaluation orders, let us choose, for all j ∈ {1, . . . , M}, ζj ,

a permutation of {1, . . . , M} such that for all u ∈ {1, . . . , M−1}, g(ζj(u), j) ≥

g(ζj(u + 1), j). Scheme 2 is constructed with this permutation. It should be

noted that this Scheme gives exactly the same numerical results as Scheme 1.

Scheme 2 Neighborhood based ordered representation phase

1: Calculation of the Dl(u, k) {See lines 1–8 of Scheme 1}

2: for all j ∈ {1, . . . , M} do {Representation phase}

3: δ ←∞

4: for v = 1 to M do {outer cluster loop}

5: for all k ∈ Cl
ζj(v) do {outer candidate loop}

6: δk ← 0

7: for u = 1 to M do {inner loop}

8: δk ← δk + hl(ζj(u), j)Dl(ζj(u), k)

9: if δk > δ then {early stopping}

10: break inner loop

11: end if

12: end for

13: if δk < δ then

14: δ ← δk

15: ml
j ← xk

16: end if

17: end for

18: end for

19: put ml
j at the first position in its cluster

20: end for

Line 19 prepares the next epoch by moving the prototype at the first position

in its cluster: this prototype will be tested first in the next epoch. Except for

13



this special case, we don’t use any specific order inside each cluster.

3.4 Reusing earlier values

Another source of optimizations comes from the iterative nature of the DSOM

algorithm: when the DSOM algorithm proceeds, clusters tend to stabilize and

Dl+1(u, k) will be equal to Dl(u, k) for many pairs (u, k).

This stabilization property can be used to reduce the cost of the first phase of

Scheme 1. During the affectation phase, we simply have to monitor whether the

clusters are modified. If Cl−1
u = Cl

u, then for all k ∈ {1, . . . , N}, Dl−1(u, k) =

Dl(u, k). This method has a very low overhead: it only adds a few additional

tests in the affectation phase (O(N) additional operations) and in the pre-

calculation phase (O(M) additional operations). However this block update

method has a very coarse grain. Indeed, a full calculation of Dl(u, k) for two

values of u (i.e., two clusters) can be triggered by the modification of the

cluster of an unique observation. It is therefore tempting to look for a finer

grain solution. Let us consider the case where clusters don’t change between

epoch l − 1 and epoch l, except for one observation, xi. More precisely, we

have cl−1(k) = cl(k) for all k 6= i. Then for all u different from cl−1(i) and cl(i),

Dl(u, k) = Dl−1(u, k) (for all k). Moreover, it appears clearly from Equation

5, that for all k

Dl(cl−1(i), k)= Dl−1(cl−1(i), k)− d(xi,xk) (6)

Dl(cl(i), k)= Dl−1(cl(i), k) + d(xi,xk) (7)

Applying those updating formulae induces 2N additions and N affectations

(loop counter is not taken into account). If several observations are moving

14



from their “old” cluster to a new one, updating operations can be performed

for each of them. In the extreme case where all observations have modified

clusters, the total number of additions would be 2N2 (associated to N2 affec-

tations). The pre-calculation phase of algorithm 1 has a smaller cost (N2 ad-

ditions and N2 affectations). This means that below approximately N
2

cluster

modifications, the update approach is more efficient than the full calculation

approach for the Dl(u, k) sums.

In order to benefit from both approaches, we use a hybrid algorithm (Algo-

rithm 2). This algorithm chooses dynamically the update method by counting

the number of observations for which the affectation result has changed. If

this number is above a specified threshold proportional to N , the block up-

date method is used. If the number fails below the threshold, the fine grain

method is used.

4 Evaluation of the proposed optimizations

4.1 Methodology

The algorithms have been implemented in Java and tested with the runtime

provided by Sun (JDK 1.5, build 1.5.0_04-b05). Programs have been studied

on a workstation equipped with a 3.00 GHz Pentium IV (Hyperthreaded) with

512Mo of main memory, running the GNU/Linux operating system (kernel

version 2.6.11). The Java runtime was set in server mode in order to activate

complex code optimization and to reduce Java overheads. For each algorithm,

the Java Virtual Machine (JVM) is started and the dissimilarity matrix is

loaded. Then, the algorithm is run to completion once. The timing of this run

15

1.5.0_04-b05


Algorithm 2 DSOM with memory

1: Initialization {See line 1 of Algorithm 1}

2: c0(i) ← −1 for all i ∈ {1, . . . , N} {this value triggers a full calculation of

the Dl(u, k) during the first epoch}

3: for l = 1 to L do

4: vu ← true for all u ∈ {1, . . . , M} {Clusters have not changed yet}

5: nb switch← 0

6: for all i ∈ {1, . . . , N} do {Affectation phase}

7: compute cl(i) with the method of (Kohonen and Somervuo, 1998)

{Any other affectation method can be used}

8: if cl(i) 6= cl−1(i) then

9: nb switch← nb switch + 1

10: vcl−1(i) ← false {cluster cl−1(i) has been modified}

11: vcl(i) ← false {cluster cl(i) has been modified}

12: end if

13: end for

14: if nb switch ≥ N/ratio then {Block update}

15: for all u ∈ {1, . . . , M} do {Calculation of the Dl(u, k)}

16: if vu is false then {New values must be calculated}

17: for all k ∈ {1, . . . , N} do

18: Dl(u, k)←
∑

i∈Cl
u
d(xi,xk)

19: end for

20: else {Old values can be reused}

21: for all k ∈ {1, . . . , N} do

22: Dl(u, k)← Dl−1(u, k)

23: end for

24: end if

25: end for

26: else {Individual update}

27: for all i ∈ {1, . . . , N} do

28: if cl(i) 6= cl−1(i) then

29: for all k ∈ {1, . . . , N} do

30: Dl(cl−1(i), k)← Dl(cl−1(i), k)− d(xi,xk)

31: Dl(cl(i), k)← Dl(cl(i), k) + d(xi,xk)

32: end for

33: end if

34: end for

35: end if

36: Representation phase {See Schemes 1 and 2}

37: end for

16



is not taken into account as the JVM implements just in time compilation.

After completion of this first run and in the same JVM, ten subsequent exe-

cutions of the algorithm are done and their running time are averaged. The

reported figures are the corresponding average running time (on an otherwise

idle workstation) or ratio between reference running time and studied running

time. We do not report the standard deviation of the running times as it is

very small compared to the mean (the ratio between the standard deviation

and the mean is smaller than 1.52 10−3 in 90% of the experiments, with a

maximum value of 7.85 10−2). This experimental setting was used in order

to minimize the influence of the operating system and of the implementation

language.

4.2 Algorithms

We have proposed several algorithms and several schemes for the affectation

phase. We have decided to test the combinations given in Table 1. We always

used the affectation method of (Kohonen and Somervuo, 1998).

4.3 Artificial data

4.3.1 Data and reference performances

The proposed optimized algorithms have been evaluated on a simple bench-

mark. It consists in a set of N vectors in R
2 chosen randomly and uniformly in

the unit square. A DSOM with a hexagonal grid with M = m×m models is

applied to those data considered with the square euclidean metric. We always

used L = 100 epochs and a Gaussian kernel for the neighborhood function.

17



Name Algorithm Representation Scheme

Brute force DSOM 1 brute force

Partial sum DSOM 1 1

Early stopping DSOM 1 2

DSOM with memory 2 1

Fast DSOM 2 2

Table 1

Evaluated algorithms

We report first some reference performances obtained with the brute force

DSOM (Algorithm 1 with the brute force Scheme). We have tested five values

for N the number of observations, 500, 1 000, 1 500, 2 000 and 3 000. We tested

four different sizes for the grid, M = 49 = 7 × 7, M = 100 = 10 × 10,

M = 225 = 15× 15 and M = 400 = 20× 20. To avoid too small clusters, high

values of M were used only with high values of N . We report those reference

performances in seconds in Table 2 (empty cells correspond to meaningless

situations where M is too high relatively to N).

The obtained values are compatible with the cost model. A least square re-

gression model for the running time T of the form αN2M is quite accurate

(the normalized mean square error, NMSE, i.e. the mean square error of the

model divided by the variance of T , is smaller than 0.016). However, because

of the large differences between running times, the model is dominated by the

high values and is not very accurate for small values. A simple logarithmic

model (log T = α log N + β log M + γ) gives a more accurate prediction for

smaller values (the NMSE is smaller than 0.0072). In this case, α ≃ 2.37 and

18



N (data size)

M (number of models)

500 1 000 1 500 2 000 3 000

49 = 7× 7 11.4 53.5 135.4 261.6 865.3

100 = 10× 10 24.7 115 283.4 557 1757.0

225 = 15× 15 313.7 806.6 1594.8 4455.5

400 = 20× 20 1336.9 2525.2 7151.8

Table 2

Running time in seconds of the brute force DSOM algorithm

500 1000 1500 2000 2500 3000

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

Brute force DSOM

N

R
un

ni
ng

 ti
m

e

M=49

M=100

M=225

M=400

Fig. 1. Running time for the brute force DSOM: solid circles are actual measure-

ments, while plus signs and lines are estimation from the log-regression model

β ≃ 1.08 (see Figure 1). The real complexity is therefore growing quicker than

N2M . This is a consequence of the hierarchical structure of the memory of

modern computers (a slow main memory associated to several levels of faster

19



cache memory). As the dissimilarity matrix does not fit into the cache mem-

ory when N is big, the calculation relies on the main memory, which is slower

than the cache. When N is small, the computation model used to derive the

N2M cost is valid. When N is big enough, the model is too simplistic and real

performances are worse than expected.

500 1000 1500 2000 2500 3000

0
50

10
0

15
0

20
0

25
0

Partial Sum DSOM

N

R
un

ni
ng

 ti
m

e

M=49

M=100

M=225

M=400

Fig. 2. Running time for the partial sum DSOM: solid circles are actual measure-

ments, while plus signs and lines are estimation from the regression model

The other reference performances correspond to the partial sum DSOM (Algo-

rithm 1 with Scheme 1) and are summarized in Table 3. Improvements over the

brute force DSOM are quite impressive. The running time T is correctly mod-

eled by δN2 + τNM2 (the NMSE is smaller than 0.002, see Figure 2), where

the ratio between δ and τ is approximately 3.8 (this version of the DSOM does

not suffer too much from the hierarchical structure of the memory). According

to the NαMβ model established above for the brute force algorithm, the ratio

between the running times should be proportional to NαMβ

3.8N2+NM2 , something

20



that is verified easily on the data.

N (data size)

M (number of models)

500 1 000 1 500 2 000 3 000

49 = 7× 7 0.8 2.3 4.8 8.5 22.5

100 = 10 × 10 2.4 5.6 9.8 15.3 32.8

225 = 15 × 15 30.4 46.4 63.3 105.3

400 = 20 × 20 136.1 179.1 264.6

Table 3

Running time of the partial sum DSOM algorithm

Experiments with a bigger number of models show as expected less improve-

ment over the brute force DSOM algorithm, simply because the cost of the

representation part in Scheme 1, O(NM2), has a more important role when

M increases and the algorithm is clearly behaving quadratically with M for a

fixed value of N .

Those reference simulations show that the theoretical cost model is accurate

enough to predict the very important speed up. They also show that the

representation Scheme 1, based on partial sum, should replace the brute force

Scheme, in all applications, except the extreme situation in which M is close

to N .

4.3.2 Early stopping

We review the speed up provided by the early stopping Scheme 2 to the partial

sum DSOM. The performances are reported as the ratio between the running

time of the partial sum algorithm and the running time of the early stopping

21



algorithm.

Table 4 summarizes the results obtained by Algorithm 1 used with Scheme

2. As expected, the improvements appear with high values of M . Moreover,

the early stopping has only an effect on the representation phase whose cost

is O(NM2). If this term is dominated by the pre-calculation phase (O(N2))

the improvement will remain unnoticed. This is why in Table 4 the speed up

is roughly increasing with M and decreasing with N . While in some extreme

cases, that is when M is low compared to N (e.g., N = 2 000 and M = 49) the

ordering might be less efficient than the simple early stopping, high values of

M show very good behavior. It should be noted that while this is also observed

for the real world data, it might happen in practice for the overhead of the

early stopping to be higher than reported in those experiments.

N (data size)

M (number of models)

500 1 000 1 500 2 000 3 000

49 = 7× 7 1.14 1.05 1 0.97 0.98

100 = 10× 10 1.41 1.33 1.23 1.15 1.08

225 = 15× 15 2.27 2.13 2 1.78

400 = 20× 20 2.74 2.75 2.48

Table 4

Improvement induced by early stopping with ordering

4.3.3 Reusing earlier values

The early stopping approach studied in the previous section reduces the ef-

fective cost of the representation phase (whose maximal cost is O(NM2)). On

22



the contrary, the memorization reduces the cost of the pre-calculation phase

(maximum cost of O(N2)). Results presented in the present section show that

it is possible to combine both cost reductions.

As explained in section 3.4, the behavior of Algorithm 2 depends on the thresh-

old that dictates when to use the block update or the fine grain update. We

have tested different values of the ratio parameter used in Algorithm 2, from 2

(which gives the theoretical threshold of N
2
) to 9 (threshold of N

9
). The running

time depends on the chosen value, but also on N and M . It is therefore dif-

ficult to choose an optimal universal value, but the variability of the running

times is quite small for fixed values of N and M , especially for high values of

N and M . For M = 3 000 and M = 400, for instance, the running time of the

DSOM with memory varies between 246.3 and 258.5 seconds when ratio varies

in {2, 3, . . . , 9}. Our tests lead us to choose a ratio of 7 for all the experiments

but this provides only a rough guideline.

Table 5 summarizes improvement factors obtained by the DSOM with memory

(Algorithm 2 with affectation Scheme 1 that does not use early stopping). As

expected, the improvement increases with N as the memorization algorithm

reduces the actual cost of the O(N2) phase. The efficiency of the algorithm

decreases with M for two reasons. First point, the representation phase is

not improved by the memorization algorithm and becomes more and more

important in the global cost. Second point, M corresponds to the number of

available clusters: a big number of clusters allows more cluster modifications

during the algorithm and therefore reduces memorization opportunities.

Table 6 summarizes improvement factors obtained by using the Fast DSOM

which consists in Algorithm 2 (Memory DSOM) with the ordered early stop-

23



N (data size)

M (number of models)

500 1 000 1 500 2 000 3 000

49 = 7× 7 1.6 1.92 2.09 2.02 2.37

100 = 10× 10 1.2 1.19 1.26 1.31 1.53

225 = 15× 15 1.18 1.19 1.21 1.26

400 = 20× 20 1.08 1.06 1.06

Table 5

Improvement induced by memorization

ping Scheme 2. Again, results reflect the theoretical expectation. Indeed, im-

provements are in general much better than those reported in Table 5, es-

pecially for large values of M . They are also better than results reported in

Table 4. This means that the Fast DSOM is able to combine improvements

from both memorization and early stopping.

N (data size)

M (number of models)

500 1 000 1 500 2 000 3 000

49 = 7× 7 1.6 1.92 2 2.02 2.39

100 = 10× 10 1.85 1.81 1.66 1.65 1.83

225 = 15× 15 2.87 2.67 2.57 2.43

400 = 20× 20 3.04 3.2 2.89

Table 6

Improvement induced by memorization and ordered early stopping

The running times of the Fast DSOM algorithm are in fact compatible with

a real world usage for moderate data size. Running the Fast DSOM on 3 000

24



observations with a 20× 20 hexagonal grid takes less than 92 seconds on the

chosen hardware. The brute force DSOM algorithm needs more than 7 150

seconds (almost two hours) to obtain exactly the same result. The partial

sum DSOM needs approximately 264 seconds on the same data.

4.4 Real world data

To evaluate the proposed algorithm on real world data, we have chosen a sim-

ple benchmark: clustering of a small English word list. We used the SCOWL

word lists (Atkinson, 2004). The smallest list in this collection corresponds to

4 946 very common English words. After removing plural forms and possessive

forms, the word list reduces to 3 200 words. This is already a high value for

the DSOM algorithm, at least for its basic implementation. A stemming pro-

cedure can be applied to the word list to reduce it even more. We have used

the Porter stemming algorithm 1 (Porter, 1980) and obtained this way 2 277

stemmed words.

Words are compared with a normalized version of the Levenshtein distance

(Levenshtein, 1966), also called the string edit distance. The distance between

two strings a and b is obtained as the length of the minimum series of elemen-

tary transformation operations that transform a into b. Allowed operations are

replacements (replace one character by another), insertion and suppression (in

our experiments, the three operations have the same cost). A drawback of this

distance is that it is not very adapted to collection of words that are not uni-

form in term of length. Indeed the distance between “a” and “b” is the same

1 We have used the Java implementation provided by Dr. Martin Porter at http:

//www.tartarus.org/~martin/PorterStemmer/.

25

http://www.tartarus.org/~martin/PorterStemmer/
http://www.tartarus.org/~martin/PorterStemmer/


than the one between “love” and “lover”. We have therefore used a normal-

ized version in which the standard string edit distance between two strings is

divided by the length of the longest string.

We used the DSOM algorithm with four different hexagonal grids, with sizes

M = 49 = 7 × 7, M = 100 = 10 × 10, M = 169 = 13 × 13 and M = 225 =

15× 15 (bigger grids lead to a lot of empty clusters and to bad quantization).

We used L = 100 epochs and a Gaussian kernel for the neighborhood function.

Tables 7 and 8 report the running time in second for the brute force DSOM

algorithm, for the partial sum DSOM and for the Fast DSOM.

Algorithm M = 49 M = 100 M = 169 M = 225

Brute force DSOM 363.1 821 1456.6 1875.6

Partial sum DSOM 10.6 18.4 45.6 66.9

Fast DSOM 5.6 13.9 29.2 44.1

Table 7

Running time for 2277 stemmed English word list

Algorithm M = 49 M = 100 M = 169 M = 225

Brute force DSOM 981.8 2114.3 3739.2 4737.2

Partial sum DSOM 26.1 38.8 74.3 103.7

Fast DSOM 14.2 29.2 49.7 69.5

Table 8

Running time for 3 200 English word list

The obtained timings are both consistent with the theoretical model and with

results obtained in the previous section with artificial data. The exponential

26



model NαMβ given in section 4.3.1 gives acceptable prediction for the running

time of the brute force DSOM (NMSE is smaller than 0.014). The model

δN2 + τNM2 proposed in the same section gives also acceptable prediction

for the partial sum DSOM running times (NMSE is 0.010).

However, the improvements of the Fast DSOM over the Partial sum DSOM

are not as important as with the artificial data (the improvement factor is

between 1.3 and 1.9), mostly because the effect of the early stopping are

reduced: despite the ordering, early stopping does not happen as frequently

as for the artificial data set. Nevertheless, it still appears clearly that the Fast

DSOM algorithm should always be used in practice, especially because the

results are strictly identical to those obtained with the brute force DSOM.

5 Conclusion

We have proposed in this paper a new implementation method for the DSOM,

an adaptation of Kohonen’s Self Organizing Map to dissimilarity data. The

cost of an epoch of the standard DSOM algorithm is proportional to N2M +

NM2, where N is the number of observations and M the number of models.

For our algorithm, the cost of an epoch is proportional to N2 + NM2. As

M is in general much smaller than N , this induces a strong reduction in

the running time of the algorithm. Moreover, we have introduced additional

optimizations that reduce the actual cost of the algorithm both for the N2 part

(a memorization method) and for the NM2 part (an early stopping strategy

associated to a specific ordering of the calculation).

We have validated the proposed implementation on both artificial and real

27



world data. Experiments allowed us to verify the adequacy of the theoretical

model for describing the behavior of the algorithm. They also showed that the

additional optimizations introduce no overhead and divide the actual running

time by up to 3, under favorable conditions.

The reduction in running time induced by all the proposed modifications are

so important that they permits to use the DSOM algorithm with a large num-

ber of observations on current personal computers. For a data set with 3 000

observations, the algorithm can converge in less than two minutes, whereas

the basic implementation of the DSOM would run for almost two hours. More-

over, the proposed optimizations don’t modify at all the results produced by

the algorithm which are strictly identical to the ones that would be obtained

with the basic DSOM implementation.

Acknowledgements

The authors thank the anonymous referees for their valuable suggestions that

helped to improve this paper.

References

Ambroise, C., Govaert, G., March 1996. Analyzing dissimilarity matrices via

Kohonen maps. In: Proceedings of 5th Conference of the International Fed-

eration of Classification Societies (IFCS 1996). Vol. 2. Kobe (Japan), pp.

96–99.

Atkinson, K., August 2004. Spell checking oriented word lists (SCOWL).

Available at URL http://wordlist.sourceforge.net/, revision 6.

28

http://wordlist.sourceforge.net/


Bahlmann, C., Burkhardt, H., 2004. The writer independent online handwrit-

ing recognition system frog on hand and cluster generative statistical dy-

namic time warping. IEEE Transactions on Pattern Analysis and Machine

Intelligence 26 (3), 299–310.

Buhmann, J. M., Hofmann, T., 1994. A maximum entropy approach to pair-

wise data clustering. In: Proceedings of the International Conference on

Pattern Recognition. Vol. II. IEEE Computer Society Press, Hebrew Uni-

versity, Jerusalem (Israel), pp. 207–212.

El Golli, A., Conan-Guez, B., Rossi, F., November 2004a. Self organizing map

and symbolic data. Journal of Symbolic Data Analysis 2 (1).

El Golli, A., Conan-Guez, B., Rossi, F., July 2004b. A self organizing map for

dissimilarity data. In: Banks, D., House, L., McMorris, F. R., Arabie, P.,

Gaul, W. (Eds.), Classification, Clustering, and Data Mining Applications

(Proceedings of IFCS 2004). IFCS, Springer, Chicago, Illinois (USA), pp.

61–68.

Graepel, T., Burger, M., Obermayer, K., November 1998. Self-organizing

maps: Generalizations and new optimization techniques. Neurocomputing

21, 173–190.

Graepel, T., Obermayer, K., 1999. A stochastic self-organizing map for prox-

imity data. Neural Computation 11 (1), 139–155.

Hammer, B., A., M., Strickert, M., Sperduti, A., 2004. A general framework

for unsupervised processing of structured data. Neurocomputing (57), 3–35.

Hammer, B., Jain, B. J., April 2004. Neural methods for non-standard data.

In: Proceedings of ESANN 2004. Bruges, Belgium, pp. 281–292.

Hammer, B., Villmann, T., April 2005. Classification using non standard met-

rics. In: Proceedings of ESANN 2005. Bruges, Belgium, pp. 303–316.

Hofmann, T., Buhmann, J. M., 1995. Hierarchical pairwise data clustering by

29



mean-field annealing. In: Proceedings of the International Conference on

Artificial Neural Networks (ICANN’95). Springer, pp. 197–202.

Hofmann, T., Buhmann, J. M., January 1997. Pairwise data clustering by de-

terministic annealing. IEEE Transactions on Pattern Analysis and Machine

Intelligence 19 (1), 1–14.

Kaufman, L., Rousseeuw, P. J., 1987. Clustering by means of medoids. In:

Dodge, Y. (Ed.), Statistical Data Analysis Based on the L1-Norm and Re-

lated Methods. North-Holland, pp. 405–416.

Kohonen, T., 1995. Self-Organizing Maps, 3rd Edition. Vol. 30 of Springer

Series in Information Sciences. Springer, last edition published in 2001.

Kohonen, T., Kaski, S., Lagus, K., Salöjarvi, J., Honkela, J., Paatero, V.,

Saarela, A., May 2000. Self organization of a massive text document collec-

tion. IEEE Transactions on Neural Networks 11 (3), 574–585.

Kohonen, T., Somervuo, P. J., 1998. Self-organizing maps of symbol strings.

Neurocomputing 21, 19–30.

Kohonen, T., Somervuo, P. J., 2002. How to make large self-organizing maps

for nonvectorial data. Neural Networks 15 (8), 945–952.

Levenshtein, V. I., 1966. Binary codes capable of correcting deletions, inser-

tions and reversals. Sov. Phys. Dokl. 6, 707–710.

MacQueen, J. B., 1967. Some methods for classification and analysis of multi-

variate observations. In: Proceedings of 5-th Berkeley Symposium on Math-

ematical Statistics and Probability. University of California Press, Berkeley,

USA, pp. 281–297.

Porter, M. F., 1980. An algorithm for suffix stripping. Program 14 (3), 130–

137.

Rossi, F., El Golli, A., Lechevallier, Y., April 2005. Usage guided clustering of

web pages with the median self organizing map. In: Proceedings of XIIIth

30



European Symposium on Artificial Neural Networks (ESANN 2005). Bruges

(Belgium), pp. 351–356.

Seo, S., Obermayer, K., October–November 2004. Self-organizing maps and

clustering methods for matrix data. Neural Networks 17 (8–9), 1211–1229.

Wei, C.-P., Lee, Y.-H., Hsu, C.-M., May 2003. Empirical comparison of fast

partitioning-based clustering algorithms for large data sets. Expert Systems

with Application 24 (4), 353–363.

31


