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Mieux comprendre la decomposition de la matrice

d’homographie pour l’asservissement visuel

Résumé : Le dplacement d’une camra calibre peut tre estim partir de deux images d’un
objet planaire en dcomposant une matrice d’homographie. L’objectif de ce rapport de
recherche est de proposer une nouvelle mthode pour rsoudre le problme de la dcomposition
de l’homographie. Cette nouvelle mthode donne une expression analytique des solutions du
problme au lieu des solutions numriques classiques. Finalement, nous obtenons explicitement
le vecteur de translation, la matrice de rotation et la normale au plan exprims en fonction des
lments de la matrice d’homographie. Le principal avantage de cette mthode est qu’elle aide
a mieux comprendre le problme de la dcomposition. En particulier, elle permet d’obtenir
analytiquement les relations entre les solution possibles. Donc, des nouveaux schmas de
commande rfrence vision peuvent tre conus. Par exemple, le mthodes d’asservissement
visuel proposes dans ce rapport combinent les deux solutions de la dcomposition (une seule
des deux est la vraie solution) en supposant qu’il ne pas possible de distinguer a priori quelle
est la bonne solution.

Mots-clés : Asservissement visuel, objets plans, homographie, dcomposition, erreurs de
calibration de la camra, reconstruction Euclidienne
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1 Introduction

Several methods for vision-based robot control need an estimation of the camera displace-
ment (i.e. rotation and translation) between two views of an object [3, 4, 6, 5]. When the
object is a plane, the camera displacement can be extracted (assuming that the intrinsic
camera parameters are known) from the homography matrix that can be measured from two
views. This process is called homography decomposition. The standard algorithms for ho-
mography decomposition obtain numerical solutions using the singular value decomposition
of the matrix [1, 11]. It is shown that in the general case there are two possible solutions to
the homography decomposition. This numerical decomposition has been sufficient for many
computer and robot vision applications. However, when dealing with robot control applica-
tions, an analytical procedure to solve the decomposition problem would be preferable (i.e.
analytical expressions for the computation of the camera displacement directly in terms of
the components of the homography matrix). Indeed, the analytical decomposition allows
us the analytical study of the variations of the estimated camera pose in the presence of
camera calibration errors. Thus, we can obtain insights on the robustness of vision-based
control laws.

The aim of this document is to propose a new method for solving the homography
decomposition problem. This new method provides analytical expressions for the solutions
of the problem, instead of the traditional numerical procedures. The main advantage of this
method is that it will provide a deeper understanding on the homography decomposition
problem. For instance, it allows to obtain the relations among the possible solutions of
the problem. Thus, new vision-based robot control laws can be designed. For example the
control schemes proposed in this report combine the two final solutions of the problem (only
one of them being the true one) assuming that there is no a priori knowledge for discerning
among them.

The document is organized as follows. Section 2 provides the theoretical background
and introduce the notation that will be used in the report. In Section 3, we briefly remind
the standard numerical method for homography decomposition. In Section 4, we describe
the proposed analytical decomposition method. In Section 5, we find the relation between
the two solutions of the decomposition. In Section 6 we propose a new position-based visual
servoing scheme. Next, in Section 7 we propose a new hybrid visual servoing scheme. Finally,
Section 8 gives the main conclusions of the report.

2 Theoretical background

2.1 Perspective projection

We consider two different camera frames: the current and desired camera frames, F and F∗

in the figure, respectively. We assume that the absolute frame coincides with the reference
camera frame F∗. We suppose that the camera observes a planar object, consisting of a set

RR n° 6303
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n π

dd
∗

m∗
i

mi

t R

Pi

F = Fc

F∗ = Fd

Figure 1: Desired and current camera frames and involved notation.

of n 3D feature points, P, with Cartesian coordinates:

P = (X,Y,Z)

These points can be referred either to the desired camera frame or to the current one, being
denoted as dP and cP, respectively. The homogeneous transformation matrix, converting
3D point coordinates from the desired frame to the current frame is:

cTd =

[
cRd

ctd

0 1

]

where cRd and ctd are the rotation matrix and translation vector, respectively.
In the figure, the distances from the object plane to the corresponding camera frame are

denoted as d∗ and d. The normal n to the plane can be also referred to the reference or
current frames (dn or cn, respectively). The camera grabs an image of the mentioned object
from both, the desired and the current configurations. This image acquisition implies the
projection of the 3D points on a plane so they have the same depth from the corresponding
camera origin. The normalized projective coordinates of each point will be referred as:

m∗ = (x∗, y∗, 1) = dm ; m = (x, y, 1) = cm

for the desired and current camera frames. Finally, we obtain the homogeneous image
coordinates p = (u, v, 1), in pixels, of each point using the following transformation:

p = Km

INRIA
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where K is the upper triangular matrix containing the camera intrinsic parameters.
All along the document, we will make use of an abbreviated notation:






R = cRd

t = ctd/d∗

n = dn

Where we see that the translation vector t is normalized respect to the plane depth d∗. Also
we can notice that t and n are not referred to the same frame.

2.2 The homography matrix

Let p∗ = (u∗, v∗, 1) be the (3×1) vector containing the homogeneous coordinates of a point
in the reference image and let p = (u, v, 1) be the vector containing the homogeneous
coordinates of a point in the current image. The projective homography matrix G transforms
one vector into the other, up to a scale factor:

αg p = Gp∗

The projective homography matrix can be measured from the image information by matching
several coplanar points. At least 4 points are needed (at least three of them must be non-
collinear). This matrix is related to the transformation elements R and t and to the normal
of the plane n according to:

G = γ K (R + t n⊤)K−1 (1)

where the matrix K is the camera calibration matrix. The homography in the Euclidean
space can be computed from the projective homography matrix, using an estimated camera
calibration matrix K̂:

Ĥ = K̂−1GK̂ (2)

In this report, we suppose that we have no uncertainty in the intrinsic camera parameters.
Then, we assume that K̂ = K, so that Ĥ = γ (R + t n⊤). In a future work, we will try
to study the influence of camera-calibration errors on the Euclidean reconstruction, taking
advantage of the analytical decomposition method presented here. The equivalent to the
homography matrix G in the Euclidean space is the Euclidean homography matrix H. It
transforms one 3D point in projective coordinates from one frame to the other, again up to
a scale factor:

αh m = Hm∗

where m∗ = (x∗, y∗, 1) is the vector containing the normalized projective coordinates of a
point viewed from the reference camera pose, and m = (x, y, 1) is the vector containing
these normalized projective coordinates when the point is viewed from the current camera
pose. This homography matrix is:

H =
Ĥ

γ
= R + t n⊤ (3)

RR n° 6303
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Notice that med(svd(H)) = 1. Thus, after obtaining Ĥ, the scale factor γ can be computed
as follows:

γ = med(svd(Ĥ))

by solving a third order equation (see Appendix B).
The problem of Euclidean homography decomposition, also called Euclidean reconstruc-

tion from homography, is that of retrieving the elements R, t and n from matrix H:

H =⇒ {R, t, n}

Notice that the translation is estimated up to a positive scalar factor (as t has been nor-
malized with respect to d∗).

3 The numerical method for homography decomposi-

tion

Before presenting the analytical decomposition method itself, it is convenient to concisely
remind the traditional methods based on SVD [1, 11].

3.1 Faugeras SVD-based decomposition

If we perform the singular value decomposition of the homography matrix [1]:

H = UΛV⊤

we get the orthogonal matrices U and V and a diagonal matrix Λ, which contains the
singular values of matrix H. We can consider this diagonal matrix as an homography
matrix as well, and hence apply relation (3) to it:

Λ = R
Λ

+ t
Λ
n⊤

Λ
(4)

Computing the components of the rotation matrix, translation and normal vectors is simple
when the matrix being decomposed is a diagonal one. First, t

Λ
can be easily eliminated from

the three vector equations coming out from (4) (one for each column of this matrix equation).
Then, imposing that R

Λ
is an orthogonal matrix, we can linearly solve for the components

of n
Λ
, from a new set of equations relating only these components with the three singular

values (see [1] for the detailed development). As a result of the decomposition algorithm, we
can get up to 8 different solutions for the triplets: {R

Λ
, t

Λ
, n

Λ
}. Then, assuming that the

decomposition of matrix Λ is done, in order to compute the final decomposition elements,
we just need to use the following expressions:

R = UR
Λ
V⊤

t = Ut
Λ

n = Vn
Λ

INRIA
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It is clear that this algorithm does not allow us to obtain an analytical expression of the
decomposition elements {R, t, n}, in terms of the components of matrix H. This is the aim
of this report: to develop a method that gives us such analytical expressions. As already
said, there are up to 8 solutions in general for this problem. These are 8 mathematical
solutions, but not all of them are physically possible, as we will see. Several constraints can
be applied in order to reduce this number of solutions.

3.2 Zhang SVD-based decomposition

Notice that a similar method to obtain this decomposition is proposed in [11]. The authors
claim that closed-form expressions for the translation vector, normal vector and rotation
matrix are obtained. However, the closed-form solutions are obtained numerically, again
from SVD decomposition of the homography matrix.

They propose to compute the eigenvalues and eigenvectors of matrix H⊤H:

H⊤H = VΛ2 V⊤

Where the eigenvalues and corresponding eigenvectors are:

Λ = diag(λ1, λ2, λ3) ; V = [v1 v2 v3]

with the unitary eigenvalue λ2 and ordered as:

λ1 ≥ λ2 = 1 ≥ λ3

Then, defining t∗ as the normalized translation vector in the desired camera frame, t∗ =
R⊤t, they propose to use the following relations:

‖t∗‖ = λ1 − λ3 ; n⊤t∗ = λ1 λ3 − 1

and

v1 ∝ v′
1 = ζ1 t∗ + n

v2 ∝ v′
2 = t∗ × n

v3 ∝ v′
3 = ζ3 t∗ + n

where vi are unitary vectors, while v′
i are not, and ζ1,3 are scalar functions of the

eigenvalues given below.
These relations are derived from the fact that (t∗ × n) is an eigenvector associated to

the unitary eigenvalue of matrix H⊤H and that all the eigenvectors must be orthogonal.
Then, the authors propose to use the following expressions to compute the first solution

for the couple translation vector and normal vector:

t∗ = ±v′
1 − v′

3

ζ1 − ζ3
n = ±ζ1 v′

3 − ζ3 v′
1

ζ1 − ζ3

RR n° 6303
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and for the second solution:

t∗ = ±v′
1 + v′

3

ζ1 − ζ3
n = ±ζ1 v′

3 + ζ3 v′
1

ζ1 − ζ3

In order to use these relations, after SVD, ζ1,3 must be computed as:

ζ1,3 =
1

2λ1 λ3

(
−1 ±

√

1 + 4
λ1 λ3

(λ1 − λ3)2

)

Also, the norms of v′
1,3 can be computed from the eigenvalues:

‖v′
i‖2 = ζ2

i (λ1 − λ3)
2 + 2 ζi (λ1 λ3 − 1) + 1 i = 1, 3

Then, v′
1,3 are obtained from the unitary eigenvectors using:

v′
i = ‖v′

i‖vi i = 1, 3

Finally, the rotation matrix can be obtained:

R = H
(
I + t∗ n⊤

)−1

As we see, this is not an analytical decomposition procedure, since we don’t obtain
{R, t,n} as explicit function of H. On the contrary, the computations fully rely on the
singular value decomposition as in Faugeras’ method.

Moreover, in order to compute the rotation matrix, the right couples should be chosen,
but there is a +/- ambiguity. This means that, a priori, there is no way to know if the right
couple for the choice of the plus sign in the expression of t∗ is the vector obtained using the
plus or the minus sign in the expression of n. With the proposed analytical procedure that
ambiguity can be a priori solved.

3.3 Elimination of impossible solutions

We describe now how the set of solutions of the homography decomposition problem can be
reduced from the 8 mathematical solutions to the only 2 verifying some physical constraints.
Of course, this is valid not only for the numerical decomposition method, but in general,
whatever the method used.

3.3.1 Reference-plane non-crossing constraint

This is the first physical constraint that allows to reduce the number of solutions from 8 to
4. This constraint imposes that:

Both frames, F∗ and F must be in the same side of the object plane.

INRIA
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This means that the camera cannot go in the direction of the plane normal further than
the distance to the plane. Otherwise, the camera crosses the plane and the situation can
be interpreted as the camera seeing a transparent object from both sides. In Figure 2, the
translation vector from one frame to the other, dtc, gives the position of the origin of F with
respect to F∗. This is not the same as vector t used in our reduced notation, but they are
related by:

t = −cRd

dtc

d∗

dn = n∗
π

dd
∗

F∗ = Fd

F = Fc

dtc
dRc

(dt⊤c
dn)

Pi

Figure 2: Reference-plane non-crossing constraint.

That way, the translation vector dtc, the normal vector n = dn and the distance to
the plane d∗ are referred to the same frame, F∗. With this notation, is clear that the
reference-plane non-crossing constraint is satisfied when:

dt⊤c
dn < d∗ (5)

That is, the projection of the translation vector dtc on the normal direction, must be less
than d∗. Written in terms of our reduced notation:

1 + n⊤R⊤t > 0 (6)

As we will see in Section 4, only 4 of the 8 solutions derived using the analytic method verify
this condition. In fact, the set of four solutions verifying the reference-plane non-crossing

RR n° 6303
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constraint are, in general, two completely different solutions and their ”opposites”:

Rtna = {Ra, ta,na}
Rtnb = {Rb, tb,nb}

Rtna− = {Ra,−ta,−na}
Rtnb− = {Rb,−tb,−nb}

3.3.2 Reference-point visibility

This additional constraint allows to reduce from 4 to 2 the number of feasible solutions. The
following additional information is required:� The set of reference image points: p∗� The matrix containing the camera intrinsic parameters: K

First, the projective coordinates of the reference points are retrieved:

m∗ = K−1p∗

Then, each normal candidate is considered and the projection of each one of the points m∗

on the direction of that normal is computed. For the solution being valid, this projection
must be positive for all the points:

m∗⊤n∗ > 0

The same can be done regarding to the current frame:

m⊤(Rn) > 0

The geometric interpretation of this constraint is that (see Figure 3):

For all the reference points being visible, they must be in front of the camera.

INRIA
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na π

F∗

mi

Pi

−nb−na

(m⊤
i nb)

(m⊤
i na)

nb

Figure 3: Reference points visibility constraint.

From the four solutions verifying the reference-plane non-crossing constraint, two of them
have normals opposite to the other two’s, then at least two of them can be discarded with
the new constraint. It may occur that even three of them could be discarded, but it is not
the usual situation.

4 A new analytical method for homography decompo-

sition

In this section, we introduce a new analytical method for solving the homography decom-
position problem. Contrarily to [1], where a numerical method based on SVD is used, we
provide the expressions of {R, t, n} as a function of matrix H.

The four solutions we will achieve following the procedure will be denoted as:

Rtna = {Ra, ta,na} (7)

Rtnb = {Rb, tb,nb} (8)

Rtna− = {Ra,−ta,−na} (9)

Rtnb− = {Rb,−tb,−nb} (10)

as said before, these solutions are, in general, two completely different solutions and their
opposites.

RR n° 6303
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First, we will summarize the complete set of formulas and after that we will give the
details of the development.

4.1 Summary of the analytical decomposition

First method: computing the normal vector first

We can get closed forms of the analytical expressions by introducing a symmetric matrix,
S, obtained from the homography matrix as:

S = H⊤H − I =




s11 s12 s13

s12 s22 s23

s13 s23 s33





We represent by MSij
, i, j = 1..3, the expressions of the opposites of minors (minor corre-

sponding to element sij) of matrix S. For instance:

MS11
= −

∣∣∣∣
s22 s23

s23 s33

∣∣∣∣ = s2
23 − s22s33 ≥ 0

In general, there are three different alternatives for obtaining the expressions of the
normal vectors ne (and from this, te and Re) of the homography decomposition from the
components of matrix S. We will write:

ne(sii) =
n′

e(sii)

‖n′
e(sii)‖

; e = {a, b} , i = {1, 2, 3}

Where ne(sii) means for ne developed using sii. Then, the three possible cases are:

n′
a(s11) =




s11

s12 +
√

MS33

s13 + ǫ23
√

MS22



 ; n′
b(s11) =




s11

s12 −
√

MS33

s13 − ǫ23
√

MS22



 (11)

n′
a(s22) =




s12 +

√
MS33

s22

s23 − ǫ13
√

MS11



 ; n′
b(s22) =




s12 −

√
MS33

s22

s23 + ǫ13
√

MS11



 (12)

n′
a(s33) =




s13 + ǫ12

√
MS22

s23 +
√

MS11

s33



 ; n′
b(s33) =




s13 − ǫ12

√
MS22

s23 −
√

MS11

s33



 (13)

where ǫij = sign(MSij
). In particular, the sign(·) function should be implemented like:

sign(a) =

{
1 if a ≥ 0

−1 otherwise

INRIA
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in order to avoid problems in the cases when MSii
= 0, as it will see later on.

These formulas give all the same result. However, not all of them can be applied in every
case, as the computation of ne(sii), implies a division by sii. That means that this formula
cannot be applied in the particular case when sii = 0 (this happens for instance when the
i-th component of n is null).

The right procedure is to compute na and nb using the alternative among the three given
corresponding to the sii with largest absolute value. That will be the most well conditioned
option. The only singular case, then, is the pure rotation case, when H is a rotation matrix.
In this case, all the components of matrix S become null. Nevertheless, this is a trivial case,
and there is no need to apply any formulas. It must be taken into account that the four
solutions obtained by these formulas (that is {na,−na,nb,−nb}) are all the same, but are
not always given in the same order. That means that, for instance, na(s22) may correspond
to −na(s11), nb(s11) or −nb(s11), instead of corresponding to na(s11).

We can also write the expression of ne directly in terms of the columns of matrix H:

H =
[

h1 h2 h3

]

We give, as an example, the result derived from s22 (equivalent to (12)):

n′
a(s22) =





h⊤
1 h2 +

√(
h⊤

1 h2

)2 − (‖h1‖2 − 1) (‖h2‖2 − 1)

(
‖h2‖2 − 1

)

h⊤
2 h3 − ǫ13

√(
h⊤

2 h3

)2 − (‖h2‖2 − 1) (‖h3‖2 − 1)




(14)

n′
b(s22) =





h⊤
1 h2 −

√(
h⊤

1 h2

)2 − (‖h1‖2 − 1) (‖h2‖2 − 1)

(
‖h2‖2 − 1

)

h⊤
2 h3 + ǫ13

√(
h⊤

2 h3

)2 − (‖h2‖2 − 1) (‖h3‖2 − 1)




(15)

and where ǫij = sign(MSij
), the expression of which is, in this particular case:

ǫ13 = sign
(
−h⊤

1

[
I + [h2]

2
×

]
h3

)
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The expressions for the translation vector in the reference frame, t∗e = R⊤
e te, can be

obtained after the given expressions of the normal vector:

t∗e(s11) =
‖n′

e(s11)‖
2 s11




s11

s12 ∓
√

MS33

s13 ∓ ǫ23
√

MS22



− ‖te‖2

2 ‖n′
e(s11)‖




s11

s12 ±
√

MS33

s13 ± ǫ23
√

MS22





t∗e(s22) =
‖n′

e(s22)‖
2 s22




s12 ∓

√
MS33

s22

s23 ± ǫ13
√

MS11



− ‖te‖2

2 ‖n′
e(s22)‖




s12 ±

√
MS33

s22

s23 ∓ ǫ13
√

MS11





t∗e(s33) =
‖n′

e(s33)‖
2 s33




s13 ∓ ǫ12

√
MS22

s23 ∓
√

MS11

s33



− ‖te‖2

2 ‖n′
e(s33)‖




s13 ± ǫ12

√
MS22

s23 ±
√

MS11

s33





For e = a the upper operator in the symbols ±,∓ must be chosen, for e = b choose the
lower operator. The vector t∗e can also be given as a compact expression of na and nb:

t∗a(sii) =
‖te‖

2
[ǫsii

ρnb(sii) − ‖te‖na(sii)] (16)

t∗b(sii) =
‖te‖

2
[ǫsii

ρna(sii) − ‖te‖nb(sii)] (17)

being
ǫsii

= sign(sii)

ρ2 = 2 + trace(S) + ν (18)

‖te‖2 = 2 + trace(S) − ν (19)

Where ν can be obtained from:

ν =
√

2 [(1 + trace(S))2 + 1 − trace(S2)]

= 2
√

1 + trace(S) − MS11
− MS22

− MS33

The expression for the rotation matrix is:

Re = H

(
I − 2

ν
t∗en

⊤
e

)
(20)

Finally, te can be obtained:
te = Re t∗e (21)
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Second method: computing the translation vector first

A simpler set of expressions for te can be obtained, starting from the following matrix, Sr,
instead of the previous S:

Sr = HH⊤ − I =




sr11

sr12
sr13

sr12
sr22

sr23

sr13
sr23

sr33





The new relations for vector te are:

te(srii
) = ‖te‖

t′e(srii
)

‖t′e(srii
)‖ ; e = {a, b}

Where te(srii
) means for te developed using srii

. Then, the three possible cases are:

t′a(sr11
) =




sr11

sr12
+
√

MSr33

sr13
+ ǫr23

√
MSr22



 ; t′b(sr11
) =




sr11

sr12
−√MSr33

sr13
− ǫr23

√
MSr22



 (22)

t′a(sr22
) =




sr12

+
√

MSr33

sr22

sr23
− ǫr13

√
MSr11



 ; t′b(sr22
) =




sr12

−√MSr33

sr22

sr23
+ ǫr13

√
MSr11



 (23)

t′a(sr33
) =




sr13

+ ǫr12

√
Msr22

sr23
+
√

MSr11

sr33



 ; t′b(sr33
) =




sr13

− ǫr12

√
Msr22

sr23
−√MSr11

sr33



 (24)

where MSrii
and ǫrij

have the same meaning as before, but referred to matrix Sr instead of
S. Notice that the expression for ‖te‖ is given in (19). In this case, srii

becomes zero, for
instance, when the i-th component of t is null.

We can also write the expression of te directly in terms of the rows of matrix H:

H⊤ =
[
hr1

hr2
hr3

]
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We give, as an example, the result derived from sr22
:

t′a(sr22
) =





h⊤
r1

hr2
+

√(
h⊤

r1
hr2

)2 − (‖hr1
‖2 − 1) (‖hr2

‖2 − 1)

(
‖hr2

‖2 − 1
)

h⊤
r2

hr3
− ǫr13

√(
h⊤

r2
hr3

)2 − (‖hr2
‖2 − 1) (‖hr3

‖2 − 1)




(25)

t′b(sr22
) =





h⊤
r1

hr2
−
√(

h⊤
r1

hr2

)2 − (‖hr1
‖2 − 1) (‖hr2

‖2 − 1)

(
‖hr2

‖2 − 1
)

h⊤
r2

hr3
+ ǫr13

√(
h⊤

r2
hr3

)2 − (‖hr2
‖2 − 1) (‖hr3

‖2 − 1)




(26)

being ǫrij
= sign(MSrij

), that can be written in this case as:

ǫr13
= sign

(
−h⊤

r1

[
I + [hr2

]2×
]
hr3

)

In the same way we obtained before the expressions for t∗e = R⊤
e te from the expressions

of ne, we can obtain now the expressions for n′
e = Re ne, from the given expressions of te:

n′
a(srii

) =
1

2

[
ǫsrii

ρ

‖te‖
tb(srii

) − ta(srii
)

]
(27)

n′
b(srii

) =
1

2

[
ǫsrii

ρ

‖te‖
ta(srii

) − tb(srii
)

]
(28)

being
ǫsrii

= sign(srii
)

The expression for the rotation matrix, analogous to (20), is:

Re =

(
I − 2

ν
te n′⊤

e

)
H

Finally, ne can be obtained:
ne = R⊤

e n′
e

Of course, if we have directly the couple ne and te corresponding to the same solution,
we can get the rotation matrix as:

Re = H − te n⊤
e

INRIA



Deeper understanding of the homography decomposition for vision-based control 19

It must be noticed that if we combine the expressions for ne and te (14)-(15) with (25)-
(26) (or equivalently (11)-(13) with (22)-(24)), in order to set up the set of solutions, instead
of deriving one from the other, we must be aware that, as expected, na(sii) not necessary
will couple with ta(srii

).
As it can be seen, contrarily to the numerical methods, in this case, we have the analytical

expressions of the decomposition elements {R, t, n}, in terms of the components of matrix
H.

4.2 Detailed development of the analytical decomposition

In this section, we present the detailed development that give rise to the set of analytical
expressions summarized before. We will describe two alternative methods for the analytical
decomposition. Using the first one, we will derive the set of formulas that allow us to
compute the normal vector first, and after it, the translation vector and the rotation matrix.
On the contrary, the second method allows to compute the translation vector first, and after
it, the normal vector and the rotation matrix.

4.2.1 First method

In order to simplify the computations, we start defining the symmetric matrix, S, obtained
from the homography matrix as follows:

S = H⊤H − I =




s11 s12 s13

s12 s22 s23

s13 s23 s33



 (29)

The matrix S is a singular matrix. That is:

det(S) = s11s22s33 − s11s
2
23 − s22s

2
13 − s33s

2
12 + 2s12s13s23 = 0 (30)

This means that we could write, for instance, element s33 as:

s33 =
s11s

2
23 + s22s

2
13 − 2s12s13s23

s11s22 − s2
12

(31)

We will denote the opposites of the two-dimension minors of this matrix as MSij
(minor

corresponding to element sij). The opposites of the principal minors are:

MS11
= −

∣∣∣∣
s22 s23

s23 s33

∣∣∣∣ = s2
23 − s22s33 ≥ 0

MS22
= −

∣∣∣∣
s11 s13

s13 s33

∣∣∣∣ = s2
13 − s11s33 ≥ 0

MS33
= −

∣∣∣∣
s11 s12

s12 s22

∣∣∣∣ = s2
12 − s11s22 ≥ 0
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all of them being non-negative (this property, that will be helpful afterwards, is proved in
Appendix C.1). On the other hand, the opposites of the non-principal minors are:

MS12
= MS21

= −
∣∣∣∣

s12 s13

s23 s33

∣∣∣∣ = s23s13 − s12s33

MS13
= MS31

= −
∣∣∣∣

s12 s13

s22 s23

∣∣∣∣ = s22s13 − s12s23

MS23
= MS32

= −
∣∣∣∣

s11 s13

s12 s23

∣∣∣∣ = s12s13 − s11s23

There are some interesting geometrical aspects related to these minors, which are described
in Appendix C.2. It can also be verified that the following relations between the principal
and non-principal minors hold:

M2
S12

= MS11
MS22

(32)

M2
S13

= MS11
MS33

(33)

M2
S23

= MS22
MS33

(34)

This can be easily proved using the property of null determinant of S and writing some
diagonal element as done with s33 in (31) (alternatively, see Appendix C.1). These relations
can be also written in another way:

MS12
= ǫ12

√
MS11

√
MS22

(35)

MS13
= ǫ13

√
MS11

√
MS33

(36)

MS23
= ǫ23

√
MS22

√
MS33

(37)

where
ǫij = sign(MSij

)

Condition (30) could also have been written using these determinants:

det(S) = −s11 MS11
− s12 MS12

− s13 MS13
= 0

If we denote by h, i = 1..3 each column of matrix H:

H =
[

h1 h2 h3

]

matrix S could be written as:

S =




‖h1‖2 − 1 h⊤

1 h2 h⊤
1 h3

h⊤
1 h2 ‖h2‖2 − 1 h⊤

2 h3

h⊤
1 h3 h⊤

2 h3 ‖h3‖2 − 1



 (38)
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In a similar way, the opposites of the minors can be written as:

MS11
=

(
h⊤

2 h3

)2 −
(
‖h2‖2 − 1

) (
‖h3‖2 − 1

)
(39)

MS22
=

(
h⊤

1 h3

)2 −
(
‖h1‖2 − 1

) (
‖h3‖2 − 1

)
(40)

MS33
=

(
h⊤

1 h2

)2 −
(
‖h1‖2 − 1

) (
‖h2‖2 − 1

)
(41)

MS12
= h⊤

1

(
I + [h3]

2
×

)
h2 (42)

MS13
= h⊤

1

(
I + [h2]

2
×

)
h3 (43)

MS23
= h⊤

2

(
I + [h1]

2
×

)
h3 (44)

Once the definition and properties of matrix S have been stated, we start now the
development that will allow us to extract the decomposition elements from this matrix. We
will see that the interest of defining such a matrix is that it will allow us to eliminate the
rotation matrix from the equations. Using (3) we can write S in terms of {R, t, n} in the
following way:

S =
(
R⊤ + n t⊤

) (
R + t n⊤

)
− I = R⊤t n⊤ + n t⊤R + n t⊤t n⊤ (45)

If we introduce two new vectors, x and y, defined as:

x =
R⊤t

‖R⊤t‖ =
R⊤t

‖t‖ (46)

y = ‖R⊤t‖n = ‖t‖n (47)

S can be written as:
S = xy⊤ + yx⊤ + yy⊤ (48)

It is clear that matrix S is linear in x:



y2
1 + 2y1x1 y2x1 + y1x2 + y1y2 y3x1 + y1x3 + y1y3

. y2
2 + 2y2x2 y3x2 + y2x3 + y2y3

. . y2
3 + 2y3x3



 =




s11 s12 s13

s12 s22 s23

s13 s23 s33



 (49)

From this, we can set up two systems of equations:

y2
1 + 2y1x1 = s11 (50)

y2
2 + 2y2x2 = s22 (51)

y2
3 + 2y3x3 = s33 (52)

y2x1 + y1x2 + y1y2 = s12 (53)

y3x1 + y1x3 + y1y3 = s13 (54)

y3x2 + y2x3 + y2y3 = s23 (55)
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Solving for x from equations (50), (51) and (52):

x1 =
s11 − y2

1

2y1
(56)

x2 =
s22 − y2

2

2y2
(57)

x3 =
s33 − y2

3

2y3
(58)

Replacing this in equations (53), (54) and (55)

s22y
2
1 − 2s12y1y2 + s11y

2
2 = 0 (59)

s11y
2
3 − 2s13y1y3 + s33y

2
1 = 0 (60)

s33y
2
2 − 2s23y2y3 + s22y

2
3 = 0 (61)

Then, after setting

z1 =
y1

y2
(62)

z2 =
y1

y3
(63)

z3 =
y3

y2
(64)

we get three independent second-order equations in z1, z2, z3, respectively:

s22z
2
1 − 2s12z1 + s11 = 0 (65)

s33z
2
2 − 2s13z2 + s11 = 0 (66)

s22z
2
3 − 2s23z3 + s33 = 0 (67)

the solutions of which are:

z1 = α1 ± β1 ; α1 =
s12

s22
; β1 =

√
s2
12 − s11s22

s22
=

√
MS33

s22
(68)

z2 = α2 ± β2 ; α2 =
s13

s33
; β2 =

√
s2
13 − s11s22

s33
=

√
MS22

s33
(69)

z3 = α3 ± β3 ; α3 =
s23

s22
; β3 =

√
s2
23 − s22s33

s22
=

√
MS11

s22
(70)

where it has been assumed that s22 and s33 are different from 0 (we will see later that, in
this case, the constraint on s33 can be removed). Note that thanks to the given property,
related to the minors of S, zi will always be real.
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We impose now the constraint x2
1 + x2

2 + x2
3 = 1:

x2
1 + x2

2 + x2
3 =

(s11 − y2
1)2

4y2
1

+
(s22 − y2

2)2

4y2
2

+
(s33 − y2

3)2

4y2
3

= 1

After setting w = y2
2 , and using y2

1 = z2
1y2

2 , y2
3 = z2

3y2
2 ,

(s22 − w)2 +
(s11 − wz2

1)2

z2
1

+
(s33 − z2

3w)2

z2
3

− 4w = 0

Now, we can solve for w the following second-order equation:

a w2 − 2 b w + c = 0

being the coefficients:

a = 1 + z2
1 + z2

3 (71)

b = 2 + trace(S) = 2 + s11 + s22 + s33 (72)

c = s2
22 +

s2
11

z2
1

+
s2
33

z2
3

(73)

Then, the two possible solutions for w are:

w =
wnum

a
=

b ±
√

b2 − a c

a
(74)

After this, the y vector can be computed:

y =




z1

1
z3



 · y2 ; y2 = ±
√

w (75)

Now, from (56)-(58), the x vector could be obtained. It can be checked that the possible
solutions for w are real and positive (w must be the square of a real number), guaranteeing
that the components of vectors x and y are always real. This is proved in Appendix C.3.

As said before, the homography decomposition problem has, in general, eight different
mathematical solutions. The eight possible solutions come out from two possible couples of
{z1, z3}, two possible values of w for each one of these couples, and finally, two possible values
of y2 from the plus/minus square root of w. Four of them correspond to the configuration of
the reference object plane being in front of the camera, while the other four correspond to the
non-realistic situation of the object plane being behind the camera. The latter set of solutions
can be simply discarded when we are working with real images. In fact, we will prove now
that, using the given formulation, the four valid solutions of the homography decomposition
problem (verifying the reference-plane non-crossing constraint) are those corresponding to
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the choice of the minus sign for w in (74). In Section 3.3.1, we stated that the reference-plane
non-crossing constraint implies the following condition:

1 + n⊤R⊤t > 0 (76)

Then, we can choose the right four solutions writing this condition in terms of x and y:

1 + n⊤R⊤t = 1 + y⊤x > 0

If we replace x as a function of y using (56)-(58),

[y1 y2 y3]





s11−y2

1

2y1

s22−y2

2

2y2

s33−y2

3

2y3



 =
s11 − y2

1

2
+

s22 − y2
2

2
+

s33 − y2
3

2
≥ −1

This can also be written as
trace(S) + 2 ≥ ‖y‖2 (77)

Using (62)-(64) and (71), the squared norm of y takes the form

‖y‖2 = y2
1 + y2

2 + y2
3 = w (1 + z2

1 + z2
3) = w a = wnum (78)

Then, the condition (77) becomes
b ≥ w a

Let us check which one of the possible values of w verify this condition. These two values
will be called:

w+ =
b +

√
b2 − a c

a
(79)

w− =
b −

√
b2 − a c

a
(80)

It is obvious that, according that w is real as stated before, only w = w− will verify the
required condition

b ≥ w− a

Then, we can conclude that, to get the four physically feasible solutions, it is sufficient to
choose:

w = w−

On the other hand, it is worth noticing that only z1 and z3 are in fact needed for
computing the values of w and then the solutions of the problem. From the four possible
couples we can set up for {z1, z3}:

{za1
, za3

}, {za1
, zb3}, {zb1 , za3

}, {zb1 , zb3}
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being

za1
= α1 + β1

zb1 = α1 − β1

za3
= α3 + β3

zb3 = α3 − β3

only two are valid, these are those verifying:

z2 =
z1

z3

as they are related through (62)-(64). In other words, the couples {z1, z3} must verify
equation (66), when z2 is replaced by z1/z3:

s33
z2
1

z2
3

− 2s13
z1

z3
+ s11 = 0 (81)

Hence, equation (66) is only needed as a way of discerning the two valid couples for z1,z3.
We show now how to make the straightforward computation of the two valid couples {z1, z3}.

Choosing the valid pairs {z1, z3}
When computing the couples {z1, z3} using (68) and (70), some inconvenience arises. It
is derived from the fact that the right two couples {z1, z3} are not always the same, but
they may swap among the four possibilities. In fact, the two valid couples are always
complementary. That is, the only possibilities are:

{{za1
, za3

} , {zb1 , zb3}}

or
{{za1

, zb3} , {zb1 , za3
}}

This means that we need to check, each time, if the right pair complement of za1
is za3

or zb3 , evaluating (81) in both cases. What it is intended here is to avoid the eventual
swapping of the right pair complement of za1

between the two possibilities, forcing it to be
always equal to one of them. This will provide a straight analytical computation for the
eight homography decomposition solutions.

Replacing in (70) s33 according to (31) (or directly using (33)), will give a better insight
into this swapping mechanism. In particular, we get a new expression for β3:

β3 =

√
(s23s12−s22s13)2

s2
12

−s11s22

s22
=

|s23s12 − s22s13|
s22

√
MS33
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The absolute value in the numerator of this expression is the cause of the eventual swapping
between za3

and zb3 . If we compute z3 using the following expressions, instead

z′a3
= α3 + β′

3 (82)

z′b3 = α3 − β′
3 (83)

being now

β′
3 =

s23s12 − s22s13

s22

√
MS33

=
−MS13

s22

√
MS33

where the absolute value has been removed, we can verify that the right pair complement
of za1

is z′a3
. Therefore, the right couples are always the same:

{{za1
, z′a3

} , {zb1 , z
′
b3}}

This can be verified by simply replacing the expressions of za1
and z′a3

(correspondingly with
zb1 and z′b3) in (81) and checking the equality.

The procedure now is much simpler. We can completely ignore z2, and forget about its
computation and about the checking (81). Just compute z1 and z3 according to:

z1 = α1 ± β1

z3 = α3 ± β′
3

The only problem of this alternative of computing z3 to avoid the above-mentioned swapping
is that we introduce a division for

√
MS33

and, as a consequence, it could not be applied
when this minor is null. We can obtain the same result, avoiding this inconvenience, by
simply computing β′

3 as:

β′
3 =

−ǫ13
√

MS11

s22

where ǫ13 is:
ǫ13 = sign(MS13

)

The four solutions we will achieve following the procedure will be denoted as:

Rtna = {Ra, ta,na}
Rtnb = {Rb, tb,nb}

Rtna− = {Ra,−ta,−na}
Rtnb− = {Rb,−tb,−nb}

as said before, these solutions are, in general, two completely different solutions and their
opposites.
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Computation of the normal vector

Once we have seen how to avoid unrealistic solutions, we will now give the formulas to
obtain the elements the homography decomposition {R, t,n} directly as a functions of the
components of matrix H. We start with the normal vector. We have already determined
the following expressions for the intermediary variables z1 and z3

za1
=

s12 +
√

MS33

s22
; zb1 =

s12 −
√

MS33

s22

za3
=

s23 − ǫ13
√

MS11

s22
; zb3 =

s23 + ǫ13
√

MS11

s22

We also need to compute another intermediary variable, w (see (80)):

wa =
b − ν

aa

wb =
b − ν

ab

where the coefficients ae, b are:

ae = 1 + z2
e1

+ z2
e3

(84)

b = 2 + trace(S) (85)

where the subscript can be e = {a, b}. After some manipulations of the expressions of these
coefficients, ν can be written as a function of matrix S:

ν =
√

2 [(1 + trace(S))2 + 1 − trace(S2)] (86)

or, alternatively:
ν = 2

√
1 + trace(S) − MS11

− MS22
− MS33

(87)

It can be proved (see Appendix C.4) that the coefficient ν introduced in (84) is:

ν = 2
(
1 + n⊤R⊤t

)
(88)

Now, we can compute the four possible y vectors:

ye = ±√
we




ze1

1
ze3



 = ±√
we n′

e

ye = ±
√

b − ν√
ae

n′
e = ±

√
b − ν

n′
e

‖n′
e‖
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As ‖ye‖ = ‖te‖, from the previous expression, we can deduce the translation vector norm,
which is the same for all the solutions:

‖te‖2 = wnum = 2 + trace(S) − ν (89)

Dividing ye by this norm, we get the expression of the normal vector:

ne =
n′

e

‖n′
e‖

; e = {a, b}

n′
a =




s12 +

√
MS33

s22

s23 − ǫ13
√

MS11



 ; n′
b =




s12 −

√
MS33

s22

s23 + ǫ13
√

MS11



 (90)

being
ǫ13 = sign(MS13

)

In particular, the sign(·) function in this case should be implemented like:

sign(a) =

{
1 if a ≥ 0

−1 otherwise

in order to avoid problems in the cases when MSii
= 0. To understand this, suppose that

MS33
= 0, according to relations (36)-(37), also MS13

= 0 and MS23
= 0. Then, with the

typical sign(·) function, ǫ13 = ǫ23 = 0, erroneously cancelling also the second addend of the
third component of na,b and providing a wrong result. Moreover, in order to avoid numerical
problems, it is advisable to consider the parameter of the sign(·) function equal to zero if
its magnitude is under some precision value.

The complete set of formulas. The previous development started with the assumption
that s22 6= 0, as the expressions were developed dividing by s22. In case s22 = 0 (for instance
when the second component of the object-plane normal is null), this formulas cannot be
applied. In this situation, we can make a similar development, but dividing by s11 or s33,
instead. Suppose s22 = 0 and we want to develop dividing by s11. What we need to do is
to define variables z1, z2, z3 in (62)-(64) in a different way. In particular, we will choose:

z1 =
y2

y1

z2 =
y3

y1

z3 =
y2

y3

The three new second-order equations in z1, z2, z3 are:

s11z
2
1 − 2s12z1 + s22 = 0

s11z
2
2 − 2s13z2 + s33 = 0

s33z
2
3 − 2s23z3 + s22 = 0
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From this, we can follow a parallel development and we will find new expressions for na and
nb:

n′
a(s11) =




s11

s12 +
√

MS33

s13 + ǫ23
√

MS22



 ; n′
b(s11) =




s11

s12 −
√

MS33

s13 − ǫ23
√

MS22



 (91)

with the notation ne(sii) we mean:
the expression of ne obtained using sii (i.e. dividing by sii).

The third alternative is developing the formulas dividing for s33. From this case we will
obtain:

n′
a(s33) =




s13 + ǫ12

√
MS22

s23 +
√

MS11

s33



 ; n′
b(s33) =




s13 − ǫ12

√
MS22

s23 −
√

MS11

s33





On the other hand, we may prefer to write the expressions of ne directly in terms of the
column vectors of the H matrix, hi:

H =
[

h1 h2 h3

]

We give, as an example, the result derived from s22:

n′
a(s22) =





h⊤
1 h2 +

√(
h⊤

1 h2

)2 − (‖h1‖2 − 1) (‖h2‖2 − 1)

(
‖h2‖2 − 1

)

h⊤
2 h3 − ǫ13

√(
h⊤

2 h3

)2 − (‖h2‖2 − 1) (‖h3‖2 − 1)




(92)

n′
b(s22) =





h⊤
1 h2 −

√(
h⊤

1 h2

)2 − (‖h1‖2 − 1) (‖h2‖2 − 1)

(
‖h2‖2 − 1

)

h⊤
2 h3 + ǫ13

√(
h⊤

2 h3

)2 − (‖h2‖2 − 1) (‖h3‖2 − 1)




(93)

being ǫ13 = sign(MS13
), that can be written as:

ǫ13 = sign
(
−h⊤

1

[
I + [h2]

2
×

]
h3

)
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Computation of the translation vector

Next, we want to obtain the expression for the translation vector. From (56)-(58), the x

vector could be computed as:

xe =




xe1

xe2

xe3



 ; xei
=

sii − y2
ei

2yei

; i = 1..3

We can rewrite this expression in terms of the translation and normal vectors, using
(46)-(47). In particular, we consider here the translation vector in the reference frame
t∗e = R⊤

e te,

t∗e =
1

2





s11

ne1
s22

ne2
s33

ne3



− ‖te‖2

2
ne ; e = {a, b}

This formula cannot be applied as such when any of the components of the normal vector
are null. In those cases, we get an indetermination, as ni = 0 =⇒ sii = 0. In order to avoid
this, we make a simple operation that allows us to cancel out sii from nei

. Consider, for
instance, the ratio s11/na1

:

s11

na1

= ‖n′
a‖

s11

n′
a1

= ‖n′
a‖

s11

s12 +
√

MS33

multiplying and dividing by (s12 −
√

MS33
), we obtain:

s11

na1

=
s12 −

√
MS33

s22

with a similar operation in the other components, we get:

t∗a =
‖n′

a‖
2 s22




s12 −

√
MS33

s22

s23 + ǫ13
√

MS11



− ‖te‖2

2 ‖n′
a‖




s12 +

√
MS33

s22

s23 − ǫ13
√

MS11



 (94)

t∗b =
‖n′

b‖
2 s22




s12 +

√
MS33

s22

s23 − ǫ13
√

MS11



− ‖te‖2

2 ‖n′
b‖




s12 −

√
MS33

s22

s23 + ǫ13
√

MS11



 (95)

Comparing with (90), it is clear that the translation vector can be obtained form the
normals:

t∗a =
‖n′

a‖
2 s22

n′
b −

‖te‖2

2
na

t∗b =
‖n′

b‖
2 s22

n′
a − ‖te‖2

2
nb
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In order to avoid dependencies from the non-unitary vectors n′
e, we write:

t∗a =
‖n′

a‖ ‖n′
b‖

2 s22
nb −

‖te‖2

2
na

t∗b =
‖n′

b‖ ‖n′
a‖

2 s22
na − ‖te‖2

2
nb

it can be verified that the scalar quotient appearing in the first term of both equations is
the same value for all the solutions, in fact we can write it as:

‖n′
a‖ ‖n′

b‖
|s22|

= ρ ‖te‖

being ρ:
ρ2 = b + ν =⇒ ρ2 = 2 + trace(S) + ν = ‖te‖2 + 2 ν (96)

where ν was given in (86). Finally, we can write compact expressions for t∗e from ne:

t∗a =
‖te‖

2
(ǫs22

ρnb − ‖te‖na) (97)

t∗b =
‖te‖

2
(ǫs22

ρna − ‖te‖nb) (98)

being
ǫs22

= sign(s22)

In this case, for the sign(·) function we don’t have the same problem as for ǫ13 in (90), as
we assumed s22 6= 0. This means that we can use the typical sign(·) function (sign(0) = 0)
for ǫs22

.
In order to find the translation vector in the current frame, te, we need to compute the

rotation matrix in advance.

The complete set of formulas. Again, we need a complete set of formulas, that makes
possible the computation of the translation vector even if some sii are null. In particular,
relation (91) was obtained by dividing by s11. The translation vector derived from that is:

t∗a(s11) =
‖n′

a(s11)‖
2 s11




s11

s12 −
√

MS33

s13 − ǫ23
√

MS22



− ‖te‖2

2 ‖n′
a(s11)‖




s11

s12 +
√

MS33

s13 + ǫ23
√

MS22





t∗b(s11) =
‖n′

b(s11)‖
2 s11




s11

s12 +
√

MS33

s13 + ǫ23
√

MS22



− ‖te‖2

2 ‖n′
b(s11)‖




s11

s12 −
√

MS33

s13 − ǫ23
√

MS22
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We can also write the expressions directly in terms of na(s11) and nb(s11):

t∗a(s11) =
‖te‖

2
(ǫs11

ρnb(s11) − ‖te‖na(s11))

t∗b(s11) =
‖te‖

2
(ǫs11

ρna(s11) − ‖te‖nb(s11))

The third alternative is developing the formulas dividing for s33. In this case we obtain:

t∗a(s33) =
‖n′

a(s33)‖
2 s33




s13 − ǫ12

√
MS22

s23 −
√

MS11

s33



− ‖te‖2

2 ‖n′
a(s33)‖




s13 + ǫ12

√
MS22

s23 +
√

MS11

s33





t∗b(s33) =
‖n′

a(s33)‖
2 s33




s13 + ǫ12

√
MS22

s23 +
√

MS11

s33



− ‖te‖2

2 ‖n′
a(s33)‖




s13 − ǫ12

√
MS22

s23 −
√

MS11

s33





The alternative expression of the translation vector directly from na(s33) and nb(s33) is, as
expected:

t∗a(s33) =
‖te‖

2
(ǫs33

ρnb(s33) − ‖te‖na(s33))

t∗b(s33) =
‖te‖

2
(ǫs33

ρna(s33) − ‖te‖nb(s33))

From the previous expressions, we see that the formulas we could write for t∗e in terms
of the columns of matrix H will not be as simple as those given in (92)-(93) for the normal
vector. On top of this, we need to multiply by matrix R⊤

e in order to get te. In the next
subsection, we will propose a different starting point for the development, such that, the
expressions obtained for te will be exactly as simple as those already obtained for ne (90),
(92) and (93). However, it must be noticed that, computing the normal and translation
vectors using the previous set of formulas, we always get the right couples. That means
that, for instance, ta (and not −ta nor tb nor −tb) is always the right couple for na, without
requiring any additional checking.

Computation of the rotation matrix

The rotation matrix could be obtained from x and y, using the definition of homography
matrix and the relations (46)-(47):

H = R + t n⊤ = R (I + xy⊤)

as:
R = H(I + xy⊤)−1
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The required inverse matrix can be computed making use of the following relation:

(
I + xy⊤

)−1
= I − 1

1 + x⊤y
xy⊤

Then, the rotation matrix can be written as:

Re = H

(
I − 1

1 + x⊤
e ye

xey
⊤
e

)

Alternatively, we can express the rotation matrix directly in terms of ne and t∗e:

Re = H

(
I − 1

1 + n⊤
e t∗e

t∗en
⊤
e

)
= H

(
I − 2

ν
t∗en

⊤
e

)
(99)

4.2.2 Second method

Even if we consider that, for the analytical computation of the translation vector, the given
formulas (94)-(95) or (97)-(98) are good enough, it maybe sometimes convenient to have a
closer form for obtaining this vector. For instance, if we want to study the effects of camera-
calibration errors on the translation vector derived from homography decomposition, having
a pair of formulas for it similar to (92) and (93), directly in terms of the elements of matrix H,
would greatly simplify the analysis. In this subsection, we will derive such a more compact
expression for te.

Computation of the translation vector

The symmetry of the problem suggest that, instead of (45), we could have started defining
the matrix:

Sr = HH⊤ − I =
(
R + t n⊤

) (
R⊤ + n t⊤

)
− I = Rnt⊤ + t n⊤R⊤ + t t⊤

We also redefine vectors x and y as:

x = Rn

y = t

Then, Sr can be written as:

Sr = xy⊤ + yx⊤ + yy⊤ =




sr11

sr12
sr13

sr12
sr22

sr23

sr13
sr23

sr33





It can be easily verified that:

trace(Sr) = trace(S)

trace(S2
r) = trace(S2)

MSr11
+ MSr11

+ MSr11
= MS11

+ MS11
+ MS11
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Matrix Sr has exactly the same form as S in (48), but now, with a different definition of
vectors x and y. This means that we can use the same results we had before, with the only
difference that the first elements we derive now with the expressions equivalent to those
given in (90) are vectors parallel to te, instead of vectors parallel to ne. Then, we can
obtain the new relations for vector te:

t′a =




sr12

+
√

MSr33

sr22

sr23
− ǫr13

√
MSr11



 ; t′b =




sr12

−√MSr33

sr22

sr23
+ ǫr13

√
MSr11



 (100)

where MSrii
and ǫrij

have the same meaning as before, but referred to matrix Sr instead of
S. From (100), we compute the translation vector with the right norm:

te = ‖te‖
t′e

‖t′e‖

Where we need the expression for ‖te‖:

‖te‖ = 2 + trace(Sr) − ν

‖te‖ = 2 + trace(S) − ν

and ν can be computed using (86) or (87), using either of them, S or Sr.
On the other hand, notice that, in a similar way to (38), Sr can be written as:

Sr =





‖hr1
‖2 − 1 h⊤

r1
hr2

h⊤
r1

hr3

h⊤
r1

hr2
‖hr2

‖2 − 1 h⊤
r2

hr3

h⊤
r1

hr3
h⊤

r2
hr3

‖hr3
‖2 − 1




(101)

where h⊤
ri

, i = 1..3 means for each row of matrix H:

H =





h⊤
r1

h⊤
r2

h⊤
r3





This is why the new Sr matrix was named with subindex r: because it can be written in
terms of the rows of H, instead of its columns, as for S. Finally, we write the expression of
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te in terms of the components of matrix H, as intended:

t′a =





h⊤
r1

hr2
+

√(
h⊤

r1
hr2

)2 − (‖hr1
‖2 − 1) (‖hr2

‖2 − 1)

(
‖hr2

‖2 − 1
)

h⊤
r2

hr3
− ǫr13

√(
h⊤

r2
hr3

)2 − (‖hr2
‖2 − 1) (‖hr3

‖2 − 1)





t′b =





h⊤
r1

hr2
−
√(

h⊤
r1

hr2

)2 − (‖hr1
‖2 − 1) (‖hr2

‖2 − 1)

(
‖hr2

‖2 − 1
)

h⊤
r2

hr3
+ ǫr13

√(
h⊤

r2
hr3

)2 − (‖hr2
‖2 − 1) (‖hr3

‖2 − 1)





being ǫr13
= sign(MSr13

), that can be written as:

ǫr13
= sign

(
−h⊤

r1

[
I + [hr2

]2×
]
hr3

)

The vectors te (with e = a, b) computed in this way are actually te(s22). The complete
set of formulas, including te(s11) and te(s33) are given in the summary.

Computation of the normal vector

In Section 4.2.1, we computed t∗e = R⊤
e te from the expressions of ne. Following a symmetric

development, we can obtain now the expressions for n′
e = Re ne, from the given expressions

of te. These are:

n′
a(srii

) =
1

2

[
ǫsrii

ρ

‖te‖
tb(srii

) − ta(srii
)

]

n′
b(srii

) =
1

2

[
ǫsrii

ρ

‖te‖
ta(srii

) − tb(srii
)

]

being
ǫsrii

= sign(srii
)

Computation of the rotation matrix

An expression for the rotation matrix, analogous to (99), can also be obtained:

R⊤
e = H⊤

(
I − 2

ν
n′

et
⊤
e

)
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or, what is the same:

Re =

(
I − 2

ν
te n′⊤

e

)
H
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5 Relations among the possible solutions

The purpose of this section can be easily understood posing the following question: suppose
we have one of the four solutions referred in (7)-(10) of the homography decomposition for
a given homography matrix. Is it possible to find any expressions that allow us to compute
the other three possible solutions ? The answer is yes and these expressions will be given in
this section. In particular, we need to find the expressions of one of the solutions in terms
of the other one:

Rtnb = f(Rtna)

Rtna = f(Rtnb)

We will take advantage of the described analytical decomposition procedure in order to get
these relations. Again, we first introduce the expressions relating the solutions, and then
proceed with the detailed description.

5.1 Summary of the relations among the possible solutions

We summarize here the final achieved expressions. Suppose we have one solution and we
call it: Rtna = {Ra, ta,na}. Then, the other solutions can be denoted by:

Rtnb = {Rb, tb,nb}
Rtna− = {Ra,−ta,−na}
Rtnb− = {Rb,−tb,−nb}

where the elements Rb, tb and nb can be obtained as:

tb =
‖ta‖

ρ
Ra

(
2na + R⊤

a ta

)
(102)

nb =
1

ρ

(
‖ta‖na +

2

‖ta‖
R⊤

a ta

)
(103)

Rb = Ra +
2

ρ2

[
ν ta n⊤

a − tat
⊤
a Ra − ‖ta‖2 Ra nan

⊤
a − 2Ra nat

⊤
a Ra

]
(104)

In these relations the subindexes a and b can be exchanged. The coefficients ρ and ν are:

ρ = ‖2ne + R⊤
e te‖ > 1 ; e = {a, b} (105)

ν = 2 (n⊤
e R⊤

e te + 1) > 0 (106)

ρ2 = ‖te‖2 + 2 ν (107)
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For the rotation axes and angles:

rb =

[
(2 − n⊤

a ta) I + ta n⊤
a + na t⊤a

]
ra + (na× ta)

2 + n⊤
a ta + r⊤a (na× ta)

(108)

being re the chosen parametrization for a rotation of an angle θe about an axis ue:

re = tan

(
θe

2

)
ue ; e = {a, b}

It must be pointed out that, in the usual case when two solutions verify the visibility
constraint according to the given set of image points, if we suppose that one of them is Rtna,
the other one can be either Rtnb or Rtnb−, according to the formulation given.

Special cases

It is worth noticing that these expressions have two singular situations on which they cannot
be used. One of them occurs when ρ = 0, what we already know is physically impossible to
happen. Anyway, we will do a geometric interpretation of this situation, in which:

ta = −Ra na ‖ta‖ and ‖ta‖ = 2 =⇒ ρ = 0

This means that the required motion for the camera going from {F∗} to {F} implies a
displacement towards the reference plane following the direction of the normal and after
crossing this plane, situating at the same distance it was at the beginning. This is clearly
understood if we write the relation:

t∗a = R⊤
a ta = −2na

Where t∗a is the translation vector expressed in the reference frame. Also as the translation
is normalized with the depth to the plane d∗, we will write instead:

t∗a = 2 d∗ na ; t∗a = −R⊤
a ta

As d∗ is measured from the reference frame, we have also changed the displacement vector
to see it as the displacement from the reference frame to the current frame.

The second singular situation for the formulas relating both solutions is when we are in
the pure rotation case. This corresponds to the degenerate case of all the singular values of
the homography matrix being equal to 1. In this case, no formulas are needed to obtain one
solution from the other as both solutions are the same:

tb = ta = 0 ; Ra = Rb

while the normal is not defined.
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5.2 Preliminary relations

First, we look for the relation between vectors y and x in both solutions, Rtna and Rtnb.
From (75), we had:

ya = za ya2
; yb = zb yb2

being:

ze =




ze1

1
ze3



 ; e = {a, b}

A matrix can be introduced as a multiplicative transformation from one to the other:

yb = Ty ya ; Ty = ry2




rz1

0 0
0 1 0
0 0 rz3



 (109)

Where rz1
, rz3

and ry2
are the corresponding ratios:

rz1
=

zb1

za1

; rz3
=

zb3

za3

; ry2
=

yb2

ya2

If we start from the expression of the S matrix as a function of the first solution:

S = xay
⊤
a + yax

⊤
a + yay

⊤
a

which has the form shown in (49) which is reproduced here for convenience:

S =




y2
1 + 2y1x1 y2x1 + y1x2 + y1y2 y3x1 + y1x3 + y1y3

. y2
2 + 2y2x2 y3x2 + y2x3 + y2y3

. . y2
3 + 2y3x3



 (110)

and where for notation simplicity xi and yi are used instead of xai
yai

. If we compute z1

and z3 using this form of the components of matrix S, we get:

za1
=

(1 + ǫ)x1y2 + (1 − ǫ)x2y1 + y1y2

y2(2x2 + y2)

zb1 =
(1 − ǫ)x1y2 + (1 + ǫ)x2y1 + y1y2

y2(2x2 + y2)

za3
=

(1 + ǫ)x3y2 + (1 − ǫ)x2y3 + y3y2

y2(2x2 + y2)

zb3 =
(1 − ǫ)x3y2 + (1 + ǫ)x2y3 + y3y2

y2(2x2 + y2)

where
ǫ = sign(x1y2 − x2y1)
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Then, if ǫ = −1, we get:

za1
=

y1

y2
, za3

=
y3

y2

zb1 =
2x1 + y1

2x2 + y2
, zb3 =

2x3 + y3

2x2 + y2

and, in case ǫ = +1, the solutions are swapped

za1
=

2x1 + y1

2x2 + y2
, za3

=
2x3 + y3

2x2 + y2

zb1 =
y1

y2
, zb3 =

y3

y2

We will assume the first case, so the first solution is the trivial one, that is, that one from
which we wrote S. Otherwise, the value ǫ = +1 will lead us to the same result of how getting
a solution from the other, the only difference is that these two solutions have been swapped,
what does not need to be considered. Then, we assume ǫ = −1 and proceed computing the
ratios:

rz1
=

zb1

za1

=
y2(2x1 + y1)

y1(2x2 + y2)

rz3
=

zb3

za3

=
y2(2x3 + y3)

y3(2x2 + y2)

In order to get the ratio ry2
, we first compute

wb

wa
=

(b − ν)/ab

(b − ν)/aa
=

aa

ab
=

(2x2 + y2)
2 ‖y‖2

y2
2 (‖y‖2 + 4x⊤y + 4)

From this, the third ratio is

ry2
=

√
wb√
wa

=
(2x2 + y2) ‖y‖

y2

√
‖y‖2 + 4x⊤y + 4

(111)

Then, matrix Ty can be constructed:

Ty =
‖y‖√

‖y‖2 + 4x⊤y + 4





2x1+y1

y1
0 0

0 2x2+y2

y2
0

0 0 2x3+y3

y3





Replacing this in (109), gives a very simple expression for computing yb from ya and xa

yb = ±‖ya‖
ρ

(ya + 2xa) (112)
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the plus/minus ambiguity is due to the two possible values of the square root in (111). The
coefficient ρ is

ρ =
√

‖ye‖2 + 4x⊤
e ye + 4 =

√
‖xe × ye‖2 + (x⊤

e ye + 2)2 ; e = {a, b}

No subscript is added to this coefficient as it is equal for every solution. Analogously, the
first solution could be computed from the second one:

ya = ±‖yb‖
ρ

(yb + 2xb)

Now, the relation between the x vectors is being obtained using (56)-(58) and the form of
s11, s22 and s33 from (110), providing

xb =
1

ρ

(
ν

‖ya‖
ya − ‖ya‖xa

)
(113)

xa =
1

ρ

(
ν

‖yb‖
yb − ‖yb‖xb

)

being the coefficient ν
ν = 2 (x⊤

e ye + 1) ; e = {a, b} (114)

5.3 Relations for the rotation matrices

Next, we try to find the relations between Ra and Rb. We can start this development from
the following expression:

H = Ra + tan
⊤
a = Rb + tbn

⊤
b = Rb

(
I + R⊤

b tbn
⊤
b

)

Then, Rb is

Rb =
(
Ra + tan

⊤
a

) (
I + R⊤

b tbn
⊤
b

)−1

We can write Rb as the product of Ra times another rotation matrix:

Rb = RaRab (115)

This rotation matrix is:

Rab =
(
I + R⊤

a tan
⊤
a

) (
I + R⊤

b tbn
⊤
b

)−1

Which can be written in a more compact form as a function of xa,ya and xb,yb:

Rab =
(
I + xay

⊤
a

) (
I + xby

⊤
b

)−1

The required matrix inversion can be avoided, making use of the following relation:

(
I + xby

⊤
b

)−1
= I − 1

1 + x⊤
b yb

xby
⊤
b
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As already said, x⊤
b yb = x⊤

a ya, giving:

Rab =
(
I + xay

⊤
a

)(
I − 2

ν
xby

⊤
b

)

where the expression of ν (114) have been used. Replacing yb and xb by its expressions (112)
and (113), respectively, and after some manipulations, another form of Rab is obtained:

Rab = I +
2

ρ2

[
ν xa y⊤

a − ‖ya‖2 xax
⊤
a − yay

⊤
a − 2yax

⊤
a

]
(116)

Finally, Rb can be written as a function of the elements in Rtna:

Rb = Ra +
2

ρ2

[
ν ta n⊤

a − tat
⊤
a Ra − ‖ta‖2 Ra nan

⊤
a − 2Ra nat

⊤
a Ra

]

5.3.1 Relations for the rotation axes and angles

Now we want to find the expression of the rotation axis and angle of Rb as a direct function
of the axis and angle corresponding to Ra. The following well-known relations will be useful
in the developments. Being R a general rotation matrix, its corresponding rotation axis u

and rotation angle θ can be retrieved from:

cos(θ) =
trace(R) − 1

2

[u]× =
R − R⊤

2 sin(θ)

u =
k′

‖k′‖ ; k′ =




r32 − r23

r13 − r31

r21 − r12



 (117)

where rij are components of the rotation matrix. In order to avoid the ambiguity due to the
double solution: {u, θ} and {−u,−θ}, we have assumed that the positive angle is always
chosen. In the case of the rotation matrix Rab of the form (116), the corresponding angle
θab is:

cos(θab) =

(
x⊤

a ya + 2
)2 − ‖xa × ya‖2

(x⊤
a ya + 2)

2
+ ‖xa × ya‖2
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As (x⊤
a ya + 2) is always strictly positive, we can divide by its square in order to get a more

compact form for the trigonometric functions of this angle:

cos(θab) =
1 − η2

1 + η2

sin(θab) =
2 η

1 + η2

tan(θab) =
2 η

1 − η2

tan
θab

2
= η

Being η:

η =
‖xa × ya‖
(x⊤

a ya + 2)
(118)

The rotation axis uab is obtained from the vector k′ in (117) which, for the case at hand,
can be written as:

k′ =




r32 − r23

r13 − r31

r21 − r12



 =
4

ρ2

(
y⊤

a xa + 2
)
(ya × xa)

As the norm of this vector results:

‖k′‖ =
4

ρ2

(
y⊤

a xa + 2
)
‖ya × xa‖

the unitary uab vector will be:

uab =
ya × xa

‖ya × xa‖
This means that we already have the axis and angle corresponding to the ”incremental”
rotation Rab as a function of Rtna:

tan
θab

2
=

‖na × R⊤
a ta‖

(n⊤
a R⊤

a ta + 2)
(119)

uab =
na × R⊤

a ta

‖na × R⊤
a ta‖

(120)

As Rba = R⊤
ab, and as we always select the positive rotation angle from any rotation matrix,

it is clear that:
θba = θab

uba = −uab

In order to get a suitable relation between the axes and angles of rotation, we will use now
the relations for the composition of two rotations from the quaternion product.
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Making use of the definition of quaternion product

A generic quaternion has a real part and a pure part:

◦
q=

[
α

β

]

Any given rotation, R, can be expressed by the three parameters given by a unitary quater-
nion:

α = cos
θ

2
; β = sin

θ

2
u

being, θ and u, as usual, the angle and axis corresponding to the rotation matrix R. Consider
again our rotation matrix Rb, which is the composition of the rotations Ra and Rab:

Rb = Ra Rab

The angles and axes of a composition of two rotations are related as follows, according to
the quaternion composition rule:

◦
qb =

◦
qa ◦

◦
qab

αb = αa αab − β⊤
a βab

βb = βa × βab + αa βab + αab βa

Hence, the following relations hold:

cos
θb

2
= cos

θa

2
cos

θab

2
− sin

θa

2
sin

θab

2
u⊤

a uab

sin
θb

2
ub = cos

θab

2
sin

θa

2
ua + cos

θa

2
sin

θab

2
uab + sin

θa

2
sin

θab

2
(ua × uab)

From these relations, we can derive two particular cases, that may be helpful for future
works:� When the axis of rotation, ua, is normal to the plane defined by ta and na. In this

case, R⊤
a ta is also on this same plane and, since uab was defined (see (120)) as

uab =
ka

‖ka‖
; ka = ya × xa = na × R⊤

a ta

verifying the following relations:

u⊤
a uab = 1 ; ua × uab = 0

what means that uab = ua� Another particular case is when ua = ±na. In this case (among others), the conditions
verified are:

u⊤
a uab = 0 ; ‖ua × uab‖ = 1

what means that uab ⊥ ua.
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Resuming our analysis after these comments on particular cases, simpler relations can be
obtained if we transform the relations into tangent-dependent relations, dividing both by
cos θa

2 cos θab

2 :

cos θb

2

cos θa

2 cos θab

2

= 1 − tan
θa

2
tan

θab

2
u⊤

a uab

sin θb

2

cos θa

2 cos θab

2

ub = tan
θa

2
ua + tan

θab

2
uab + tan

θa

2
tan

θab

2
(ua × uab)

Dividing again the second one by the first one:

rb =
ra + rab + ra × rab

1 − r⊤a rab
(121)

where we are combining axis and angle of rotation in the following parametrization:

re = tan
θe

2
ue ; e = {a, b, ab} (122)

From (119) and (120), we knew that:

rab =
na × R⊤

a ta

(n⊤
a R⊤

a ta + 2)
(123)

We could also write the expression of ra in terms of rb and rab:

ra =
rb − rab − rb × rab

1 + r⊤b rab

which comes straightaway from (121), using the fact that rba = −rab. Finally, it is interesting
to write Re in terms of re. This is easily done starting from Rodrigues’ expression of the
rotation matrix:

Re = I + sin(θe)[ue]× + (1 − cos(θe))[ue]
2
×

Expanding the sine and cosine as functions of the half angle, and dividing by cos2(θe/2),

Re = I + 2 cos2
θe

2

(
[re]

2
× + [re]×

)

As cos2(θe/2) can be written as a function of the tangent:

cos2
θe

2
=

1

1 + tan2 θe

2

=
1

1 + ‖re‖2

The final expression is then:

Re = I +
2

1 + ‖re‖2

(
[re]

2
× + [re]×

)
(124)
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and for the inverse rotation:

R⊤
e = I +

2

1 + ‖re‖2

(
[re]

2
× − [re]×

)
(125)

Another equivalent form is:

Re =
1

1 + ‖re‖2

(
(1 − ‖re‖2) I + 2 [re]× + 2 rer

⊤
e

)

R⊤
e =

1

1 + ‖re‖2

(
(1 − ‖re‖2) I − 2 [re]× + 2 rer

⊤
e

)

As a collateral result, our rotation parametrization allows us to write:

(I + Re)
−1

=
1

2
(I − [re]×)

(
I + R⊤

e

)−1
=

1

2
(I + [re]×) (126)

Using the form given in (125) for R⊤
a in (123) and replacing the resulting expression of rab

in (121), the following relation can be found:

rb =
na × (ta × ra) + 2 ra + na (t⊤a ra) + (na× ta)

2 + n⊤
a ta + r⊤a (na× ta)

This relation can also be written as:

rb =

[
(2 − n⊤

a ta) I + ta n⊤
a + na t⊤a

]
ra + [na]× ta

2 + n⊤
a ta + n⊤

a [ta]×ra

In the particular case of pure translation, the false solution has the form:

ra = 0 =⇒ rb =
na × ta

2 + n⊤
a ta

5.4 Relations for translation and normal vectors

We will derive now the relations between translation vectors and normal vectors correspond-
ing to the different solutions, starting from the relations among the y and x given in Section
5.2. By simple substitution of (46) and (47) in (112) we can write

nb =
1

ρ

(
‖ta‖na +

2

‖ta‖
R⊤

a ta

)

Again, the subindexes a and b are exchangeable in this expression. Doing the same substi-
tution in (113) we get

tb =
‖ta‖

ρ
Rb

(
ν na − R⊤

a ta

)
(127)
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The coefficients ρ and ν can be written directly as functions of Rtn

ρ =
√

‖ne × R⊤
e te‖2 + (n⊤

e R⊤
e te + 2)2 =

√
‖te‖2 + 4n⊤

e R⊤
e te + 4 =

√
‖2Rene + te‖2 ; e = {a, b}

that can be written in a more closed form as:

ρ = ‖2ne + R⊤
e te‖ > 1 ; e = {a, b}

ν = 2 (n⊤
e R⊤

e te + 1) > 0

The condition ν > 0 is evident from (76). On the other hand, the less evident condition
ρ > 1, is proved in Appendix C.5. The expression of t depends not only on Ra, but also on
Rb. Recalling that Rb could be written as:

Rb = Ra Rab

being Rab given by (116), and substituting in (127), we get, after some manipulations:

tb =
1

ρ
Ra

(
‖ya‖2xa + 2ya

)

From this, a more compact relation between the two translation vectors is obtained:

tb =
‖ta‖

ρ
Ra

(
2na + R⊤

a ta

)

In view of this, we can rewrite the expression for nb previously given in a way more similar
to that of tb:

nb =
1

ρ

(‖ta‖
2

2na +
2

‖ta‖
R⊤

a ta

)

This expression makes evident a particularity in the relation of both solutions of the ho-
mography decomposition, when ‖te‖ = 2. If this is the case, both solutions are coupled in
a peculiar way:

‖te‖ = 2 =⇒






nb =
R⊤

a tb

‖tb‖
na =

R⊤
b ta

‖ta‖
If we want to infer a geometric interpretation of this fact, it must be taken into account
that we are using a normalized homography matrix, this means that the distances are
normalized up to d∗, the distance of the plane to the origin of the reference coordinate
system. Hence, ‖te‖ = 2 has to be understood as the magnitude of the translation being
double the distance d∗. This means that we can retrieve the unknown scale factor d∗ with a
very simple experiment: put the camera in front of the object, move the camera backwards
until you detect that the previous equality becomes true, then the scale factor d∗ is equal
to half the displacement made. It may be worth considering the interest of the previous
relation for self-calibration purposes in future works.
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6 Position-based visual servoing based on analytical de-

composition

We develop in this section a new vision-based control method for positioning a camera
with respect to an unknown planar object as an application of the analytic homography
decomposition, introduced in the previous sections. Standard methods use non-linear state
observers based on homography decomposition. In the general case, there are two possible
solutions to the decomposition problem, as we have already seen. Thus, some additional
“a priori” information must be used. In this section, we propose to use the analytical
decomposition of the homography matrix in order to define a new control objective that
allows to discard the false solution without any “a priori” information. The stability of the
proposed control law has been proved.

6.1 Introduction

Visual servoing can be stated as a non-linear output regulation problem [2]. The output is
the image acquired by a camera mounted on a dynamic system. The state of the camera is
thus accessible via a non-linear map. For this reason, positioning tasks have been defined
using the so-called teach-by-showing technique [2]. The camera is moved to a reference
position and the corresponding reference image is stored. Then, starting from a different
camera position the control objective is to move the camera such that the current image will
coincide to the reference one. In our work, we suppose that the observed object is a plane in
the Cartesian space. One solution to the control problem is to build a non-linear observer
of the state. This can be done using several output measurements. The problem is that,
when considering real-time applications, we should process as few observations as possible.
In [3, 4, 6, 5] the authors have built a non-linear state observer using additional information
(the normal to the plane, vanishing points, ...). In this case only the current and the reference
observations are needed. In this paper, we intend to perform vision-based control without
knowing any a priori information. To do this we need more observations. This can be done
by moving the camera. If we move the camera and the state is not observable we may have
some problems. For this reason, we propose in this section a different approach. We define a
new control objective in order to move the camera by keeping a bounded error and in order
to obtain the necessary information for the state observer [9].

6.2 Vision-based control

We consider the control of the following nonlinear system:

ẋ = g(x,v) (128)

y = h(x,µ) (129)
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where x ∈ SE(3) is the state (i.e. the camera pose), y is the output of the camera and v is
the control input (i.e. the camera velocity). The output of the camera depends on the state
and on some parameters µ (e.g. the normal of the plane, ...). Let x∗ be the reference state
of the camera. Without loss of generality one can choose x∗ = e, where e is the identity
element of SE(3). Then, the reference output is y∗ = h(x∗,µ). If we suppose that the
camera displacement is not too big, we can choose a state vector:

x =

[
t

r

]

where t is the translation vector and r is:

r = tan

(
θ

2

)
u

according to the chosen rotation parametrization (u and θ are the axis and angle of rotation,
respectively). On the other hand, the control input is a velocity screw of the form:

v =

[
υ

ω

]

being υ and ω the specified linear and angular velocities, respectively. In other words,
the open-loop system under consideration is a velocity-driven robot, whose dynamics is
neglected, together with a visual sensor providing some reference points in the image pi.
The input signal is a velocity setpoint and it is assumed that the robot instantaneously
reaches the commanded velocity. Then, the system can be viewed as a pure integrator
in Cartesian space plus a non-linear transformation from Cartesian space to image space:
From this, the position and orientation derivatives of the desired camera pose, respect to

SensorRobot pi

[
υ

ω

] [
t

r

]

Figure 4: System’s inputs and outputs

the current one, are:

ẋ =

[
ṫ

ṙ

]
=

[
I −[t]×
0 Jω

] [
υ

ω

]
(130)

where Jω is the Jacobian relating the derivative of the chosen rotation parametrization to
the angular velocity commanded to the system:

ṙ = Jω ω
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6.2.1 Homography-based state observer with full information

The state observation is intended to be made from the homography decomposition. In [6]
a new class of visual servoing methods has been proposed, based on the estimation of the
homography matrix H. An efficient real-time algorithm for estimating the homography from
raw images has been proposed in [7]:

H = argmin‖y(H) − y∗‖

We already know that there exist 4 solutions, in the general case, for the homography
decomposition problem, two of them being the ”opposites” of the other two.

Rtna = {Ra, ta,na} ; Rtna− = {Ra,−ta,−na} (131)

Rtnb = {Rb, tb,nb} ; Rtnb− = {Rb,−tb,−nb} (132)

These can be reduced to only two solutions applying the constraint that all the reference
points must be visible from the camera (visibility constraint). We will assume along the
development that the two solutions verifying this constraint are Rtna and Rtnb and that,
among them, Rtna is the ”true” solution. These solutions are related according to (102)-
(104). In practice, in order to determine which one is the good solution, we can use an
approximation of the normal n∗. Thus, having an approximated parameter vector µ̂ we
build a non-linear state observer:

x̂ = ϕ(y(x),y∗, µ̂)

6.3 A modified control objective

A control law based on the Cartesian error on position and orientation is being developed.
The error between the current relative camera pose and the desired one is obtained from
the homography decomposition. However, we assume that we are not able to discard one
of the two possible solutions, Rtna or Rtnb, as a false one. This situation would arise, for
instance, if we do not have any a priori knowledge about the true normal to the plane. In
this case, we want to define an error function involving a combination of the true and false
solutions:

e =

[
et(ta, tb)

er(ra, rb)

]

where et and er are the functions defining the translation and orientation error, respectively.
It is clear that this function should be symmetric, in the sense that, since we cannot distin-
guish which solution is the true one, we have no reason to weight one of them more than the
other. On the other hand, we want that the closed-loop system resulting from this control
law is stable and makes the system to converge to an equilibrium in which the current cam-
era frame is coincident with the desired one. It will be shown that a control law based on the
average of the two possible solutions can be used, such that the system will always converge,
not to the mentioned desired equilibrium, but to another particular configuration in space.
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Nevertheless, we will see that the system converges in such a way that we are always able
to discard the false solution. Once the true solution has been identified, the camera can
be controlled using only this solution, taking the system to the desired equilibrium. We
describe next this averaged control law, and we will see that, taking advantage of the new
analytic formulation for the homography decomposition problem, we are able to prove the
stability of such a control law.

6.3.1 Mean-based control law

For simplicity in the upcoming development, the solution Rtna is supposed to be the un-
known right one. That is, it gives the true position and orientation of the desired reference
frame with respect to the current one. As a task function [10] to be minimized, we define a
translation and orientation error:

e =

[
et

er

]
=

[
tm

rm

]

Being tm and rm the translation and orientation means, respectively, computed as follows:

tm =
ta + tb

2
(133)

rm ⇐= Rm = Ra (R⊤
a Rb)

1/2 (134)

The rotation matrix, Rm, average of Ra and Rb, computed in such way is defined as the
Riemmanian mean of two rotations (for more details, see [8]). From Rm, according to our
rotation parametrization (122), we obtain rm. Using the given relations between the two
solutions (102), (104) and (108), it is clear that we could write tm and Rm only as a function
of the presumed true solution: Rtna. Then, we can rewrite (130) as:

[
ṫa

ṙa

]
=

[
I −[ta]×
0 Jω

] [
υ

ω

]

From the defined task error we can compute the input control action as:

v =

[
υ

ω

]
= −λ e (135)

where λ is a positive scalar, tuning the closed-loop convergence rate. The derivative of the
task error is related to the velocity screw, according to some interaction matrix L to be
determined:

ė = Lv

Giving the following closed-loop system:

ė = −λLe (136)
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We are now interested in the computation and properties of the interaction matrix L. We
will identify the components of this matrix as:

[
ėt

ėr

]
=

[
L11 L12

L21 L22

] [
υ

ω

]

[
ėt

ėr

]
=





∂et

∂ta

∂et

∂ra
∂er

∂ta

∂er

∂ra




[

I −[ta]×
0 Jω

] [
υ

ω

]

L11 =
∂et

∂ta

L12 = −∂et

∂ta
[ta]× +

∂et

∂ra
Jω (137)

L21 =
∂er

∂ta

L22 = −∂er

∂ta
[ta]× +

∂er

∂ra
Jω

The following sections are devoted to the computation and analysis of the properties (when
possible) of the sub-matrices L11, L12, L21, L22. However, before continuing with the control
issues of our scheme, we need to develop some more details regarding to the relation of rm

and {ra, rb}. This is what the next subsection is devoted to.

6.3.2 Parametrization of the mean of two rotations

As said above, we use as a measure of the orientation error the average of the two rotations
Ra and Rb.

Rm = Ra (R⊤
a Rb)

1/2

As we already know, Rb can be written as a function of Rtna. Using this, we want to
find an expression of our parametrization of the orientation mean, rm, as a function of ra.
According to relation (115), that we rewrite here for convenience:

Rb = RaRab

Rb is the composition of these two rotations. Using this, Rm can also be written as the
composition of two rotations:

Rm = Ra Rh = Ra R
1/2
ab

where we have called Rh the ”half” rotation corresponding to Rab, that is a rotation of
half the angle, θab/2, about the same axis uab. We have already got the expression for the
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parametrization r of a composition of two rotations, which was given in (121). Using this
relation for the composition of ra and rh:

rm =
ra + rh + ra × rh

1 − r⊤a rh
(138)

where11

rh = tan
θab

4
uab

We had previously computed the expressions for tan(θab/2) and uab, which are given in
(119) and (120), respectively. Making use of the trigonometric relation:

tan
α

2
=

±
√

1 + tan2 α − 1

tan α
; for any angle α

and considering normalized angles, θab ∈ [−π, π], then θab/4 ∈ [−π/4, π/4], we can obtain
the following relation without the plus/minus ambiguity:

tan
θab

4
=

√
1 + tan2(θab/2) − 1

tan(θab/2)

From this relation, using (119) and (120), we obtain the desired form for rh:

rh =
ρ −

(
2 + n⊤

a t∗a
)

‖na × t∗a‖2
(na × t∗a) (139)

being, as usual:
t∗a = R⊤

a ta

As a conclusion, the expressions (138) and (139) give us the desired relation between rm

and the elements in Rtna.

Computation of Jω

Previous to studying the interaction sub-matrices, we will find the expression for matrix
Jω in (130). This Jacobian relates our orientation parametrization to the angular velocity
commanded to the system:

ṙa = Jω ω

The derivation of this Jacobian is easier if we consider the derivative of a quaternion and its
relation with the angular velocity. As described in [10] (page 37), this relation is given by:

d
◦
q

dt
=

1

2
(ω ◦

◦
q)

11An experimental observation that may be helpful sometime is that it seems um is always on the plane

defined by ua and ub.
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where
◦
q is the unitary quaternion used as a representation of a rotation and ◦ means for

the quaternion product. As our orientation parametrization is close to the quaternion rep-
resentation for a rotation, this relation is very useful. Developing the quaternion product:

ω ◦
◦
q=

[
0

ω

]
◦
[
α

β

]
=

[ −ω⊤β

ω × β + α ω

]

being α and β the real and pure parts, respectively, of
◦
q. Then

d
◦
q

dt
=

[
α̇

β̇

]
=

[ − 1
2 β⊤ω

1
2 (α I − [β]×) ω

]
(140)

As our rotation parametrization, r, can be obtained from the quaternion as:

r =
β

α

The time derivative of ra will be:

ṙa =
α β̇ − α̇ β

α2

replacing the expressions obtained in (140) for α̇ and β̇, we can write:

ṙa =
1

2α2

(
α2I − α [ω]× + β β⊤

)
ω

which can be put in terms of ra, providing the desired Jacobian:

ṙa = Jω ω ; Jω =
1

2

(
I − [ra]× + ra r⊤a

)
(141)

Using (125), another way of giving matrix Jω is:

Jω =
1 + ‖ra‖2

4

(
I + R⊤

a

)
(142)

From (126), we can easily write the expression for the inverse of this matrix:

J−1
ω =

2

1 + ‖ra‖2
(I + [ra]×)

Computation of L11

The translation error was defined as the average of the two solutions for the translation
vector:

et = tm =
ta + tb

2
(143)
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L11 is then:

L11 =
∂et

∂ta
=

1

2

(
∂tb

∂ta
+ I

)

From (102) and using:

∂‖ta‖
∂ta

=
ta

‖ta‖
;

∂‖ta‖2

∂ta
= 2 ta ;

∂ρ

∂ta
=

1

ρ
(ta + 2Rana)

the expression of the Jacobian L11 can be found:

L11 =
1

2

[
2µ1n

′
at

⊤
a + µ1tat

⊤
a − 4µ2n

′
an

′
a
⊤ − 2µ2tan

′
a
⊤

+ µ3I
]

(144)

where n′
a means for

n′
a = Rana

and the scalars µi are:

µ1 =
1

ρ‖ta‖
− µ2 ; µ2 =

‖ta‖
ρ3

; µ3 =
‖ta‖

ρ
+ 1 (145)

Computation of L12

For the computation of L12, the Jacobian ∂et

∂ra
is needed (see (137)):

∂et

∂ra
=

1

2

∂tb

∂ra

as ta is independent from ra. We use n′
a = Ra na as before, and write (102) and ρ as:

tb =
‖ta‖

ρ
(2n′

a + ta) ; ρ =
√
‖ta‖2 + 4 t⊤a n′

a + 4

Then, using [
∂ρ

∂ra

]⊤
=

[
∂ρ

∂n′
a

]⊤
∂n′

a

∂ra
;

∂ρ

∂n′
a

=
2

ρ
t⊤a

we compute
∂n′

a

∂ra
in an indirect way. The time derivative of n′

a is:

dn′
a

dt
= Ṙa na = [ω]×Ra na = −[n′

a]×ω

as na is constant. As we have previously seen (141):

ω = J−1
ω ṙa
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then, we have:
dn′

a

dt
= −[n′

a]×J−1
ω ṙa

from what,
∂n′

a

∂ra
can be written as:

∂n′
a

∂ra
= −[n′

a]×J−1
ω = −Ra [na]× R⊤

a J−1
ω

After some simple manipulations, we can write:

∂et

∂ra
=
[
2µ2 n′

a t⊤a + µ2 ta t⊤a + (1 − µ3) I
]

[n′
a]× J−1

ω

the coefficients µ2 and µ3 were defined in (145). From this, we can conclude that the intended
Jacobian is (see again (137)):

L12 = −L11 [ta]× +
[
2µ2 n′

a t⊤a + µ2 ta t⊤a + (1 − µ3) I
]

[n′
a]×

where, as already said, n′
a is:

n′
a = Ra na

After further reduction of this expression, an extremely closed form for L12 is obtained:

L12 = −[et]× (146)

This means that, in a similar way to ṫa:

ṫa = Iυ + (ω × ta)

we can write:
ėt = L11 υ + (ω × et)

or what is the same:
ṫm = L11 υ + (ω × tm)

The interpretation of this is that, as long as the angular velocity is concerned, the same
effect can be viewed on the average of the real and false solutions for the translation vector,
tm, than on the real solution alone, ta.

Computation of L21

Regarding to the interaction sub-matrix:

L21 =
∂er

∂ta
; er = rm
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We first try to compute the total time derivative of er, which can be written as:

ṙm =
∂rm

∂rh
ṙh +

∂rm

∂ra
ṙa (147)

It is easy to show that the first addend does not depend on ω. In fact, this addend can be
written as:

∂rm

∂rh
ṙh =

∂rm

∂rh

∂rh

∂t∗a
R⊤

a υ

as

ṫ∗a =
d
[
R⊤

a ta

]

dt
= R⊤

a υ

On the other hand, the second addend does not depend on υ. To check this, it is enough to
remind that:

ṙa = Jω ω

From what, the second addend can be written as:

∂rm

∂ra
ṙa =

∂rm

∂ra
Jω ω

This means that if we match the expression (147) with the following one:

ėr = ṙm = L21 υ + L22 ω (148)

the interaction sub-matrices L21 and L22 can be obtained as:

L21 =
∂rm

∂rh

∂rh

∂t∗a
R⊤

a (149)

L22 =
∂rm

∂ra
Jω (150)

In this subsection, we are interested in L21. Then, going ahead with the first Jacobian in
(149):

∂rm

∂rh
=

(1 + ‖ra‖2) I +
(
[ra]2× + [ra]×

)
(I + [rh]×)

(1 − r⊤a rh)2

Using the relation (124), Ra can be introduced here:

∂rm

∂rh
=

1 + ‖ra‖2

2 (1 − r⊤a rh)2
[ (Ra + I) + (Ra − I) [rh]× ]

The second Jacobian to be determined in (149) is:

∂rh

∂t∗a
=

1
ρ z t∗a

⊤ + ( 2
ρ − 1) zn⊤

a + σ1

(
I − 2

‖z‖2 z z⊤
)

[na]×

‖z‖2
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being the coefficient σ1 and the vector z:

z = na × t∗a ; σ1 = ρ −
(
2 + n⊤

a t∗a
)

That is, rh can be put in terms of these elements as:

rh =
σ1

‖z‖2
z

When we multiply ∂rm

∂th
and ∂rh

∂t∗a
, some simplification can be performed since all the terms

involving the following product become null:

[rh]×z = 0

as vectors rh and z are parallel. Finally, it must be said that a closed form has not been
obtained yet for this Jacobian. Nevertheless, we will see afterwards that we do not need to
care about this matrix, whatever its form and complexity.

Computation of L22

We consider here as a starting point the relation (150). Using also relation (138), the
Jacobian ∂rm

∂ra
can be computed:

∂rm

∂ra
=

1 + ‖rh‖2

2 (1 − r⊤a rh)2
[
R⊤

h (I − [ra]×) + (I + [ra]×)
]

After post-multiplying this Jacobian by Jω, we can obtain the following expression for L22:

L22 =
(1 + ‖ra‖2) (1 + ‖rh‖2)

4 (1 − r⊤a rh)2
(
I + R⊤

m

)

That can be put into a very closed form:

L22 =
1 + ‖rm‖2

4

(
I + R⊤

m

)
(151)

It can be seen that it has exactly the same structure as Jω (142). This means that, in the
same way we wrote:

ṙa = 0υ + Jω ω

we can write:
ṙm = L21 υ + Jω(rm)ω

With the notation Jω(rm) we mean replace in the expression of Jω the rotation ra by that
corresponding to rm.
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6.4 Stability analysis

The stability of mean-based control presented at the beginning of this section is being
analyzed. First, the stability of the translation error, et, is considered.

6.4.1 Stability of the translation error et

In order to prove the convergence of et to zero, the following Lyapunov function candidate
is proposed:

Vt =
1

2
e⊤t et

Its time derivative is:

V̇t =
d‖et‖

dt
= e⊤t ėt

The expression of ėt in terms of the components of the interaction matrix is:

ėt = L11 υ + L12 ω

Using the form (146) for L12 and replacing the control inputs υ and ω using (135):

ėt = −λL11 et − λL12 er = −λL11 et − λ [et]× er

giving
V̇t = −λ e⊤t L11 et

As L11 is not, in general, a symmetric matrix, it is convenient to write the previous expression
as:

V̇t = −λ e⊤t S11 et (152)

being S11 the symmetric part of matrix L11:

S11 =
L11 + L⊤

11

2

Then, the convergence of et depends only on the positiveness of matrix S11. From (144), it
can be seen that matrix S11 has the form:

S11 =
1

2

[
(µ1 − µ2)

(
n′

at
⊤
a + tan

′
a
⊤
)

+ µ1tat
⊤
a − 4µ2n

′
an

′
a
⊤

+ µ3I
]

(153)

Given the structure of this matrix, its eigenvalues can be easily computed, being:

λ1 =
ρ + ‖ta‖

2 ρ
> 0

λ2 =
‖ta‖ + 1

2 ρ
+

1

2
+

t⊤a Rana

2 ρ ‖ta‖
> λ3

λ3 =
‖ta‖ − 1

2 ρ
+

1

2
+

t⊤a Rana

2 ρ ‖ta‖
≥ 0
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The condition for the first eigenvalue is clear as we know that ρ is positive. The second
eigenvalue is greater than the third one, as their difference is:

λ2 − λ3 =
1

ρ
> 0

Finally, it can be proved that the third eigenvalue is always non-negative and it only becomes
null in a particular configuration, namely

R⊤
a ta

‖ta‖
= −na (154)

The proof is given in Appendix D.1. The geometric interpretation of this condition is shown
in the left drawing of Figure 5. In this figure, we can see that ta, if expressed in the samena �

taF�F
na �

tatbF�Fa
Fb

Figure 5: Geometric configuration in which L11 becomes singular.

frame as na, that is, frame F∗, is parallel to the latter. According to relation (154), the
only possible configuration should be the one depicted in the left figure, that is, the current
frame between the desired frame and the object plane, so the translation vector points in
the opposite direction to na. However, it is easy to see that the other configuration, when
the current frame is behind the desired frame is also possible. The reason is very simple, if
we make notice of the peculiar relation existing between Rtna and Rtnb in the configuration
described by (154). In this particular case, (102)-(108) become:

tb = −ta ; nb = −na ; rb = ra (155)

This situation is depicted in the right-most drawing of Figure 5, where the ”true” and
”false” solutions are shown. During our developments, we have been assuming that Rtna

corresponds to the true solution, and Rtnb to the false one. However, in practice we assume
there is no way of distinguishing between them. This means that, Rtnb can be the true
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solution, instead of Rtna. When this happens, we are in the situation when the real solution
for the current frame is behind the desired one. Then we need to generalize the geometric
configuration (154) by this new one:

R⊤
a ta

‖ta‖
= ±na (156)

One further consideration, derived from the relations (155), is that one of the two solutions
Rtna, Rtnb will not verify the visibility constraint in this configuration, as the normals
are pointing in opposite directions. Resuming our study of V̇t (152) and according to the
previous paragraphs, we can state that V̇t is always non-positive and it is null only at the
equilibrium point, et = 0. The reason is that the only eigenvalue of S11 that can be zero,
λ3, only becomes effectively zero when the relation (156) holds. We know that in this
configuration tb = −ta, what implies that the mean, and hence the translation error, are
null.

et = tm =
ta + tb

2
= 0

As a conclusion for et, it always converges to the equilibrium point et = 0, that coincides
with the geometric configuration (156). Now we have proved et always converges, there is
another interesting question we need to answer. It can be posed as follows:

‖ta‖ never increases using the mean-based control law

We need to complete the previous analysis to make sure that, during the convergence of
et, the current camera frame does not go away, at the risk of losing visibility of the object.
In fact, if the answer to the question is affirmative, we are proving that the current camera
pose is always getting closer (or at least, never getting further) to the desired camera pose,
as the system converges towards et = 0. Recalling the expression:

ṫa = υ − [ta]× ω

we analyze if the time derivative of the norm of ta can be positive:

Vta
=

1

2
‖ta‖2 =⇒ V̇ta

= t⊤a ṫa = t⊤a υ

Using our mean-based control law υ = −λ et:

V̇ta
= −λ t⊤a tm = −λ

2
t⊤a (ta + tb) (157)

From relation (102) we can write tb as the product of a matrix and ta:

tb = Mta ; M =
1

ρ

(
2

‖ta‖
Ra na t⊤a + ‖ta‖ I

)
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Using this expression in (157), we can write:

V̇ta
= −λ

2
t⊤a Ata ; A = I + M

where the symmetric part of matrix A, denoted by SA, can be introduced:

V̇ta
= −λ

2
t⊤a SA ta

Computing the eigenvalues of matrix SA:

λ1 = 1 +
‖ta‖

ρ

λ2 = 1 +
‖ta‖ + 1

ρ
+

t⊤a Rana

ρ ‖ta‖

λ3 = 1 +
‖ta‖ − 1

ρ
+

t⊤a Rana

ρ ‖ta‖

which are exactly double of the eigenvalues of matrix S11, for which we concluded they were
always positive, except at the equilibrium point, et = 0, where λ3 = 0. This confirms that
‖ta‖ is always non-increasing using the proposed mean-based control law.

6.4.2 Stability in the orientation error er

We define the following Lyapunov function candidate:

Vr =
1

2
e⊤r er

being its time derivative:

V̇r =
d‖er‖

dt
= e⊤r ėr

The expression for the derivative of er is:

ėr = L21 υ + L22 ω = −λL21 et − λL22 er

Considering that et always converges to zero, as we have just seen, the first addend goes
to zero. This is why the particular form of L21 does not matter, as said before. Regarding
to the second addend, the positiveness of matrix L22 has to be proved. As it is again a
non-symmetric matrix, we analyze its symmetric part:

S22 =
L22 + L⊤

22

2
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which has the form:

S22 =
1 + ‖rm‖2

4

(
2 I + Rm + R⊤

m

)

The eigenvalues of
(
2 I + Rm + R⊤

m

)
are:

λ1 = 4 ; λ2 = λ3 = 2 (1 + cos θm) ≥ 0

λ2 = λ3 = 0 when θm = ±π. Even if we consider ±π is a wide range for the mean angle, it
is a limitation we can avoid if we realize the way L22 takes part in the closed-loop equation
(136). In this equation, we can see that L22 appears as the product:

L22 er = L22 rm

Replacing L22 using (151), this product becomes:

L22 rm =
1 + ‖rm‖2

4

(
I + R⊤

m

)
rm

As rm is in the rotation axis of Rm, it does not change with the rotation:

Rm rm = rm

Hence, the product reduces to:

L22 rm =
1 + ‖rm‖2

2
rm

This means that, as far as the closed-loop system is concerned, L22 can be replaced in our
interaction matrix by the following symmetric, positive-definite matrix:

L′
22 =

1 + ‖rm‖2

2
I

Thus, we obtain:
d‖er‖

dt
→ −λe⊤r L22 er = −λ

1 + ‖rm‖2

2
e⊤r er

Since this is always non-positive, the conclusion for er is that it always converges to er = 0,
that is, Ra = Rb = I.

6.4.3 Conclusions on the stability of the mean-based control

At this point, the conclusion for the stability of the complete position-based control scheme
is that global asymptotic stability can be achieved using the mean of the true and the false
solutions. The only limitation is due to the use of tan(θm/2) in rm, that may produce
saturation as the mean angle θm goes to ±π. Finally, it must be noticed that the achieved
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equilibrium point, e = 0, is not the desired configuration in which the current camera frame
coincides with the desired one:

e = 0 ;

[
ta

ra

]
= 0

Instead, it corresponds to a line in the Cartesian space defined by:

R⊤
a ta

‖ta‖
= ±na ; Ra = I (158)

e = 0 ⇒
[

ta

‖ta‖

ra

]
=

[±na

0

]

That is, the current camera frame is properly oriented according to the reference frame,
but the translation error always converges reaching a configuration parallel to the reference-
plane normal. This will be overcome using a switching control law as we will see in the next
section.

6.4.4 Practical considerations bounding global stability

In our theoretical developments, we assumed that Rtna is the true solution among the four
possible (131)-(132). If we compute Rtnb from Rtna using the formulas, it may happen that
Rtnb does not verify the visibility constraint, in spite of the fact that Rtna does. This means
that Rtnb− should be chosen instead, and used together with Rtna to compute the mean-
based control inputs. Moreover, in a practical situation, when controlling with the average
of the true and false solutions, as we are assuming there is no mean of discerning which one
is the true one, we must choose, from the four possible solutions, those two fulfilling the
visibility constraint. Making this choice we are making sure that one of the two solutions
is the true one, but the other is a false solution, may be the one obtained from the true
one using the formulas o may be its opposite. This means that we need to prove also the
convergence of the mean-based control law when using the couple {Rtna,Rtnb−}, instead
of {Rtna,Rtnb} as done before. In consequence, consider the alternative mean control law:

tm =
ta − tb

2

rm ⇐= Rm = Ra (R⊤
a Rb)

1/2

instead of (133)-(134). The only difference with respect to the previous analysis is a new
L11−

matrix. Instead of (144), now we have:

L11−
=

1

2

[
−2µ1n

′
at

⊤
a − µ1tat

⊤
a + 4µ2n

′
an

′
a
⊤

+ 2µ2tan
′
a
⊤

+ (2 − µ3)I
]

(159)

Instead of (153), the symmetric part of L11−
is:

S11−
=

1

2

[
(µ2 − µ1)

(
n′

at
⊤
a + tan

′
a
⊤
)
− µ1tat

⊤
a + 4µ2n

′
an

′
a
⊤

+ (2 − µ3)I
]

(160)
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The eigenvalues of which are:

λ1−
=

ρ − ‖ta‖
2 ρ

λ2−
=

1 − ‖ta‖
2 ρ

+
1

2
− t⊤a Rana

2 ρ ‖ta‖

λ3−
= −1 + ‖ta‖

2 ρ
+

1

2
− t⊤a Rana

2 ρ ‖ta‖

These eigenvalues verify:

λ1−
> 0 ; λ2−

> λ3−
; λ3−

≥ 0 if ‖ta‖ ≤ 1

The condition for the first eigenvalue is clear as ρ is:

ρ =
√

‖ta‖2 + 2 ν > ‖ta‖

and ν > 0. The second eigenvalue is again greater that the third one, as their difference is:

λ2 − λ3 =
1

ρ
> 0

The condition for λ3−
is a sufficient condition and is proved in Appendix D.2. Actually, the

necessary and sufficient condition proved in that appendix for λ3−
being non-negative is:

‖ta‖ ≤ 4 − (1 + cα)2

2 (1 − cα)
(161)

being cα = cos α, and α the angle between vectors na and R⊤ta. The conclusion from that
proof is that L11−

is always positive-semidefinite when (161) is verified (or using a more
restrictive but simpler condition, when ‖ta‖ ≤ 1) and that it only becomes singular in the
well-known configuration (156). A similar study to that in Section 6.4.1 allows us to state
that: ‖ta‖ never increases using the mean control law based on the couple {Rtna, Rtnb−}.
This confirms that if we start from a configuration with a distance between the desired and
current pose less than d∗ (that is, ‖ta‖ ≤ 1), et always converges, while keeping ‖ta‖ ≤ 1, as
this norm will never increase. According to this, the global asymptotic stability condition
for the closed-loop system, has to be lowered to local asymptotic stability. Nevertheless, in
all the simulation experiments made starting from a configuration not verifying condition
(161), the system featured a perfectly stable behaviour. This suggests that, even if we have
not been able to prove global stability in the second case (tm = ta−tb

2 ) with the chosen
Lyapunov function, it is likely that another candidate Lyapunov function could be found
such that it guarantees global stability also in this case.

RR n° 6303



66 Malis

6.5 Switching control law

As it has been shown in the previous sections, the mean-based control law always takes the
system to an equilibrium where (see (155)):

tb = −ta ; nb = −na ; Rb = Ra = I

This is not completely satisfactory, as ta can be different from zero, as would be required.
Now we want to improve this control law so the desired equilibrium:

[
ta

ra

]
= 0 =⇒

{
ta = tb = 0

Ra = Rb = I
(162)

is reached (as we know that the norm tb is always equal to the norm of ta, both solutions must
have simultaneously null translation). As said before, in practice we choose two solutions
that verify the visibility constraint at the beginning and use their average for controlling
the system, until it converges to a particular configuration in the Cartesian space (158).
During this convergence the true normal na does not change, since the object does not move
and the reference frame, F∗, is also motionless. On the other hand, the false normal, nb,
will change from its original direction until it becomes opposite to na. This can be clearly
understood with Figure 6, where the evolution of the false normal and its opposite are shown
from the initial instant, t0, until the convergence of the system, t∞. During this continuous

na

nb(t0)

nb(t⊥)

nb(t∞) = −na

−nb(t0)

−nb(t⊥)

Figure 6: Evolution of the false plane normal nb.

evolution, it is clear that, at some point, nb no longer verifies the visibility constraint. This
instant is indicated as t⊥ in the figure, but this can occur before or after the time when nb

becomes perpendicular to na, depending on the position of the reference points respect to
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F∗. After that instant, is −nb the false normal that starts verifying the visibility constraint.
Nevertheless, as it was a discarded solution from the beginning, it will not be considered.
This means that the control based on the average of the two solutions drives the current
frame in such a way that it is always possible to detect the false solution, among the two
that verified the visibility constraint at the beginning. Then, it could be possible to control
the system from this instant on, using just the true solution, that takes the system to the
desired equilibrium (162). According to this, a switching control strategy can be proposed,
in such a way that when one of the two solutions comes out to be a false one, we start making
a smooth transition from the mean control to the control using only the true solution. A
smooth transition is preferred to immediately discarding the false solution, in order to avoid
any abrupt changes in the evolution of the control signals. Then, we can replace the average
control law (133)-(134) by a weighted-average control law:





tm =

αa ta + αb tb

2
rm ⇐= Rm = Ra (R⊤

a Rb)
αb
2

The weighting coefficients αa and αb can be defined according to an exponentially decreasing
time-function:

f(t) = e−λf (t−t⊥) (163)

being:
αa = 2 − f(t) ; αb = f(t)

In the previous analysis, when tb and nb appear, we should understand the translation and
normal corresponding to either Rtnb or Rtnb− , the one verifying the visibility constraint.
Another case can be mentioned for the sake of completeness, even not being of much practical
use. We already know we can control with the average translation and rotation, computed
from the true solution and either Rtnb or Rtnb−. What happens if we consider as the second
solution the one not verifying the visibility constraint ? According to Figure 6, this implies
to compute the mean translation using:

tm =
ta − tb

2

as −tb corresponds to the normal −nb in the figure. In this case, is the normal −nb the one
that will converge to −na. Now no change in the visibility condition of the false solution will
be appreciated, as −nb did not verify the visibility constraint at the beginning and continues
like that during the convergence. Graphically, we could say that the rotation of the normals
corresponding to the false solutions, nb and −nb, is in the opposite sense to that shown in
the figure.

6.5.1 Alternatives for the detection of the false solution

It has been just described how the false solution can be detected using the visibility constraint
during the convergence of the system. Other alternatives that has been already used in other
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works could also be applied to our case. One of them consists of taking advantage of the
fact that, as we have seen, and in the absence of camera calibrations errors, the true normal
keeps unchanged while the camera is moving towards the desired configuration. Hence, we
can detect the false solution as that one that experiences a significant change respect to its
initial value. This alternative is not incompatible with the mean-based control law, even
if the false solution can be detected after two or three steps. The reason is that even in
that case, a control law is needed for the first iterations that guarantees the stability of the
system. The mean-based control law ensures convergence during the two, three, or whatever
the number of steps needed to detect the false solution. On the other hand, it is not intended
to perform arbitrary movements until the false solution can be detected, but being able of
detect the false solution while keeping the system always under control.

6.6 Simulation results

As common parameters in all the experiments to be described, the initial orientation error
is 36 degrees and the scalar λ used in the control law (135) is chosen λ = 1.

6.6.1 Control using the true solution

In this experiment, only the true solution, among the four possible (131)-(132), verifies the
visibility constraint at the beginning. In this case, there is no need to use mean-based control,
and the conventional position-based control takes the system to the desired equilibrium. In
the upper part of Figure 7, the evolution of the translation and orientation errors are shown.
In the lower plots, the required control vector is given. If we try to control using only the
false solution instead, an unstable behavior is observed, even if that solution verifies the
visibility constraint.
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Figure 7: Simulation experiment using only the true solution.
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Figure 8: Simulation experiment using the mean of true and false solutions.

6.6.2 Mean-based control

In this experiment, shown in Figure 8, the mean-based control law is applied. The most
adverse situation is simulated. That is, the two solutions verifying the visibility constraint at
the beginning are Rtna and Rtnb− . In this case, convergence was only guaranteed when ‖ta‖
verifies condition (161). In this experiment, we initially have ‖ta‖ = 1.2, which not satisfies
that condition. Hence, this also illustrates that ‖ta‖ ≤ 1 or even (161) is not a necessary
condition for the system convergence. We can notice in the figure that, as expected, ta does
not converge to zero. In particular, as in the experiment na = [0, 0, 1]⊤, we can see that
only the third component of ta is different from zero at the equilibrium. At the convergence
we obtain nb = −na so we know then which is the true solution.

6.6.3 Switching control

In the last experiment, the performance of the switching control strategy is shown (see
Figure 9). In particular, the control system starts switching at the 14th iteration, as one of
the points becomes non-visible at that instant, according to the false solution.
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Figure 9: Simulation experiment using switching control.

The chosen value for the switching-rate parameter is λf = 0.25. It has been implemented
as a discrete-time switching mechanism, as (t− t⊥) in (163) has been replaced by (k − k⊥),
being k the current iteration number and k⊥ the iteration number when the false solution
was detected. As expected, it can be seen that the system converges to the equilibrium
where the desired camera pose is reached.
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7 Hybrid visual servoing based on analytical decompo-

sition

The control scheme proposed in the previous section is based on the choice of the true
normal vector. It implies introducing a switching control law, coming from the use of the
mean between the two solutions for the translation vector. Instead, we can control only the
mean rotation and the translation with image data. Thus, we obtain a hybrid visual servoing
[12] but without needing to find the true solution of the homography decomposition. The
task function can be defined as follows:

e =

[
(H − I)m∗

umθm

]

where Rm = exp([umθm]×) = Rv(R⊤
v Rf )(1/2). The derivative of the task function can be

written as:
ė = Lv

and a simple control law is:
v = −λL̂−1e

where L̂ is an approximation of the interaction matrix L.
Figure 10 shows the simulation results with the proposed hybrid visual servoing scheme.

As already mentioned, the main advantage of this scheme is that we avoid to choose between
the two solutions (i.e. the switching of control laws proposed in the previous section).
Another improvement proposed in this control law is the new rotation parametrization, that
avoids the limitations of the previous method when θm = ±π. On the other hand, the
stability analysis of the control law is more complicated. For the moment, we have obtained
encouraging simulation results and we leave the theoretical proof of the stability as future
work.
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Figure 10: Simulation experiment using hybrid visual servoing.
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8 Conclusions

In this report, we have presented a new analytical method to decompose the Euclidean
homography matrix. As a result of this analytical procedure, we have been able to find the
explicit relations among the different solutions for the Euclidean decomposition elements: R,
t and n. Another result described in the report, also derived from the analytical formulation,
is the statement of the stability conditions for a position-based control strategy that makes
use of the two solutions of the homography decomposition (one of them being a false solution)
assuming that there is no a priori knowledge that allows us to distinguish between them (such
as an estimation of the normal to the object plane). It has been proved that, using this
control law, the system evolves in such a way that, at some point, it is always possible
to determine which one is the true solution. After the true solution has been identified,
a switching strategy has been introduced in order to smoothly start using just the true
solution. Another possible control law that we propose in this document uses only the
mean of the solutions for the rotation, while the remaining d.o.f.s are controlled with image
information resulting in a hybrid visual servoing scheme. This alternative solution allows us
to avoid the choice of the true solution.

Future work will focused on the study of the effects of camera calibration errors on the
homography decomposition, taking advantage of the derived analytical expressions. Another
future objective is to try to prove stability conditions of the hybrid visual servoing using
the average of the two visible solutions, since, as we have seen, it is a very interesting
alternative that avoids the need for a switching mechanism, required in the position-based
visual servoing.
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A Useful relations for the homography decomposition

Rodrigues’ formula for a rotation matrix:

R = I + sin(θ)[u]× + (1 − cos(θ))[u]2× (164)

R − R⊤ = 2 sin(θ)[u]×

H − H⊤ = [2 sin(θ)[u]× + [n]× t]×

Some trigonometric relations:

sin(2x) =
2 tan(x)

1 + tan2(x)

cos(2x) =
1 − tan2(x)

1 + tan2(x)

1 − cos(2x) =
2 tan2(x)

1 + tan2(x)

1 + cos(2x) =
2

1 + tan2(x)

Relations useful when working with skew-symmetric matrices:

[u]× [v]× = vu⊤ −
(
u⊤v

)
I

[u]2× = uu⊤ − ‖u‖2 I

[u]× [v]× − [v]× [u]× = vu⊤ − uv⊤ = [[u]×v]×

[u]× [v]× [u]× = −
(
u⊤v

)
[u]×

[u]3× = −‖u‖2 [u]×

[u]4× = −‖u‖2 [u]2×

If u is a unitary vector, we have some interesting properties involving derivatives:

u⊤u = 1 =⇒ u⊤u̇ = 0

then
[u]× [u̇]× = u̇ u⊤

[u]× [u̇]× [u]× = 0

u̇ = −[u]2× u̇

Inversion of a particular matrix appearing in the developments:

(
I + xy⊤

)−1
= I − 1

1 + x⊤y
xy⊤
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If we consider matrix:
H⊤H = S + I

it has a special eigenvector associated with the unitary eigenvalue:

(S + I) v = v ; v = [n]× R⊤t

B On the normalization of the homography matrix

In general, after retrieving an estimation of the homography matrix, Ĥ, we need to obtain
the normalized homography matrix:

H =
Ĥ

γ

being the scale factor γ:
γ = med(svd(Ĥ))

In order to illustrate that this normalizing factor can also be computed from the components
of matrix Ĥ using an analytical expression, we just need to solve the third order equation:

det
(
Ĥ⊤Ĥ − λ I

)
= 0 =⇒ svd(Ĥ) =

√
λ

The equation can be written as:

λ3 + a2 λ2 + a1 λ + a0 = 0

where:

a2 = −(m11 + m22 + m33)

a1 = m11 m22 + m11 m33 + m22 m33 − (m2
12 + m2

13 + m2
23)

a0 = m2
12 m33 + m2

13 m22 + m2
23 m11 − m11 m22 m33 − 2m12 m13 m23

Being mij the components of the symmetric matrix M = Ĥ⊤Ĥ.
The solutions of such a third order equation can be obtained using Cardano’s formula:

λ1 = −a2

3
+ (S + T )

λ2 = −a2

3
− 1

2
(S + T ) −

√
3

2
(S − T ) i (165)

λ3 = −a2

3
− 1

2
(S + T ) +

√
3

2
(S − T ) i
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where

i =
√
−1

S =
(
R +

√
Q3 + R2

)1/3

T = (R −
√

Q3 + R2)
1/3

and finally:

Q =
3 a1 − a2

2

9

R =
9 a2 a1 − 27 a0 − 2 a3

2

54

It can be verified that, when all the solutions of the cubic polynomial are real (as in our
case, where M is a symmetric matrix), (S + T ) is always positive and (S − T ) is always an
imaginary positive value. From this, it is clear that the solutions can be ordered as:

λ1 ≥ λ2 ≥ λ3

Then, we conclude that the normalizing factor, γ, is given by the square root of formula
(165).

C Proofs of several properties

C.1 Proof of properties on minors of matrix S

In this section we want to prove the non-positivity of the principal minors of matrix S

in (29). The proof is straightforward if we consider the form of matrix S in terms of the
components of vectors x and y:

S = xy⊤+yx⊤+yy⊤ =




2x1y1 + y2

1 x1y2 + x2y1 + y1y2 x1y3 + x3y1 + y1y3

x1y2 + x2y1 + y1y2 2x2y2 + y2
2 x2y3 + x3y2 + y2y3

x1y3 + x3y1 + y1y3 x2y3 + x3y2 + y2y3 2x3y3 + y2
3





(166)
The opposite of each principal minor (minor corresponding to the diagonal element skk,
eliminating column k and row k) has the form:

MSkk
= −

∣∣∣∣
2xiyi + y2

i xiyj + xjyi + yiyj

xiyj + xjyi + yiyj 2xjyj + y2
j

∣∣∣∣ ; i, j, k = 1, 2, 3, i, j 6= k

Developing this determinant, the proposed condition is clear:

MS11
= (x2y3 − x3y2)

2 ≥ 0

MS22
= (x1y3 − x3y1)

2 ≥ 0

MS33
= (x1y2 − x2y1)

2 ≥ 0
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We can also prove the relations:

MS12
= ǫ12

√
MS11

√
MS22

(167)

MS13
= ǫ13

√
MS11

√
MS33

(168)

MS23
= ǫ23

√
MS22

√
MS33

(169)

In order to do so, we define the following variables:

m1 = x3y2 − x2y3 ⇒
√

MS11
= |m1| (170)

m2 = x3y1 − x1y3 ⇒
√

MS22
= |m2| (171)

m3 = x2y1 − x1y2 ⇒
√

MS33
= |m3| (172)

As an example, we will prove it for MS13
:

MS13
= x1 x3 y2

2 + x2
2 y1 y3 − x1 x2 y2 y3 − x2 x3 y1 y2 = m1 m3 (173)

From what it is obvious that:

MS13
= ǫ13

√
MS11

√
MS33

C.2 Geometrical aspects related to minors of matrix S

In this section, we will show what the geometrical meaning of the minors of matrix S

becoming null (MSii
= 0) is.

Using the definitions of x and y in (46)-(47) and using also (170)-(172), we can write:

m1 = t∗3 n2 − t∗2 n3

m2 = t∗3 n1 − t∗1 n3

m3 = t∗2 n1 − t∗1 n2

where ni and t∗i are the components of vectors n and t∗, respectively. Consider the following
vector:

[n]× t∗ =




m1

−m2

m3



 =




sign(m1) |m1|
−sign(m2) |m2|
sign(m3) |m3|





or what is the same:

[n]× t∗ =




sign(m1)

√
MS11

−sign(m2)
√

MS22

sign(m3)
√

MS33





According to (173), we knew that:

MS12
= m1 m2

MS13
= m1 m3

MS23
= m2 m3
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From this, it can be easily proved that:



sign(m1)
sign(m2)
sign(m3)



 = ±




ǫ23
ǫ13
ǫ12





being ǫij = sign(MSij
). Then, we can find the following relation:

[n]× t∗ = ±m ; m =




ǫ23
√

MS11

−ǫ13
√

MS22

ǫ12
√

MS33





Hence, when any of the components of this vector product is null, the corresponding minor
MSii

is also null. We can look for a geometrical meaning of this situation. We can say that,
whenever the vector product of n and t∗ lies on any of the canonical planes (XY , XZ or YZ),
the corresponding minor is null (MS11

, MS22
or MS33

, respectively). There is another way
to depict this. We can consider that each one of the components mi is the scalar product
of vectors obtained projecting n and t∗ onto a particular canonical plane. For instance, in
order to get m3, we project the normal and the translation vectors onto the plane XY , these
are vectors n

XY
= [n1, n2, 0]⊤ and t∗

XY
= [t∗1, t∗2, 0]⊤ in Fig. 11. Then we obtain the vector

perpendicular to the second one on the same plane: t∗⊥
XY

= [t∗2, −t∗1, 0]⊤, and compute the
scalar product of this vector and n

XY
:

m3 = n⊤
XY

t∗⊥
XY

This means that, when we are moving from the current frame to the reference frame in
a direction such that its projection on plane XY is parallel to the object-plane normal,
projected on this same plane, MS33

is null. In general:

n
YZ

‖ t∗
YZ

=⇒ MS11
= 0

n
XZ

‖ t∗
XZ

=⇒ MS22
= 0

n
XY

‖ t∗
XY

=⇒ MS33
= 0

That means that the plane defined by n and [0 0 1]⊤ (in blue in Fig. 11) divides the
space in two regions, being t∗ in either of these parts, the sign of the corresponding MSij

(in this case, MS12
) changes. Being t∗ on that plane, MS33

is null.

C.3 Components of vectors x and y are always real

In order to prove that the components of vectors x and y are always real, we need to prove
that the solutions for ω in (74) are real and positive. On the one hand, the discriminant
appearing in the computation of wnum should be always positive. It can be shown that,
after some simple manipulations, this discriminant can be written as:

b2 − a c = 4
(
trace(S) + 1 + s11s22 + s22s33 + s11s33 − s2

12 − s2
23 − s2

13

)

= 4 (trace(S) + 1 − MS11
− MS22

− MS33
)
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n
t∗

t∗
XY

Z

Y

n
XY

X

Figure 11: In blue, plane where t∗ must lie for MS33
becoming null.

The condition for the discriminant being non-negative can be written as:

trace(S) + 1
?
≥ MS11

+ MS22
+ MS33

According to the form of matrix S (166) and its principal minors, the left member of this
inequality can be written as:

trace(S) + 1 = ‖y‖2 + 2x⊤y + 1

while the right member can be developed in the following way:

y2
1(x2

2 + x2
3) + y2

2(x2
1 + x2

3) + y2
3(x2

1 + x2
2) − 2 (x1x2y1y2 + x1x3y1y3 + x2x3y2y3)

Recalling that x is a unitary vector, we can write instead:

y2
1(1 − x2

1) + y2
2(1 − x2

2) + y2
3(1 − x2

3) − 2 (x1x2y1y2 + x1x3y1y3 + x2x3y2y3)

From this, we can put the right member in a more convenient form:

‖y‖−x1y1(x1y1+x2y2+x3y3)−x2y2(x1y1+x2y2+x3y3)−x3y3(x1y1+x2y2+x3y3) = ‖y‖−(x⊤y)2

Then, the condition to be proved becomes:

‖y‖ + 2x⊤y + 1
?
≥ ‖y‖ − (x⊤y)2
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or what is the same:
(x⊤y)2 + 2x⊤y + 1 = (x⊤y + 1)2 ≥ 0

which is always true. On the other hand, after it has been stated that the discriminant is
non-negative, the condition that w ≥ 0 is verified as a and c ((71) and (73), respectively)
are always positive.

C.4 Proof of the equivalence of different expressions for ν

In this brief section, we want to prove that the coefficients ν defined in (88) and that
introduced in (84) are the same. We will call ν1 and ν2 to the first and second ones,
respectively. For the second one, we can write (see (89)):

ν2 = 2 + trace(S) − ‖te‖2

For the first one, we had:
ν1 = 2

(
1 + n⊤R⊤t

)

From the definitions of vectors x and y given in (46) and (47), we can write:

ν1 = 2
(
1 + y⊤x

)

The scalar product appearing here can be computed using (56)-(58):

y⊤x =
1

2

(
s11 + s22 + s33 −

(
y2
1 + y2

2 + y2
3

))
=

1

2

(
trace(S) − ‖y‖2

)

Then, we get the same expression as for ν2

ν1 = 2 + trace(S) − ‖te‖2

what proves the equivalence of both definitions.

C.5 Proof of condition ρ > 1

Given coefficient ρ, that was defined as:

ρ = ‖2ne + R⊤
e te‖ ; e = {a, b}

we want to prove in this section that this coefficient verifies:

ρ > 1

For that purpose, we can compute the scalar product:

n⊤
e (2ne + R⊤

e te) = ‖2ne + R⊤
e te‖ cos φ
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where φ is the angle between both vectors involved in the scalar product. This product can
also be written as:

n⊤
e (2ne + R⊤

e te) = 2 + n⊤
e R⊤

e te > 1

where (76) has been used. Then we have:

‖2ne + R⊤
e te‖ cos φ > 1

This condition means, on the one hand, that the angle φ must be:

−π

2
< φ <

π

2
(174)

Also, as cos φ ≤ 1, the condition for ρ is proved:

ρ = ‖2ne + R⊤
e te‖ > 1

D Stability proofs

D.1 Positivity of matrix S11

In this Appendix, it is proved that the third eigenvalue of matrix S11, in Section 6.3.2, is
always positive, or can be null only along a particular configuration in Cartesian space. The
expression for this eigenvalue was:

λ3 =
‖ta‖ − 1

2 ρ
+

1

2
+

t⊤a Rana

2 ρ ‖ta‖

that, we can rewrite:

λ3 =
‖ta‖ − 1

2 ρ
+

1

2
+

n⊤
a t∗a

2 ρ ‖ta‖
; being: t∗a = R⊤

a ta

We want to verify the condition:

λ3 =
‖ta‖2 − ‖ta‖ + ρ ‖ta‖ + n⊤

a t∗a
2 ρ ‖ta‖

?
≥ 0

This is the same as:
‖ta‖ − 1 + ρ + cα

2 ρ

?
≥ 0 (175)

being cα = cos α, and α the angle between vectors na and t∗a:

n⊤
a t∗a = ‖ta‖ cα
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In order to prove this, we need to put ρ in terms of n⊤
a t∗a. This is done by means of cosines.

Consider the following scalar product:

n⊤
a (2na + t∗a) = 2 + n⊤

a t∗a

that is also equal to:

n⊤
a (2na + t∗a) = ‖2na + t∗a‖ cφ = ρ cφ ; being: cφ = cos φ

and φ is the angle between vectors na and (2na + t∗a). According to this, we can write:

ρ cφ = 2 + n⊤
a t∗a = 2 + ‖ta‖ cα

On the other hand, from the proof that ρ > 1, we know that cφ must be positive (see (174)):

φ ∈ (−π/2, π/2) =⇒ cφ > 0

Multiplying both sides of (175) by cφ, then, does not change the inequality:

‖ta‖ cφ − cφ + 2 + ‖ta‖ cα + cα cφ

2 ρ

?
≥ 0

As the denominator of this expression is always positive, we can simply analyze:

‖ta‖ (cφ + cα) + [ 2 + cφ(cα − 1) ]
?
≥ 0 (176)

From this, as 2 + cφ (cα − 1) ≥ 0, a sufficient condition for this being satisfied is:

‖ta‖ (cφ + cα)
?
≥ 0

Finally, the condition to be proved is:

cφ

?
≥ −cα

This will be done in two steps:� First, we suppose that α ∈ [−π/2, π/2]. A geometric interpretation of angles α and
φ can help us seeing that in this case, the condition is always verified. In the following
figure, we picture vectors na and t∗a on the plane they define: As φ must always verify
abs(φ) ≤ abs(α), and we are in the first or fourth quadrants, it is clear that cφ ≥ − cα,
as both cosines are positive.� Now, lets see what happens when α ∈ [−π, π/2) ∪ (π/2, π]. This case is not so
simple. In this case, t∗a is in the second or third quadrant. In this case, we must limit
the norm of t∗a so the condition can be verified. This is illustrated in Figure 13 In this
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na t�a� (2na + t�a)1 2�
Figure 12: Angles α and φ. Case α ∈ [−π/2, π/2]

na 1 2� (2na + t�a)�t�a � � �na 1 2�� � � �(2na + t�a)t�a
Figure 13: Angles α and φ. Case when t∗a is in the second or third quadrant. Left: condition
is verified. Right: condition is not verified.

figure we see, that if do not limit ‖t∗a‖ φ may be:

φ > π − α =⇒ cφ < cπ−α = −cα

From condition (76), we know that the limitation in the norm of t∗a is such that:

n⊤
a t∗a > −1

that can be written as:
n⊤

a t′a < 1 ; t′a = −t∗a

If we consider the worst case (already not possible), when this projection reaches its
limit value, n⊤

a t′a = 1, that corresponds to the camera hitting the object plane. The
vector

2na + t∗a = 2na − t′a

can be drawn as shown in Figure 14. Several possibilities are drawn in red for this
vector and in blue for the corresponding t′a. These are included just to make clear
that no one can pass to the right side of vertical line in 1. Considering the instances
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Figure 14: Geometric interpretation of condition n⊤

a t′a = 1.

of t′a and 2na − t′a in solid lines, the angles shown in the figure verify:

2 (π − α) + β = π =⇒ β = 2α − π

On the other hand,
β

2
+ φ =

π

2

Combining these two relations, the conclusion is:

φ = π − α =⇒ cφ = −cα

This is the limit case, as said before. If we take the norm of ta such that:

‖t′a‖ / n⊤
a t′a < 1

instead, we have the situation depicted in Figure 15 Then, we see that always:

φ < φlim =⇒ cφ > cφlim
= −cα

With all this, we finally have the required proof, that always:

cφ ≥ − cα

and then:
λ3 ≥ 0
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86 Malis1 2na � �limt0a (2na � t0a)
Figure 15: Geometric interpretation of condition n⊤

a t′a < 1.

D.1.1 When is S11 singular ?

We want now to determine when is λ3 = 0. We can start the analysis from the expression
(176), and try to find when it becomes zero:

‖ta‖ (cφ + cα) + [ 2 + cφ(cα − 1) ] = 0

Since both addends are non-negative, for the whole expression to become zero, both must
be zero:

2 + cφ(cα − 1) = 0 =⇒ cα = −1 and cφ = 1

‖ta‖ (cφ + cα) = 0 =⇒ cα = −cφ

Obviously, both conditions are simultaneously verified if:

cα = −1 and cφ = 1

That is,
α = ±π and φ = 0

On the one hand, as α is the angle between vectors na and t∗a, this means that t∗a is in the
opposite direction of the plane normal:

t∗a = −‖t∗a‖na

Or in terms of ta:
R⊤

a ta

‖ta‖
= −na (177)

On the other hand, cφ = 1,

cφ =
n⊤

a (2na + R⊤
a ta)

‖2na + R⊤
a ta‖
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If we particularize this expression using (177), we get:

n⊤
a (2na + R⊤

a ta) = (2 − ‖ta‖)na

‖2na + R⊤
a ta‖ = abs (2 − ‖ta‖) = 2 − ‖ta‖

From the second equality, we have removed the abs(). This is possible because of the
reference-plane non-crossing constraint. This constraint, applied to our situation, in which
we are moving exactly in the direction of the normal, becomes:

‖t′a‖ = ‖ta‖ < 1

Then, cφ is:

cφ =
2 − ‖ta‖
2 − ‖ta‖

= 1

Hence, the condition cα = −1 already implies cφ = 1, and no additional conditions are
needed. In Section 6.3.2, the interpretation of the geometric locus corresponding to relation
(177) is given. Finally, we will also compute the eigenvector corresponding to the null
eigenvalue, in case they are needed. If we particularize the matrix LS11

in (177), we obtain:

L•
S11

=
1

2 − ‖ta‖
(
I − Rana n⊤

a R⊤
a

)

With L•
S11

we mean the value of S11 in the points of the geometric locus (177). The corre-
sponding eigenvalues, particularized for this case are:

λ•
1 = λ•

2 =
1

2 − ‖ta‖
; λ•

3 = 0

The corresponding eigenvectors are:

v•
1 = κ1 [na2

, −na1
, 0 ]⊤

v•
2 = κ2 [ 0, −na3

, na2
]⊤

v•
3 = κ3 Ra na (178)

where κi are scalars and nai
are the components of Rana:

Rana = [na1
, na2

, na3
]⊤

D.2 Positivity of matrix S11−

In this Appendix, we want to prove that the third eigenvalue of matrix S11−
(see (160))

is always positive, or that it can be null only along a particular configuration in Cartesian
space, assuming some conditions.
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The expression for this eigenvalue was:

λ3−
= −1 + ‖ta‖

2 ρ
+

1

2
− n⊤

a t∗a
2 ρ ‖ta‖

; being: t∗a = R⊤
a ta

We want to verify the condition:

λ3−
=

−‖ta‖2 − ‖ta‖ + ρ ‖ta‖ − n⊤
a t∗a

2 ρ ‖ta‖
?
≥ 0

This is equivalent to:

ρ
?
≥ ‖ta‖ + 1 + cα

being the cosine cα, as before:
n⊤

a t∗a = ‖ta‖ cα

As both members in the inequality are positive, the condition holds if the squared inequality
does:

ρ2
?
≥ (‖ta‖ + 1 + cα)2

After some elemental manipulations, we obtain:

4
?
≥ (1 + cα)2 + 2 ‖ta‖ (1 − cα) (179)

Then, the condition for λ3−
being also positive is:

‖ta‖ ≤ 4 − (1 + cα)2

2 (1 − cα)
(180)

In particular, if we assume ‖ta‖ ≤ 1, we can write:

(1 + cα)2 + 2 (1 − cα) ≥ (1 + cα)2 + 2 ‖ta‖ (1 − cα) (181)

Then, it is sufficient to prove:

4
?
≥ (1 + cα)2 + 2 (1 − cα)

This is equivalent to:
4 ≥ 3 + c2

α (182)

which is always true. This proves that:

λ3−
≥ 0 if ‖ta‖ ≤ 1

as desired.
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D.2.1 When is S11−
singular ?

We want now to determine when is λ3−
= 0. In order to see when the inequality (179)

becomes an identity, we go back to the inequalities (181) and (182):

4 ≥ 3 + c2
α ≥ (1 + cα)2 + 2 ‖ta‖ (1 − cα)

both inequalities change into equalities when cα = 1. As α is the angle between vectors
na and t∗a, both vectors must be parallel, corresponding to the already known Cartesian
configuration:

R⊤
a ta

‖ta‖
= ±na
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