
HAL Id: inria-00175274
https://hal.inria.fr/inria-00175274v2

Submitted on 27 Sep 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Shape and Reflectance Recovery using Multiple Images
with Known Illumination Conditions

Kuk-Jin Yoon, Emmanuel Prados, Peter Sturm, Amael Delaunoy, Pau
Gargallo

To cite this version:
Kuk-Jin Yoon, Emmanuel Prados, Peter Sturm, Amael Delaunoy, Pau Gargallo. Shape and Re-
flectance Recovery using Multiple Images with Known Illumination Conditions. [Research Report]
RR-6309, INRIA. 2007, pp.31. �inria-00175274v2�

https://hal.inria.fr/inria-00175274v2
https://hal.archives-ouvertes.fr


appor t  
de  r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
63

09
--

FR
+E

N
G

Thème COG

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Shape and Reflectance Recovery using Multiple
Images with Known Illumination Conditions

Kuk-Jin Yoon — Emmanuel Prados — Peter Sturm — Amaël Delaunoy — Pau Gargallo

N° 6309

September 2007





Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe, 38334 Montbonnot Saint Ismier (France)

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Shape and Reflectance Recovery using Multiple Images with
Known Illumination Conditions

Kuk-Jin Yoon∗, Emmanuel Prados∗, Peter Sturm∗, Amaël Delaunoy∗, Pau
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Projet PERCEPTION

Rapport de recherche n° 6309 — September 2007 — 31 pages
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Reconstruction de la forme et des propriétés de réflectance d’une
scène tridimentionnelle à partir d’images multiples avec des

conditions d’éclairage connues
Résumé : Nous développons une méthode variationnelle permettant de reconstruire conjointe-
ment la forme tridimensionnelle et les propriétés de réflectance de la surface d’une scène à par-
tir d’images de cette scène prises de plusieurs points de vue. Nous supposons que les conditions
d’illumination sont fixées et connues et que les caméras sont complètement calibrées. La méthode
consiste à minimiser une fonctionnelle de coût globale par rapport, à la fois, la forme et la réflectance.
Contrairement à la plupart des méthodes précédentes reconstruisant seulement la forme de surfaces
Lambertiennes, la méthode proposée ici considère des surfaces dichromatiques générales.

Mots-clés : vision tridimensionnelle, reconstruction de la forme et de la réflectance d’une scène,
surface non lambertienne, méthode variationnelle.
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1 Introduction
Recovering the three-dimensional scene shape using multiple images is one of the major research
topics in computer vision. Many methods have been proposed to solve the problem during these
last two decades; refer to [15] for an evaluation of various recent methods. However, most of them
pay little attention to the reflectance properties of scenes, usually assuming perfectly Lambertian
surfaces.

To reduce errors due to non-Lambertian surfaces, Bhat and Nayar [1] analyzed the physics of
specular reflection and the geometry of stereopsis, which leads to a relationship between stereo
vergence, surface roughness, and the likelihood of a correct match. Zickler et al. [23] presented the
Helmholtz stereopsis to overcome the specular reflection problem. However, these two approaches
require specialized camera configurations. Some other works [11, 19, 21] also tried to handle non-
Lambertian surfaces in the shape reconstruction. However, they rely on some pre-processing and/or
specularity-independent photo-consistency measures that are practically hard to use in the case of
multiple light sources with different colors. Moreover, they do not recover the surface reflectance.

There are a few works to recover scene geometry and reflectance from known illumination con-
ditions and/or prior knowledge on the shape, while Yu and Malik [22] showed how to recover illumi-
nation from known scene geometry and reflectance. Samaras et al. [14] proposed a multiple method
(succession of several independent processes) for the computation of object shape and reflectance
characteristics for non-constant albedo and non-uniformly Lambertian surfaces using 3D models.
Recently, Birkbeck et al. [3] proposed a method that recovers diffuse and specular reflectance with
changing lights and viewpoints. Our goal is to provide a shape and reflectance estimation method that
is global and completely model based as [4]. Also, we want to provide a method that improves the
robustness to non-Lambertian effects by directly incorporating a physically based specular model
in the mathematical formulation of the problem. By incorporating a complete photometric image
formation model, we also exploit prolifically all the photometric phenomena. Also, we thus aim to
provide a method that allows to naturally manage with a set of images under with several lighting
conditions.

Let us note that actually there already exist recent works that provide solutions in this direction
[4], [25]. In [25], Yu and Xu proposed a global and model-based method for recovering the 3D
shape and the reflectance properties of a non-Lambertian object. Nevertheless, in this last paper, the
authors constrain the object to be made by a single material; that is to say that the parameters of
the reflectance (in particular the albedo) are the same for all the points of the object surface. So, the
method in [25] is a “Multiview Shape From Shading” method, similarly as the one proposed by Jin
et al. [10] who focuses on the Lambertian case.

Our method provides a multiview stereo/shape from shading algorithm similarly to [10, 7, 12,
18, 26] which allow to recover 3D shapes from Lambertian shading [10, 7, 12] as well as specular
shading [18, 26]. Nevertheless, contrary to these previous works [10, 7, 12, 18, 26, 25], in our work,
we do not want to restrain ourself to a single material: in other words, the reflectance properties
of the object can spatially (strongly) change. In effect, now a day, more and more objects are now
printed and so it is fundamental to be able to recover textured and patterned objects. In return, of
course, we will not be able to recover lighting conditions as done [10], and we have to use a parallel
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4 Yoon, Prados, Sturm, Et al.

process which return them. In this work, we assume that lighting conditions are known in advance.
Practically, we can use spherical objects with the reference white color to capture the directions and
the colors of light sources.

In short, in this work, we develop a variational method to recover the shape and the reflectance
of a scene surface using multiple images, assuming that illumination conditions are fixed and known
in advance. The proposed method can handle quite general dichromatic surfaces exhibiting specular
reflection, and the output of this work is the complete description of a scene surface, which can be
used to synthesize novel views with arbitrary illumination conditions.

The paper is organized as follows. We first present the modeling of scene introduce the reflection
model and the image formation process in Section 2.4. We then formulate the problem in Section 3
and define cost functions in Section 4. Shape evolution and reflectance estimation are described in
Section 5 and experimental results for test image sets are shown in Section 7. We then summarize
and conclude the work in Section 8.

2 Modeling Assumptions and Notations
We assume here that the scene can be decomposed into two entities: the foreground, which corre-
sponds to the objects of interest, and the background; these are defined more precisely below. The
foreground is composed by a set of (bounded and closed) 2D manifolds of R3. These surfaces are
represented by S.

2.1 Lighting conditions
We assume that the scene is illuminated by a finite number of distant point light sources. We com-
plete them by adding an ambient light term (which partially accounts for interreflections and other
complex phenomena), with constant energy radiated isotropically in all directions. Note that, based
on Wiener’s theorems, [17] shows that such a light distribution can approximate arbitrarily well any
positive distribution on the sphere. Let nl be the number of illuminants and lj ∈ S2 and Lj ∈ Rc be
the direction and the intensity1 of the jth illuminant, respectively. La ∈ Rc is the intensity1 of the
ambient illumination.

2.2 Cameras, image data and visibility
Image data are generated by nc pinhole cameras. The perspective projection, from world to image
coordinates, performed by the ith camera, is represented by Πi : R3 → R2. πi ⊂ R2 is the
image domain of the ith camera (i.e. the area covered by the pixels). It is split into two parts: the
pixels corresponding to the foreground, πiF = πi ∩ Πi(S), and the other points πiB = πi \ πiF

(associated to the background). Ii : πi → Rc is the image of the true scene, captured by the ith

camera (c = 1 for a gray-scale image, and c = 3 for a color image). We denote I the set of input
images: I = {I1, I2, · · · , Inc

}; IiF and IiB are the restrictions of the function Ii to πiF and πiB ,

1Non-normalized color vector, if c = 3.

INRIA



Shape and Reflectance Recovery using Multiple Images 5

respectively. In other respects, we consider the visibility function δSi defined by: δSi(X) = 1 if X
is visible from the ith camera and δSi(X) = 0 otherwise. Si denotes the part of S that is visible
from the ith camera and Π−1

i,S is the backprojection from the ith camera onto S: i.e. for all points
x ∈ πiF , Π−1

i,S(x) is the closest point on S along the ray joining X to the optical center of the ith

camera.

2.3 Modeling the background
As suggested by [20], to be sure that the estimated foreground surface does not shrink to an empty
set (which is indeed the global optimum for most cost functionals used in other works) it is crucial
to define and characterize the background. The choice of model is dictated by the scenario and
the applications. For example, in [20, 7], the background is characterized by its radiance which is
constrained to be constant or strongly regular. At the opposite extreme, when the background is quite
irregular, one can assume that one has at his disposal the background images, i.e. the images of the
scene captured by the same cameras without foreground objects. Due to lack of space, we only deal
here with the latter scenario. Therefore, in addition to the images I , we assume that we detain the
background images Ĩ = {Ĩ1, · · · , Ĩnc

}. Finally, we define ĨiF and ĨiB analogously to IiF and IiB .

2.4 Modeling the foreground surface
In this work, we model the foreground object(s) by its shape S and its reflectance R. We denote
Ω = (S,R).

Contrary to most previous stereovision methods, we want to go beyond the Lambertian model.
In order to get a solvable minimization problem without too many unknown variables, we chose to
represent the reflectance by a parametric model. Of course the chosen model directly depends on the
applications aimed at; as an example, we consider the popular Blinn-Phong shading model. In this
context, and assuming that Ii(x) is equal to the radiance of the surface S at point X = Π−1

i,S(x) in
the direction of the ith camera, the images Ii are then decomposed as

Ii = Iid + Iis + Iia, (1)

where Iid, Iis, and Iia are images with the diffuse, specular, and ambient reflection component of
Ii, respectively.

Diffuse reflection is caused by the subsurface scattering of light and it is independent of viewing
direction. By using the cosine law, this image component is described as

Iid(x) =
nl∑

j=1

δLj (X)
(
ρd(X)Lj

(
n(X) · lj

))
, (2)

where ρd(X) ∈ Rc is the diffusion albedo1 at point X, n(X) is the normal vector to the surface S
at X and δLj represents the light visibility function: SLj being the part of S visible from the jth

illuminant, we define δLj (X) = 1 if X ∈ SLj , δLj (X) = 0 otherwise.

RR n° 6309
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Specular reflection is caused by the surface reflection, as with a mirror. This component is
expressed as

Iis(x) =
nl∑

j=1

δLj (X)
(
ρs(X)Lj

(
n(X) · hij(X)

)αs(X)
)

(3)

where hij(X) is the bisector of the angle between the view of the ith camera and the jth illuminant
at X, ρs(X) ∈ Rc and αs(X) ∈ R+ are the specular albedo and the shininess parameter at point X.

The ambient illumination is assumed to be uniform in the scene and modeled as

Iia(x) = ρd(X)La, (4)

where La is defined above.
By combining the diffuse, specular, and ambient reflection, we get the image formation equation

as

Ii(x) =
nl∑

j=1

δLj (X)Lij(X,n(X)) + ρd(X)La, (5)

where
Lij(X,n(X)) = Ld

ij(X,n(X)) + Ls
ij(X,n(X))

= Ljρd(X)
(
n(X) · lj

)
+ Ljρs(X)

(
n(X) · hij(X)

)αs(X)
.

(6)

In the sequel, in order to simplify the notations, we denote R = (Rd, Rs), where Rd = ρd and
Rs = (ρs, αs).

3 Problem Formulation
From a probabilistic point of view, the goal of this work is to estimate the shape S and the reflectance
R of a scene surface Ω, that maximize P (Ω|I) for given I . By Bayes’ rule, the problem is then
formulated as

P (Ω|I) =
P (I|Ω) P (Ω)

P (I)
∝ P (I|Ω) P (Ω)

= P (I|S,R) P (S) P (R)
(7)

under the assumption that S and R are independent. Here, P (I|Ω) = P (I|S,R) is a likelihood and
P (S) and P (R) are priors on the shape and reflectance respectively.

3.1 Likelihood
If Πi and illumination conditions are given, we can produce a synthetic image Īi(Ω) corresponding
to an input image Ii by using the current estimation of Ω. Here, the correct estimation of Ω will
produce the same images as the input images under the given illumination conditions (modulo noise
of course). This allows us to measure the validity of the current estimation by comparing input

INRIA
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images with generated ones. When assuming an independent identical distribution (i.i.d) of noise in
the observations, the likelihood can be expressed as

P (I|Ω) ∝
nc∏
i=1

exp
(
− ξi(Ω)

)
=

nc∏
i=1

exp
(
− ξ(Ii, Īi(Ω))

)
, (8)

where ξi(Ω) = ξ(Ii, Īi(Ω)) is a function of Ω, measuring the dissimilarity between two images Ii
and Īi.

3.2 Prior on surface shape S

A typical and reasonable prior for the surface shape S is about the area or about the smoothness of
a surface. When using the surface area for the prior on S, it is expressed as

P (S) ∝ exp
(
− ψ(S)

)
. (9)

Here, ψ(S) is the monotonic increasing function of the surface area
∫

S
dσ where dσ is the Euclidean

surface measure.

3.3 Prior on reflectance R

R is composed of two components, R = (Rd, Rs). We express our prior as P (R) = P (Rd)P (Rs)
under the assumption that Rd and Rs are independent. Here, P (Rd) and P (Rs) can be assumed
uniform in general so that P (R) is constant. However, unfortunately, estimating reliable specular
reflectance for all surface points with the uniform prior is very difficult unless there are enough
observations exhibiting specular reflection at every surface point. For that reason, we need some
specific prior on specular reflectance to be able to infer it inspite of the lack of observations2. It
is physically valid to assume that specular reflectance varies smoothly within each homogeneous
material surface patch. It is, however, also very difficult to partition Ω according to the types of
materials. Instead, we use the diffuse reflectance of a surface as a soft constraint to partition Ω and
define the prior on the surface reflectance as

P (R) ∝ exp
(
− ω(R)

)
(10)

where ω(R) is a function of the intrinsic gradient of the diffuse and specular reflectance of a surface.
This function will be defined below.

2We will discuss some special cases that do not need any specific prior on the surface reflectance in Sec. 6.

RR n° 6309



8 Yoon, Prados, Sturm, Et al.

4 Cost Functions
Based on the derivations in Sec. 3, the problem is formulated as

P (Ω|I) ∝ P (I|Ω)P (Ω)

∝
nc∏
i=1

exp
(
− ξi(Ω)

)
×
(

exp
(
− ψ(S)

))
×
(

exp
(
− ω(R)

)) (11)

and it can be expressed in terms of cost functions as

Etotal(Ω) = Edata(Ω) + Eshape(S) + Erefl(R)

=
nc∑
i=1

ξi(Ω) + ψ(S) + ω(R).
(12)

This shows that maximizing the probability (Eq. (11)) is equal to minimizing the total cost (Eq.
(12)).

4.1 Data cost function
The current estimation of Ω gives a segmentation of the input image Ii into foreground IiF and
background IiB and we can synthesize ĪiF according to the above image formation model. As for
ĪiB , it is generated according to the available background model. In this paper, as mentioned in Sec.
2.3, we use actual background images, i.e. ĪiB=ĨiB . ξi(Ω) = ξ(Ii, Īi) is then rewritten as

ξ(Ii, Īi) = ξF (IiF , ĪiF ) + ξB(IiB , ĪiB)

= ξF (IiF , ĪiF ) + ξB(IiB , ĨiB)

= ξ̂F (IiF , ĪiF ) + ξ(Ii, Ĩi),

(13)

where ξ̂F (IiF , ĪiF ) = ξF (IiF , ĪiF ) − ξF (IiF , ĨiF ). Since ξ(Ii, Ĩi) is independent of Ω, the data
cost function is written as

Edata(Ω) =
nc∑
i=1

ξ̂F (IiF , ĪiF ) + C, (14)

where C =
∑nc

i=1 Ci =
∑nc

i=1 ξ(Ii, Ĩi) is constant.

4.1.1 Similarity Measure

When computing ξ, any statistical correlation among color or intensity patterns such as the sum of
squared differences (SSD), cross correlation (CC), and mutual information (MI) can be used3. In

3In fact, we do not need to use any sophisticated measure because we also recover the surface reflectance. Instead, we can
use the simple pixel-wise measure.

INRIA
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any case, ξ can be expressed as the integral over the image plane as

ξ(Ii, Īi) =
∫

πi

e(x)dσi, (15)

where dσi is the surface measure and e(x) is the contribution at x to ξi. The data cost function is
then given as

Edata(Ω) =
nc∑
i=1

∫
πiF

ê(x)dσi + C, (16)

where ê(x) = e
(
Ii(x), Īi(x)

)
− e
(
Ii(x), Ĩi(x)

)
. We adopt the derivations proposed in [13] for ξi,

e, and ∂2e.

4.1.2 Decoupling appearance from surface normal

As shown in Eq. (5), surface appearance (i.e., the data cost function) is dependent on both the
surface normal and position, and this makes the problem hard to solve and unstable. To resolve this
problem, we introduce an auxiliary unit vector field v satisfying ‖v‖ = 1 as in [7], which is used for
the computation of surface appearance. To penalize the deviation between the actual normal vector
n and the auxiliary normal vector v, we add a new term

Edev(Ω) = τ

∫
S

χ(X)dσ =
τ

2

∫
S

‖n(X)− v(X)‖2dσ

= τ

∫
S

(1− (n(X) · v(X))) dσ,
(17)

to the cost function, where τ is a control constant.

4.2 Shape area cost function
By using the area of a surface for the prior, the shape area cost function is simply defined as

Eshape(S) = ψ(S) = λ

∫
S

dσ, (18)

where λ is a control constant.

4.3 Reflectance discontinuity cost function
Based on the assumption on surface reflectance in Sec. 3.3, we define a discontinuity cost function
of surface reflectance as

Erefl(R) = ω(R) = β

∫
S

f(X)dσ, (19)

where β is a control constant. f(X) is defined as

f(X) = ζ
(
Rd(X)

)
× η
(
Rs(X)

)
, (20)
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10 Yoon, Prados, Sturm, Et al.

where ζ
(
Rd(X)

)
and η

(
Rs(X)

)
are defined in terms of the magnitude of the intrinsic gradients of

diffuse reflectance and specular reflectance respectively as

ζ
(
Rd(X)

)
=
(

1− ‖∇SRd(X)‖2

M

)
(21)

η
(
Rs(X)

)
=
(
‖∇Sρs(X)‖2 + γ‖∇Sαs(X)‖2

)
(22)

with a pre-defined constant M 4. ∇S denotes the intrinsic gradient defined on S.
The proposed discontinuity cost function of surface reflectance makes the discontinuities of spec-

ular reflectance generally coincide with the discontinuities of diffuse reflectance, which is physically
valid in general. Accordingly, surface points that do not have enough specular observations get as-
signed specular reflectance inferred from the specular reflectance of neighboring surface points.

4.4 Total cost function
By combining the cost functions defined in the previous sections, the total cost function is given by

Etotal(Ω) =Edata(Ω) + Edev(Ω)
+ Eshape(S) + Erefl(R).

(23)

Here, it is worthy of notice that Edev(Ω), Eshape(S), and Erefl(R) are defined over the scene
surface while Edata(Ω) is defined as an integral over the image plane. By the change of variable

dσi = −di(X) · n(X)
zi(X)3

dσ, (24)

where n(X) is the outward unit surface-normal vector at X, di(X) is the vector connecting the
center of the ith camera and X and zi(X) is the depth of X relative to the ith camera, we can
replace the integral over the image plane by an integral over the surface:

Edata(Ω) = C −
nc∑
i=1

∫
Si

(
ê(x)

di(X) · n(X)
zi(X)3

)
dσ

= C −
∫

S

(
nc∑
i=1

δSi(X)ê(x)
di(X) · n(X)

zi(X)3

)
dσ

(25)

When denoting g(X,n(X)) : R3 × Ω → R as

g(X,n(X)) =

(
−

nc∑
i=1

(
δSi ê

di · n
zi

3

)
+ τχ+ λ+ βf

)
, (26)

4M ≥ 3 for gray-level images and M ≥ 9 for color images.

INRIA
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Eq. (23) is simply rewritten as

Etotal(Ω) = C +
∫

S

g(X,n(X))dσ. (27)

Here, although the total cost function is an integral over the surface, it does not suffer from the
usual minimal surface bias: most functionals used in multiple stereo have an empty set as globally
optimal surface, since they do not “explain” all pixels in the input images. Our approach, like
[20], takes into account all pixels in the cost function, using both the estimated foreground and the
available background information.

5 Scene Recovery
Scene recovery is achieved by minimizing Etotal while updating S and R. Unfortunately, S and R
are highly coupled and, therefore, it is very complicated to estimate all unknowns simultaneously.
To efficiently solve the problem, we adopt an alternating scheme, updating S for a fixed R and then
R for a fixed S. This procedure is repeated until Etotal no longer decreases and S and R no longer
change.

5.1 Shape estimation – Surface evolution
When assuming that R is given, Etotal is a function of S. In this case, the gradient of Etotal(S) is
given according to the derivation in [5] and [16] as

∇SEtotal(S) = (∇Sg) · n + 2gH +∇S · gn, (28)

where H is the mean curvature and gn represents the gradient on the unit sphere.
Accordingly, the gradient descent surface evolution that minimizes the total cost function is

characterized by the normal velocity of the evolution given as

St = − ((∇Sg) · n + 2gH +∇S · gn) . (29)

In this work, we derive the gradient descent flows corresponding to the cost functions respec-
tively. The final gradient descent flow is then given by

St =
(
St

∣∣
data

+ St

∣∣
dev

+ St

∣∣
shape

+ St

∣∣
refl

)
.n (30)

5.1.1 Gradient descent flow for the data cost

According to the form of Edata(Ω), St

∣∣
data

is given as

St

∣∣
data

=
nc∑
i=1

(
ê

z3
i

(∇SδSi
· di) +

δSi

z3
i

((
∂2ê∇S Īi

)
· di

))
(31)

RR n° 6309



12 Yoon, Prados, Sturm, Et al.

This includes both the variation related to the camera visibility changes (the first term in Eq. (31))
and the variation related to the image changes (the second term in Eq. (31)), which also includes the
variation due to the light visibility changes. By using Eq. (5), ∇S Īi is expressed as

∇S Īi =
nl∑

j=1

{(∇SδLj )Lij + δLj (∇SLij)}+ (∇Sρa)La, (32)

where ∇SLij = ∇SL
d
ij + ∇SL

s
ij . Here, it is worthy of notice that the gradient descent flow for

the data cost is not dependent on the image gradient, which is sensitive to image noise, but on the
shape/reflectance estimation.

5.1.2 Gradient descent flows for the normal deviation cost and the shape area cost

St

∣∣
dev

(originating from Edev(Ω)) is computed as

St

∣∣
dev

= (−2τH + τ(∇S · v)) (33)

and St

∣∣
shape

(from Eshape(S)) is the mean curvature flow

St

∣∣
shape

= −2λH. (34)

5.1.3 Gradient descent flow for the reflectance discontinuity cost

By using the derivation in [9], we get the following equation for surface evolution.

St

∣∣
refl

= −2β
( 1
M
m(ρd)η(Rs)

− (m(ρs) + γm(αs)) ζ(Rd)
) (35)

Here,

m(ρs) =
(
II
(
∇Sρs × n

)
+ ‖∇Sρs‖2H

)
, (36)

m(αs) =
(
II
(
∇Sαs × n

)
+ ‖∇Sαs‖2H

)
, (37)

m(ρd) =
(
II
(
∇Sρd × n

)
+ ‖∇Sρd‖2H

)
, (38)

where II(t) is the second fundamental form for a tangent vector t with respect to n.

5.2 Updating the auxiliary vector field v

The computed gradient descent flows minimize the total cost with respect to given reflectance and
v. We then update the auxiliary vector field v to minimize the total cost with respect to given shape
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and reflectance. The v that minimizes the total cost satisfies the following equation.

∂g

∂v
=

(
−

nc∑
i=1

δSi
∂2ê

∂Īi
∂v

di · n
zi

3

)
+ (−τn) = 0 (39)

Here, ∂Īi

∂v is given as

∂Īi
∂v

=
nl∑

j=1

δLjLj

(
ρdlj + ρsαs (v · hij)

αs−1 hij

)
. (40)

We update v by performing gradient descent using the following PDE, with the constraint ‖v‖ =
1.

∂v
∂t

=

(
−

nc∑
i=1

δSi∂2ê
∂Īi
∂v

di · n
zi

3

)
+ (−τn) (41)

5.3 Reflectance estimation
Here, we estimateR for a fixed S, still minimizing the total cost function. SinceEdev andEshape do
not depend on R at all, we seek an optimal R by minimizing (Edata(Ω)+Erefl(R)). Here, because
it is also complex to estimate diffuse and specular reflectance at the same time due to the high
coupling between them, we alternatively estimate surface reflectance one by one while assuming
that the rest are given. We repeat the procedure until they no longer change.

5.3.1 Estimating Rd

For given S and Rs, we estimate ρd that minimizes the following.

Edata + Erefl =
∫

S

((
−

nc∑
i=1

δSi ê
di · n
zi

3

)
+ β

(
1− ‖∇Sρd‖2

M

)
η
(
Rs

))
dσ

(42)

Here, ρd that minimizes the total cost function will satisfy the Euler-Lagrange equation given as

−
nc∑
i=1

δSi∂2ê
∂Īi
∂ρd

di · n
zi

3
+

2β
M
η
(
Rs

)
∆Sρd = 0, (43)

where ∆S denotes the Laplace-Beltrami operator defined on the surface S and ∂Īi

∂ρd
is given as

∂Īi
∂ρd

=
nl∑

j=1

δLj
Lj (v · lj) + La. (44)
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We solve the PDE by performing gradient descent using the following PDE.

∂ρd

∂t
=

(
−

nc∑
i=1

δSi
∂2ê

∂Īi
∂ρd

di · n
zi

3

)
+
(

2β
M
η
(
Rs

))
∆Sρd (45)

5.3.2 Estimating Rs

We then estimate Rs = (ρs, αs) for given S and Rd in the same manner. ρs that minimizes the total
cost function will satisfy the Euler-Lagrange equation given as(

−
nc∑
i=1

δSi∂2ê
∂Īi
∂ρs

di · n
zi

3

)
− 2β

(
∆Sρs

)
ζ
(
ρd

)
= 0, (46)

where ∂Īi

∂ρs
is given as

∂Īi
∂ρs

=
nl∑

j=1

δLj
Lj (v · hij)

αs . (47)

We again solve the PDE by performing gradient descent using the following PDE to get the
solution of Eq. (46).

∂ρs

∂t
= −

nc∑
i=1

(
δSi∂2ê

∂Īi
∂ρs

di · n
zi

3

)
− 2β

(
∆Sρs

)
ζ
(
ρd

)
(48)

αs is also estimated in the same manner by solving the PDE as

∂αs

∂t
= −

nc∑
i=1

(
δSi∂2ê

∂Īi
∂αs

di · n
zi

3

)
− 2βγ

(
∆Sαs

)
ζ
(
ρd

)
, (49)

where ∂Īi

∂αs
is given as

∂Īi
∂αs

=
nl∑

j=1

δLjLjρs (v · hij)
αs ln (v · hij) . (50)

6 Single-material surface case
When dealing with a single-material surface, it is possible to set ρs(X) = ρs and αs(X) = αs for
all surface points. In this case, the discontinuity cost function of surface reflectance, Erefl(R), can
be excluded because f(X) in Eq. (20) is zero everywhere on the surface. Hence the gradient descent
flow is then given by

St =
(
St

∣∣
data

+ St

∣∣
dev

+ St

∣∣
shape

)
n (51)
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and the PDE used for the estimation of ρd , Eq. (45), is simplified as

∂ρd

∂t
= −

nc∑
i=1

δSi∂2ê
∂Īi
∂ρd

di · n
zi

3
. (52)

In addition, ρs and αs are computed by performing gradient descent using the following PDEs.

∂ρs

∂t
=
∫

S

(
−

nc∑
i=1

δSi∂2ê
∂Īi
∂ρs

di · n
zi

3

)
dσ (53)

∂αs

∂t
=
∫

S

(
−

nc∑
i=1

δSi∂2ê
∂Īi
∂αs

di · n
zi

3

)
dσ (54)

Table 1: Performance of the proposed method
accuracy (mm - 90%) completeness (% - 5.0mm) eimgae

dragon shape = mm, ρdr= , ρdg=, ρdb=, ρdr=, ρdr=,
bunny 0.004765 89.8748 1.24

7 Experiments
Instead of implementing the surface evolution directly, we have implemented the gradient descent
surface evolution in the level set framework, in which the topological changes of surfaces are handled
automatically. The camera and light visibility are computed by using the OpenGL. To verify the
proposed method, we generated synthetic images by specifying illumination conditions and surface
reflectance for 3D models with various geometries. The algorithm starts from the visual hull obtained
by rough silhouette images to reduce the computational time and to avoid local minima. We used
the simple L2-norm to compute the image similarity, e.

7.1 Results for the Lambertian case
In these experiments, (128× 128× 128) grids were used except the “dragon” image set5. Figure 1
shows one of 32 input images and the synthesized image generated by using the estimated shape (and
shading) and reflectance. We can generate the images of the scene with different lighting conditions
as shown in Fig. 2 by using the estimated shape and reflectance. The results for the “torus” image set
are also shown in Fig. 3 and the results for more complex object is shown in Fig. 4. We can see that
the images synthesized by using the estimation closely resemble the input images while the shading
and the reflectance are successfully separated. The image synthesized by using the estimated shape
and reflectance with different lighting conditions and a different viewpoint is shown in Fig. 5.

5(160× 80× 128) grids was used for the “dragon” image set.
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16 Yoon, Prados, Sturm, Et al.

(a) input image (b) estimated reflectance

(c) estimated shading (d) synthesized image

Figure 1: Estimation results for a “sphere” image set

(a) original input image (b) synthesized image

Figure 2: Scene synthesis under different lighting conditions
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(a) input image (b) synthesized image

Figure 3: Estimation results for a “torus” image set

The estimated shape is quantitatively evaluated in terms of accuracy and completeness as in
[15]. We used 95% for accuracy and the 10.0mm error for completeness. Here, beside the shape
evaluation, we also evaluated the estimated reflectance in the same manner. For each point on a es-
timated surface, we found the nearest point on the surface and compute the distance and reflectance
differences and vice versa. In addition, for the more quantitative evaluation of surface shape and re-
flectance, we computed the average of the differences between input images and synthesized images
using the L2-norm as

eimage =
1
nc

nc∑
i=1

1
A

∫
πi

‖
(
Ii(x)− Īi(x)

)
‖dσi, (55)

where A =
∫

πi
dσi. The performance of the proposed method is summarized in Table 2.

Table 2: Performance of the proposed method
accuracy (95%) (shape, ρdr , ρdg , ρdb) completeness (10.0mm) (shape, ρdr , ρdg , ρdb) eimgae

sphere 14.04mm, 0.0254, 0.0189, 0.0167 97.17%, 0.0228, 0.0175, 0.0161 0.6026
dragon 2.63mm, 0.0897, 0.0734, 0.0655 99.88%, 0.0658, 0.0575, 0.0543 5.4812

7.2 Experiments in the general case
To verify the proposed method in the general case, we assigned the uniform reflectance for the
‘dragon’ image set for the simple evaluation of results. However, we estimated reflectance at every
point on a surface without using the fact of uniform reflectance. The ‘dragon’ and the ‘bunny’
models used for experiments and ground truth light shading and surface reflectance maps are shown
in Fig. 6. Three point light sources with different colors were placed. We took 32 images for the
‘dragon’ model and 16 images for the ‘bunny’ model as inputs for recovery.
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18 Yoon, Prados, Sturm, Et al.

(a) input image (b) synthesized image

(c) true reflectance of (a) (d) estimated reflectance of (a)

(e) true shading of (a) (f) estimated shading of (a)

Figure 4: Estimation results for a “dragon” image set
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(a) input image (b) synthesized image

(c) true reflectance of (a) (d) estimated reflectance of (a)

(e) true shading of (a) (f) estimated shading of (a)

Figure 5: Synthesized image with different lighting conditions and a different viewpoint
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(a) input model (b) diffuse shading

(c) specular shading (d) diffuse reflectance

(e) specular reflectance (f) shininess

(g) ambient refl. comp. of an input im-
age

(h) diffuse refl. comp. of an input image

(i) specular refl. comp. of an input image

Figure 6: Input models and ground truth shading and reflectance maps

INRIA



Shape and Reflectance Recovery using Multiple Images 21

The initial estimations (shape + reflectance) and the refined outputs are shown in Fig. 7 and in
Fig. 8. Input images and corresponding synthesized images are also shown for comparison. We can
see that the images synthesized by using the estimation closely resemble input images.

The computational time depends on the number of images and grids. For instance, the ‘dragon’
image set took about 90 minutes when using 32 images, (96×96×96) grids, and the linux machine
with 2.66GHz CPU and 2G memory.
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(a) initial shape - ‘dragon’ (b) final shape - ‘dragon’

(c) input image (d) synthesized image

(e) ambient refl. comp. (f) diffuse refl. comp.

(g) specular refl. comp.

Figure 7: Results for the ‘dragon’ model
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(a) initial shape - ‘bunny’ (b) final shape - ‘bunny’

(c) input image (d) ambient refl. comp.

(e) diffuse refl. comp. (f) specular refl. comp.

Figure 8: Results for the ‘bunny’ model

RR n° 6309



24 Yoon, Prados, Sturm, Et al.

8 Conclusion
In this paper, we have presented a variational method that recovers both the shape and the reflectance
of scene surfaces using multiple images. Scene recovery was achieved by minimizing the global cost
functional alternatively. As a result, the proposed method produced the complete description of a
scene surface.

The main contribution of this paper lies in proposing a solution for dealing with general dichro-
matic surfaces by utilizing illuminant conditions. We modeled the scene and image formation using
know information about cameras and illuminants. We then formulated the problem via Bayes’ rule
and defined global cost functional in terms of data, shape, and reflectance cost functions. Especially,
we presented an efficient reflectance discontinuity cost function to make the problem tractable in
spite of the lack of specular reflection observation. In addition, we derived analytic formula for
surface evolution and reflectance estimation.
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A Appendices

A.1 Notations
• Σ : a set of surfaces in a scene, Σ = {Ω, ΩC}
• Ω : foreground surface in Σ, described by its shape and reflectance as Ω = (S, R)

• ΩC : background surface in Σ, described by the shape and reflectance as ΩC = (SC , RC)

• S : the shape of Ω

• R : the reflectance of Ω, R = (Rd, Rs)

• Rd : the diffuse reflectance (albedo) of Ω, Rd = ρd
6, 0 5 ρd 5 1

• Rs : the specular reflectance of Ω, Rs = (ρs, αs)

• ρs : the coefficient of the specular reflection of Ω, 0 5 ρs 5 1

• αs : the shininess constant of the specular reflection of Ω, αs = 0

• nc : the number of cameras (= the number of images)

• oi : the view direction of the ith camera

• Πi : the perspective projection performed by the ith camera, Πi : R3 → R2

• πi : the image plane of the ith camera

• πiF : a region in πi corresponding to S, πiF = πi ∩Πi(S)

• πiB : a region in πi as (πi − πiF )7

• Ii : an image captured by the ith camera with foreground surfaces, Ii : πi ⊂ R2 → Rd8

• I : a set of input images with foreground surfaces, I = {I1, I2, · · · , Inc}
• Ĩi : an image captured by the ith camera without foreground surfaces (i.e., backgound image), Ĩi : πi ⊂

R2 → Rd

• Ĩ : a set of input images without foreground surfaces, I = {Ĩ1, Ĩ2, · · · , Ĩnc}
• IiF : an image region in Ii corresponding to πiF , IiF : πiF ⊂ R2 → Rd

• IiB : an image region in Ii corresponding to πiB , IiB : πiB ⊂ R2 → Rd9

• ĨiF : an image region in Ĩi corresponding to πiF , ĨiF : πiF ⊂ R2 → Rd

• ĨiB : an image region in Ĩi corresponding to πiB , ĨiB : πiB ⊂ R2 → Rd

• Si : the part of S visible from the ith camera

• Π−1
i,S : the inverse projection from the ith camera onto S, Π−1

i,S : πiF → Si

• X : a point on S

• xi : a point in the ith image plane corresponding to X, xi ∈ πi = Πi(X ∈ Si)

6For color images, ρd = (ρdr, ρdg , ρdb). We use Rd and ρd interchangeably in this work.
7πi = πiF ∪ πiB , πiF ∩ πiB = ∅
8d = 1 for a gray image and d = 3 for a color image
9The mapping from a surface point to an image point is characterized by Πi and Ii: Πi and Ii represent the geometric

mapping (related to S) and the photometric mapping (related to R) between points respectively.
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• n(X) : an outward unit surface-normal vector at X

• nl : the number of illuminants

• lj : the direction of the jth illuminant

• Lj : the intensity of the jth illuminant

• La : the intensity of the ambient illumination

• ρa : the coefficient of the ambient reflection of Ω, 0 5 ρa 5 1

A.2 Intrinsic gradient on the manifold S

The intrinsic gradient of a function f : S → R on the (n − 1)-dimensional manifold S embedded
in Rn can be simply defined as the projection of the gradient of a function onto the manifold S as in
[2]. When n denotes a unit normal vector of S, ∇Sf can be computed simply as

∇Sf = ∇f̃ −
(
nT∇f̃

)
n (56)

where f̃ : Rn → R represent a differentiable function whose restriction to S is f .
On the other hand, when S is parameterized using u and v in R3, the intrinsic gradient on S, ∇S

, can be expresses as

∇Sf = [Su, Sv]
[
Su · Su Su · Sv

Su · Sv Sv · Sv

]−1 [
fu

fv

]
(57)

A.3 Laplace-Beltrami operator
The Laplace operator is a second order differential operator in the n-dimensional Euclidean space,
defined as the divergence of the gradient. The Laplacian can be extended to functions defined on
Riemannian and pseudo-Riemannian manifolds. This is named the Laplace-Beltrami operator. Ac-
cording to the definition, the Laplace-Beltrami operator is expressed as

∆Sf = ∇S · (∇Sf) (58)
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