
HAL Id: inria-00175523
https://hal.inria.fr/inria-00175523

Submitted on 28 Sep 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Human Heuristics for a Team of Mobile Robots
Charles Tijus, Nicolas Bredeche, Yves Kodratoff, Mary Felkin, Cedric

Hartland, Elisabetta Zibetti, Vincent Besson

To cite this version:
Charles Tijus, Nicolas Bredeche, Yves Kodratoff, Mary Felkin, Cedric Hartland, et al.. Human Heuris-
tics for a Team of Mobile Robots. IEEE International Conference on Research, Innovation and Vision
for the Future, Mar 2007, Hanoi, Vietnam. pp.122-129. �inria-00175523�

https://hal.inria.fr/inria-00175523
https://hal.archives-ouvertes.fr


240 
 

1 

  
Abstract— This paper is at the crossroad of Cognitive 

Psychology and AI Robotics. It reports a cross-disciplinary 
project concerned about implementing human heuristics within 
autonomous mobile robots. In the following, we address the 
problem of relying on human-based heuristics to endow a group 
of mobile robots with the ability to solve problems such as target 
finding in a labyrinth. Such heuristics may provide an efficient 
way to explore the environment and to decompose a complex 
problem into subtasks for which specific heuristics are efficient. 
We first present a set of experiments conducted with group of 
humans looking for a target with limited sensing capabilities 
solving. Then we describe the heuristics extracted from the 
observation and analysis of their behavior. Finally we 
implemented these heuristics within khepera-like autonomous 
mobile robots facing the same tasks. We show that the control 
architecture can be experimentally validated to some extent 
thanks to this approach. 
 

Index Terms— Cognition, Autonomous Robotics, Human-
centered approach, Heuristics, Multi-agents Problem Solving. 
 

I. INTRODUCTION 
UMAN supervised learning, through imitation, instruction 
and guidance is a key issue in Cognitive Robotics. Our 

research goal is to find meaningful descriptors of human 
behavior, allowing a controller implementation for mimicking 
different human strategies, in a human-centered approach 
while avoiding the correspondence problem between humans 
and Robots. 

Firstly, we present the human centered approach to 
Robotics and, secondly, the collection of data from humans 
that mimic Robots in the sense that they would have the same 
perceptive limitations (unknown environment, blind and using 
their arms to explore the environment, …). Thirdly, we show 
how the human reasoning (thinking, anticipating and 
planning) could be used to endow robots with efficient 
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controllers. 
Reaching a long-term goal in an unknown environment, - 

that is a dynamic environment, because of the presence of 
other agents, would need a representation of the environment 
as an internal model and would need planning in order to 
decide upon a specific sequence of actions. However, plan-
based systems often break down because when the 
environment changes, it is difficult to maintain an accurate 
internal model and actions become outdated [1]. On the 
contrary, the adaptive-behavior approach does not follow the 
common theory in cognitive psychology of making extensive 
inferences based on internal models. Instead, it considers that 
an organism’s response to the circumstances in its immediate 
environment is based on a set of rules of sensory-motor 
couplings (SMCs), using only the internal representations of 
that part of the environment currently relevant for reaching the 
goal. The organism is situated in its environment and it is able 
to independently sense and respond to the environment 
through its sensory receptors and effectors. Consequently, as 
the organism is in constant interaction with its environment 
through a set of SMCs, a global representation of the 
environment is not necessary, because the environment is its 
own best model [2]. In fact, only a small part of an agent’s 
environment is relevant when it comes to taking action: the 
part concerning the task the agent has to perform. 

In order to reach a long-term goal, according to the 
adaptive-behavior approach (see [2], [3], [4], [5]), it is not 
necessary to have previously defined plans detailing the 
different steps an organism can perform. Depending on the 
goal in question, we understand that the organism’s direct 
contact with the environment through its sensors and effectors 
enables it to exploit the properties of the current state of the 
environment by following SMC-based rules such as “If you 
detect an obstacle in your way, turn right.” In short, SMCs do 
not specify an internal representation of the environment or 
give a sequence of steps that must be followed to reach a goal. 
Instead, they specify a local-categorization process that guides 
the organism’s relationship with the objects and other 
organisms in its environment. 

II. THE HUMAN CENTERED APPROACH TO ROBOTICS  
SMCs can be made through Bayesian analysis of 

regularities found in the environment using a complex 
Distributed Adaptive control requiring thousands of examples 
[6] , without being sure that what is learnt can be properly 
generalized to other types of environment. SMCs could also 
be learnt through human guidance, by imitation [11], or 
developmental robotics [7]. We report our work on human 
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guidance of robots through human instruction coupled with 
data mining successful behavioral patterns. 
 

A. The human adaptive behavior 
The human centered approach to robotics (HUCAR) we 

adopted is based on human instruction. We argue that human 
adaptation is based on categorization (see [8] for a review) and 
that effective instruction is to transmit categories. 
Categorization involves internally storing and differentiating 
the information we receive from our environment. When 
sensory receptors detect the presence of an object in the 
perceptual field, categorization takes place in several phases, 
as summarized by [9]. Firstly, a structural description of the 
object is made containing information on the object’s most 
basic features (e.g. horizontal and vertical lines); secondly, the 
categorical representations most similar to the structural 
description of the detected object are selected from memory 
(e.g. if the object is an obstacle, the categories of objects that 
can be obstacles are selected, as they are all functionally and 
structurally similar to the current obstacle object, although the 
most similar category will be the one finally selected) in order 
to find out the proper action; and thirdly, inferences about the 
object are made based on the category selected (e.g. the 
obstacle is to be pushed). 

For implementation, categorization can be seen as a set of 
behavioral rules or SMCs that link the sensation directly to the 
action and allow the organism to group and differentiate the 
entities in its environment and perform a specific action based 
on the physical properties of the entity detected. Thus, on one 
hand, if the organism behaves in the same way (“motor”) 
when faced with two objects, A and B (“sensory”), we can 
infer that both objects are grouped in the same category. If, on 
the other hand, the organism behaves in a different way, we 
can infer that the objects belong to different categories. These 
grouping and differentiating mechanisms, which begin with 
categorization, do not need to be fully internally related. In 
robotics, this is called a functional definition of an object. For 
example, saying that "a chair is something on which someone 
can sit" is a functional definition of a chair. In addition, 
whether or not an organism behaves in the same or a different 
way with respect to objects depends not only on the objects’ 
physical properties, but above all on the task the organism has 
to perform at a given time. The key information required to 
perform a given task in a given environment will influence 
what is learned about the environment [19]. Although the 
objects offer all the physical and functional properties they are 
identified with, it is the properties that are useful for 
performing the task in question that are focused on. Of all the 
available objects in the environment, only those with relevant 
properties for the task to be performed are of interest. For 
example, we modify the SMCs with respect to a chair 
depending on whether we want to sit down on it or move it 
from one place to another, so the SMCs are established in 
accordance with a property of the chair we consider to be 
important for the task at hand. Thus, although the properties of 
the object remain the same, the relevance of one of the 

properties (such as the property the organism uses to establish 
the SMC) changes according to the task in question. There is 
no need to be aware of all the possible objects in the 
environment or of all the properties that define the objects we 
are interested in. Of all the possible properties, the property 
that makes the object relevant for performing a certain task is 
represented locally. That is why we model categorization as a 
local process. This local categorization can be seen as being 
realized by a set of hierarchical sets of controllers. 

B. A three Steps Method 
This study is about how a team of three robots could behave 

when given the task of reaching a long-term goal, i.e. reaching 
an object beyond the organism’s immediate spatial and 
temporal range. 

A first approach tends to formulate the problem as the 
implementation of an optimal function of control. Limits of 
this approach are known: it stands on assumptions of 
reliabilities of the sensors and effectors. Moreover, the design 
of such algorithms is often an expensive task with limited re-
use due. 

A second approach is based on machine learning techniques 
and optimization. Within this framework, the objective is to 
develop algorithms making it possible to learn a driving task 
given starting examples (traces in a file, demonstration in real 
time by human, etc. - the possibilities are multiple). Several 
approaches are considered according to the task: locomotion 
(legged robot), handling (arm robot), etc. Indeed, if one can 
relatively easily obtain many examples of vehicle driving for 
the training of the locomotion [10], it is difficult to ask a 
human experimenter to show thousands of times the gestures 
to be imitated [11]. 

The problem at hand is to implement human-like actions 
according to a long-term goal. Three types of human actions 
are distinguished in the literature [12]: simple body actions as 
primitive (handling, shaking hands, …) [13], primitive pattern 
activities (walking, running,) that are actions that are directly 
perceptible and do not necessarily require interaction with 
other objects to be interpreted as actions [14], and goal-
directed actions. Simple body actions and patterns activities 
executed by some actors are easily recognizable independent 
of context. Contrary to simple body actions and to primitives 
pattern activities, goal-directed actions are long time running 
pieces of complex actions done to reach an unseen goal. Note 
that pattern activities (walking) is made of simple body actions 
(moving legs) and that the perception of a pattern activity is 
complete with no missing elements. A goal directed-action is 
made of pattern of activities (turn left while walking) that are 
made of body actions (moving legs to turn left). But, contrary 
to pattern of activities, the perception of a goal-directed action 
is incomplete: why turning left for a given goal is an unseen 
element of the action. Thus, when humans are perceiving goal-
directed actions (turning left to take the shortest way), they are 
making interpretations on the basis of what they are given 
from the physical world and of the knowledge they possess 
about it. In other words goal-directed actions have a richer 
psychological structure than simply body actions and pattern 
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of activities [15]. Thus, the problem at hand is to find the 
super ordinate tactics and strategies that control the current 
goal-directed action. 

 
Then, state of the arts in robotics hardly matches the kind of 

abilities people develops when performing tasks. Task 
execution by humans comprehends thinking, planning and 
anticipating [16]. Using strategies, tactics and heuristics that 
have semantic components acquired from the development of 
knowledge in semantic memory all along the lifespan. People 
do verbally express how and why they proceed until the 
specific motor actions that are under the control of automatic 
behavior [8], for human cognitive psychology. These two 
kinds of human know-how should be a guideline for Robot 
mimicking Humans, then generalizing. 

Lets suppose an adult teaching a child, for instance how to 
get some bread from the bakery using a bicycle (sorry for the 
obvious example): the adult would provide the child with 
some knowledge through instruction about how to go there, 
with a list of subgoals, alternative subgoals, strategies and 
heuristics conditioned by objects features (if the first bakery is 
closed, if the main road is too cloudy, and so on), and would 
also have to give the child practical advice about how to drive 
the bicycle. 

We reasoned that a two steps method would be the 
appropriate way for Human-to-Robot learning. 

This is the whole Human Centered approach to Robotics 
that we justify as follows. Let’s suppose that a task is to be 
done by a child. The adult that wants to explain how to 
perform this task will put himself at the child level [16], [17]. 
This is the first step of the Human Centered Approach (HCA) 
to robotics: to limit the perceptions of the human (e.g. with a 
blindfold) to find out how the human would solve robotics 
tasks if he only had the robot's limited sensor capacity, and 
which strategies, tactics and heuristic he would implement to 
reach the goal. This first step also solves half of the 
correspondence problem [13]: the human demonstrator being 
at the level of the robot. 

The second step is the hierarchical sets of controllers, based 
on an extension of the subsomption control architecture [2]. 
We expect to find discriminative behavior for same motor 
actions that are under the constraints of different strategies, 
tactics or heuristics through the application of data mining 
algorithms on the behavioral data collected in step 1 and in 
step 2. Theses discriminative associative links will be used for 
the parameters of the controllers. 

III. HUMANS THAT MIMIC ROBOTS  
Because Kheperas, the target robots, have limited 

perception capacities (8 Infra-red proximity and ambient light 
sensors with up to 100mm range), humans were asked to 
perform a goal-oriented task with the same kind of limitations. 

We reasoned that blind people using their arms as sensors 
would be in quite kheperas like situations. Volunteers were 
given the task of finding a bottle of water in an unknown 
environment that was a kind of labyrinth room (figure 1): a 
room with tables with different orientations. 

 
Fig. 1.  An example of the search environment that is a room with tables 
(rectangles) of various orientations as the environment for humans that mimic 
robots, having the task to find bottles of water (the three dots). 

 

A. Method 
Participants were 27 subjects recruited at the Cité des 

Sciences et de l’Industrie de la Villette (Paris) and at the 
University of Paris 8. There were grouped in order to form 
nine teams of three individuals. 

Materials for observation were the room (at the Laboratoire 
des Usages en Technologies d’Information Numérique, 
LUTIN, at the Cité des Sciences et de l’Industrie de la Villette 
(Paris), tables in various orientations, bottles of water, a scarf 
and a headphone by participant to mask the eyes and two 
cameras with a tripod. 

The procedure consisted in informing the 3 participants of a 
team that they would have to find bottles of water in the room 
without visual perception and without the use of vocalization 
or audition, and that they have to cooperate to find one bottle 
(for 5 of the 9 teams) or to compete to find three bottles (for 4 
of the 9 teams).  

Participants were also instructed that once they found the 
water they would have to go back to the door where the 
experimenter would be standing. The whole 9 sessions of 
searching for the water were video recorded. The videos were 
analyzed in order to find out how the participant proceeded to 
reach their goal. After the search session, each of the 
participants was also asked to draw the room with localization 
of its contents.  

B. Results 
Results are that all the teams found the bottles in less than 6 

minutes, except for two members in a competition team that 
spent more than 15 minutes. The first participant of a team to 
find the bottles reached this goal in less than 3 minutes when 
participants were cooperating and in more than 3 minutes 
when participants were competing. Figure 2 shows two 
participants cooperating. 
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Fig. 2.  Two robot-like participants that are cooperating in order to find the 
search target (a bottle of water). 

 
Another result was that the drawings of the room, after the 

water had been found, were somewhat realistic, showing that 
the participants were using visual imagery, although not 
extensively, while searching for the target (Figure 3). 

Other results are first that participants have body actions 
(arms, feet) to explore their close environment extensively. 
This means that they occupy the enclosed space in such a way 
that if the target were there, they would find it (figure 4-a). 
The largest exploration of the enclosed space has also the 
effect of covering the whole space of the room while having 
pattern activities. A behavior that was not observed in 
backward pattern of activities, described below. 

 

 
Fig. 3.  Drawings of the room of figure 1 made by participants after the water 
search session. 

 
The most typical primitive pattern activity was to follow the 

walls and the sides of the table, always being in contact (figure 
4-b). This pattern of activity permits the largest exploration 
with body actions, while having a direction provided by the 
wall or the tables. This is observed in forward pattern of 
activities. When being in a dead end, or when having found 
the target, participants have forward activities for which they 
still have contact with the walls or tables but they do not have 
in this case the body actions of exploring the enclosed space. 

Another typical primitive pattern activity was traveling 
across empty space leaving a wall or a table for another wall 
or table. As shown in figure 5, this is done from the corner of 
the current wall or table after the extensive exploration. In 
addition, traveling across empty space was done by well 
performing agents by taking a diagonal direction respectively 
to the side of the wall or table they were leaving. 

 

 
Fig. 4. (a) An example of a large exploration of the close environment with 
body movements, (b) a typical pattern activity that consists of following 
obstacles (walls and tables sides) while searching the target. 

 

 
Fig. 5. From image 1 to 8, height moves done by three cooperating human 
agents displaying the “following wall and sides of tables” and the “traveling 
space” pattern activities. From left to right in figure 1, are agents A, B and C. 
Agent A travels space just after a corner, Agent B and C leave the current 
table at the corner. Traveling space is optimized by Agent A and C (diagonal). 
Agent B that was the less performing shows forward “following table” 
(images 4, 5, 6, 7). Agent C is going to find the target (image 8). 

 
Video analysis of performing behavior shows some goal 

directed actions that can be seen as heuristics. First was “Keep 
a main direction” (a west-East direction for Agent A, a North-
South Direction for Agent C in figure 5). Second was “avoid 
coming back, except in dead end”: this permits to reduce the 
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unexplored part of the room. Third was to take another 
direction when coming back. Fourth was, in case of 
cooperation, to take another direction than the direction taken 
by another agent (do not follow an Agent). Fifth was to avoid 
going somewhere being explored by another agent (in images 
2 and 3 of figure 5, Agent C stops a traveling space). Sixth 
was to avoid repeating the same pathway. The whole set of 
heuristics for goal directed actions can be seen as on line 
planning built on an increasing internal description of the 
room (figure 3). Participants quickly solved the problem, 
except in few cases. Note that the problem could remain 
unsolved for agents that would have a random exploration of 
the room. 

The search behavior displaying by agents A and C are the 
kind of behavior we plan to implement in virtual agents and in 
Kheperas through hierarchical sets of controllers. 
 

IV. DATA MINING HUMAN BEHAVIORAL PATTERNS  
From the videos recorded by humans looking for bottles, 13 

databases were created, each describing a path followed by a 
person in a maze. An example in these databases is a 
description of the situation of one person in the maze at a 
given time step. The description is composed of 50 
"observables", meaning values that can be observed directly 
from the video. Examples of observables are the number of the 
time step, the (X,Y) coordinates of the body, the (X,Y) 
coordinates of each hand, the orientation of the body, etc. A 
simulator called "Maze" was specifically implemented to help 
automate this data collection (cf. fig. 6). Through the use of 
Maze, the videos were translated into tables of raw data where 
each column was an observable and each row a time step (4 
time steps by second of video). The class value to be predicted 
was an expert-given appreciation of the type of strategy the 
person applied at that time step (e.g. random walk, follow 
wall, explore surface, etc.).  

 

 
Fig. 6. From videos to database. 

 
 
From these observables, "primitives" were built. Primitives 

are what in data mining are generally referred to as attributes. 
They result from a preprocessing of the raw observable data. 

The need for such preprocessing immediately becomes 
apparent if we think of the time step observable. Classification 
algorithms are opportunistic in the sense that they could, for 
example, build their model of the data by noticing that 
between time step X and time step X+T the human agent 

which actions are described in the database perform random 
exploration, leading to a true but useless observation with 
regards to a relevant model of what is a random exploration 
and when it takes place (i.e. the environmental stimuli and 
speed of movements are much more important that time tags).  

Other primitives are less straightforward to determine. One 
of such is "KNOW(OBST)" which means, for all obstacles 
OBST and at every time step, whether the person in the maze 
has already encountered about that particular obstacle or not. 
The value of that primitive is zero for all obstacles when a 
person enters a maze, and is one, for a given obstacle, when 
the person is directly touching that obstacle. But how should it 
behave once the person breaks contact with the obstacle? It is 
obvious that people in the maze remember previously 
encountered obstacles, and that this memory plays a part in 
their behavior. For example, a person might walk off a little 
way into empty space and then come back to touch the table 
he started from. This is deliberate, it is part of that person's 
strategy, so the value of KNOW(OBST) for that obstacle 
cannot be set back to zero right at the moment when the 
physical contact is broken. After a while, though, as a person 
wanders through the maze, they forget where this obstacle is 
relatively to them: they can bump into it. Or, when they again 
come into contact with it, they can explore its surface as they 
would explore a previously unexplored surface. So the value 
of KNOW(OBST) must be set back to zero (or very near zero) 
before the time at which a new contact with this obstacle 
would lead to a second exploration of it. The value of 
KNOW(OBST) must then decrease according to some 
distance function, for example using the sigmoid like function 
(smooth transition through time) – in such a case there are still 
parameters to determine : (1) the “hold” period during which 
the occurrence is still in memory and (2) the steepness of the 
curve in the sigmoid function (smoothness of the transition 
towards forgetting). Our method for setting these parameters is 
basically to offer to our classification algorithms several 
versions of the same primitive and to let the classification 
algorithm choose. Another way, more time-consuming, is to 
run the algorithm several times, once for all possible version 
of the primitive we are testing, and to select the version from 
which the classifier built the best model according to cross 
validation across several databases. Some classification 
algorithms are easier to tune in this way than others. Naive 
Bayes, which assumes attribute independence, is the easiest, 
but would be useless for our purpose because it does not build 
an understandable model.  

We rely on C4.5 learning algorithm [20] because of its 
widely-known efficiency and because it builds models of the 
underlying distribution of class values according to attribute 
values which can be read and understood even by a non-expert 
human and which can easily lead to robot controller 
implementation. The drawback is that with C4.5 one-by-one 
primitive function selection is not guaranteed to produce the 
best results because version v1 of primitive P may be best in 
some context while version v2 will be best in another context, 
for example in the context which will occur after the next 
primitive has been tuned. Often, though, the simplest 
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formulations of the primitives are the best. It appears that one 
of the best indicators in terms of movement is simply the 
binary variable indicating whether the person in the maze has 
moved or not since last time step. In retrospect, looking at the 
decision tree induced by C4.5, it becomes clear that this single 
primitive goes a long way into differentiating the class "No 
exploration" from the other classes taken together. 

Once selected, the primitives are grouped and arranged into 
tactics. Tactics are context-dependent descriptions of 
movement that can be implemented in a robot controller. 
Tactics include search tactics (table top exploration, ground 
exploration, etc), movement tactics (following a wall, 
following a table, going across empty space in approximately 
a straight line, etc), following an obstacle tactics (with one 
hand, with two hands, etc) and obstacle detection tactics (with 
one hand, with two hands, bump, etc). Aside from this exact 
modeling of behavior onto a robot, another indirect use of the 
results provided here is helping the human programmer for 
designing robot adaptive control architecture for solving 
similar problems (see next section). 

One should note that an extension and ongoing work of this 
work is about data mining time series to extract behavioral 
patterns.  

V. ROBOT IMPLEMENTATIONS OF HUMAN HEURISTICS 
 

 

 
Fig. 9. Hierarchical sets of controllers for virtual agents. 

 
Fig. 10. Results of simulation with virtual agents. 

 
Capitalizing from the results obtained in the previous 

sections, we have implemented an ad hoc control architecture 
based on simplified human heuristics. The goal is to provide 
robots with the ability to explore and search for a target in the 
environment and to compare their behaviors with that of the 
human examples. The objective is two-fold (1) to provide a 
simplified validation of the heuristics extracted from the 
observation of the human behaviors (considering the limitation 
due to heterogeneous morphologies and related simplified 
heuristics) and (2) to endow a robot with an efficient control 
architecture that should be otherwise hand written with no 
expert knowledge (e.g. random exploration) or learned (RL or 
Evolutionary Robotics).  

This work was conducted using a modified implementation 
of the very well known subsomption architecture [2]. This 
architecture was extended with internal states and sub-
architectures. That is, several control architecture 
implementations co-exist within one robot and only one is 
active at a time (this is a hierarchical controller). A transition 
from using one implementation to another depends on internal 
states and external stimuli (see fig. 9) (e.g. the “exit room” 
implementation is activated once the target is found). On the 
other hand, internal states prevents from getting stuck in a 
dead end behavior (e.g. using clock time out). 

The experimental setup consisted of an environment 
generator that could instantiate always-different environments 
that nevertheless were part of the same environment class (4-5 
obstacles of varying size, random location of the goal/treasure 
and exit, random starting location, always a possible path 
towards the goal). We implemented this in the Simbad 
Autonomous Robot Simulation Package [21] that provides a 
khepera implementation modeled after the real world Khepera. 
To stick with the previous experiments with humans, every 
experiment were conducted with three “blind” khepera using 
proximity IR sensors and with the ability to detect another 
close robot, enabling group behavior. 

Figure 10 shows two examples of the results obtained. The 
results can be interpreted from two viewpoints. Firstly, 
considering performance, the robot succeeded 100% in all 
experiments to find the target and retrieve it. This is due to the 
fact that the hierarchical controller encapsulates sufficiently 
enough heterogeneous sub-controllers so as to visit all places 
in the environment. However, no guarantee for optimality 
exists – it can be seen in the robot traces that the global 
behavior is far from a patrolling behavior, which should be a 
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very good choice (if not the optimal one) when neither the 
starting point, the map nor the goal location is known. 

Secondly, the original goal was not to provide the optimal 
behavior but rather some validation of the heuristics identified 
during the human experiments. In this scope, the results 
obtained with robots share some close relations with that of 
human subjects. Both follow similar local heuristics (random 
walk in open space, wall following, time out, etc.) that is not 
surprising since we implemented this that way and probability 
of success is always 1 though more optimal behaviors may 
exist. This 100% success rate is nevertheless the first and only 
figure that can be objectively measured, which is not to be 
underestimated since the success rate for similar tasks is not 
always guaranteed with other approaches, especially with ad 
hoc controller. However, psychologist expert analysis on 
experimental results tend to show that robot behavior are 
somewhat related to that of their human counterpart (note that 
these are also sub-optimal behaviors), which while subjective, 
is what we originally aimed for: experimental validation of an 
experimental model created after behavior observation and 
analysis of humans for a similar task and environment.  

VI. CONCLUSION AND PERSPECTIVES 
 
In this paper we addressed the extraction of human 

heuristics for problem solving in the real world (i.e. finding 
target in a maze) and the reimplementation of the resulting 
model in Khepera-like autonomous mobile robots for 
experimental validation.  

We described the whole chain from the experiments and 
construction of an exhaustive description of the heuristics used 
towards the implementation using simplified heuristics within 
a hierarchical control architecture. 

The results obtained show that the model obtained can be 
used for robot controller and lead to an efficient, sub-optimal 
but human-realistic, behavior for target finding. Moreover a 
set of techniques to categorize heuristics have been developed 
in the scope of this work that helped building the heuristic-
based behavioral model. 

As perspectives, we are already working on a unified 
experimental setup (see fig. 11). The goal is to control a robot 
to perform a specific action (finding a target, following a 
target, patrolling, etc.) – the robot is either controlled by a 
human or by a program (ad hoc or learned).  

Compared to our previous work, the use of one unified 
setup makes it possible to avoid the gap between the human 
and the robot perception of the world (it is of course possible 
to limit perception/action of the human to that of the robot). 
From the cognitive psychologist viewpoint, there is a strong 
interest to be able to switch from human control to model 
validation using the same platform. From the Robotics 
viewpoint, this makes it possible to address the problem of 
learning by demonstration in a rather straightforward fashion. 

 

 
Fig. 11. Learning by demonstration experimental setting. Foreground: 

Khepera robot, red target, two obstacles. Background: joystick and control 
screen. 
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