
HAL Id: inria-00175582
https://hal.inria.fr/inria-00175582

Submitted on 28 Sep 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Structured Templates for Authoring Semantically Rich
Documents

Vincent Quint, Irène Vatton

To cite this version:
Vincent Quint, Irène Vatton. Structured Templates for Authoring Semantically Rich Documents.
2007 international workshop on Semantically aware document processing and indexing, May 2007,
Montpellier, France. pp.41 - 48, �10.1145/1283880.128388�. �inria-00175582�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50359047?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00175582
https://hal.archives-ouvertes.fr

Structured Templates for Authoring
Semantically Rich Documents

Vincent Quint
INRIA Rhône-Alpes

655 avenue de l’Europe
38334 Saint Ismier, France

vincent.quint@inria.fr

Irène Vatton
INRIA Rhône-Alpes

655 avenue de l’Europe
38334 Saint Ismier, France

irene.vatton@inria.fr

ABSTRACT
Structured documents associate explicit semantics with con-
tent, but authoring rigorously structured documents is a
very difficult task. We present a new approach to this is-
sue that adds schema-level information to the popular web
formats. This makes editing highly structured documents
easier, while ensuring that documents are valid. It is also
an easy way to publish semantically rich documents on the
web. The impact of this approach on authoring tools is dis-
cussed and its implementation in the Amaya editor is briefly
presented.

Categories and Subject Descriptors
I.7 [Document and Text Processing]: Document Prepa-
ration—Languages and systems, Markup languages

General Terms
Design, Experimentation

Keywords
document models, microformats, semantic XHTML, docu-
ment authoring, structure editing, document templates

1. INTRODUCTION
Documents carry very rich semantics, but only human

readers can really take advantage of it. For a long time
researchers have tried to process some of the document se-
mantics with computers. They are basically following two
different approaches. One consists in relying only on the
content of the document (the text, the pictures it contains)
to “understand” its meaning. Another approach is to explic-
itly encode semantics, in addition to the document content,
in the document itself or in some external resources asso-
ciated with it. In this paper, we take the latter approach,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SADPI-07,May 21-22, 2007, Montpellier, France.
Copyright 2007 ACM ISBN 978-1-15159-668-4 ...$5.00.

following the vision of the semantic web, as defined by T.
Berners-Lee:

“The concept of machine-understandable documents does
not imply some magical artificial intelligence which allows
machines to comprehend human mumblings. It only indi-
cates a machine’s ability to solve a well-defined problem by
performing well-defined operations on existing well-defined
data. Instead of asking machines to understand people’s
language, it involves asking people to make the extra effort”
[1].

The semantic web offers a collection of models and lan-
guages such as XML, XML Schema, RDF, OWL, SPARQL
to handle various aspects of document semantics under the
form of “well-defined data”. Each model or language plays
a different role, and all are well organized in the so-called se-
mantic web layer cake [4]. But the “extra effort” that people
have to make to produce these data is the key issue, that
probably explains why the semantic web is not deploying
as fast as the traditional web. Most document authors do
not spend additional time to formally encode in a computer
language (some aspects of) the information and thoughts
they have already expressed in natural language or through
drawings and pictures.

We address this issue in this paper, focusing on the first
levels of the semantic web, namely XML and its schema lan-
guages, as well as the associated technologies. We present an
approach that helps authors to safely produce “well-defined
data” while they are writing documents.

XML’s goal is to explicitly represent the logical structure
of documents and data. With this structure, programs can
securely and unambiguously identify the various parts of a
document or a data base, and they get some hints about the
type of information located in each part. Structure provides
context for the content. This structural context is exploited
by programs, which can then perform powerful operations.

XML is now widely spread. It is used to represent many
different types of document structures. It encodes struc-
tured text (XHTML, DocBook, TEI, etc.), graphics (SVG,
X3D), mathematics (MathML), temporal structures in mul-
timedia presentations (SMIL), document layout (XSL-FO),
sophisticated forms (XForm), and more. In each case, the
explicit semantics represented by the XML structure is dif-
ferent, but it always allows a particular class of programs to
offer useful services.

Unfortunately, the issue raised above about the difficulty
of getting the appropriate structure well encoded by human
producers still makes the deployment of this technology very

slow. The well-known case of HTML is a good example of
this difficulty. Although HTML was created before XML,
it is based on the same concepts. HTML is defined as an
SGML application, i.e. as a structured document language.
But web authors, and the tools they use as well, tend to
ignore that fact. Most of the time, they just try to produce
pages that are good enough for their favorite web browser,
not paying any attention to other tools that could possi-
bly perform other kinds of treatments. As a result, many
applications have simply to ignore the markup supposed to
encode the document structure and they can only try to
make sense from the content.

To avoid this, better authoring methods are needed. New
methods and tools should alleviate the author’s task of en-
coding the details of the document structure. But most
XML vocabularies are semantically richer than HTML, and
more complex, which makes the issue more difficult. A sig-
nificant difference is rendering. In HTML, the structure is
tightly bound to its presentation. In the absence of any
stylistic information, a web browser is able to display a
HTML document in the way it is intended by its author.
In XML, this is not usually the case. XML’s approach is to
make presentation independent from structure and to allow
the same structure to be rendered for human consumption
in very different ways.

There are actually several means to generate a concrete
representation from an abstract XML structure. XSL is one
of them. This presentation language was specifically de-
signed for XML structures. It is quite powerful, but it also
implies complex processing. It works in two steps. First,
the original, abstract, XML structure is transformed into
another XML structure (XSL-FO) which represents presen-
tational semantics. In the second step, this structure is used
to generate the graphical representation of a document, of-
ten in the PDF format. This process implies that authors
have to create the abstract structure of their document with-
out immediate visual feedback. Some attempts have been
made [10] to embed this transformation-based formatting
process in interactive authoring tools, but this makes tools
very complex.

Another method for publishing XML documents, which
is very commonly used, is based on the ubiquitous support
for HTML and its companion style language CSS (cascading
style sheets) [7]. The principle consists in generating auto-
matically a HTML+CSS representation of XML documents,
thus allowing them to be viewed on the very broad range of
devices available on the web. XSL is also used in this frame-
work, but only the first step of its process is involved. The
transformation step generates directly a HTML document
and associates predefined CSS style sheets with it. With
this method, the document is first authored in some XML
language, following a schema well suited to the document
type. The XML document is then transformed into HTML
for publication. This method is still complex, as the au-
thoring phase is performed directly on the XML structure,
and requires authors to be comfortable with the language
and its tools. Also, when the document is published on the
web, most of the semantics carried by the original XML
structure is lost, and applications that process the HTML
output cannot do much with it, except displaying or print-
ing it. It should be noted however that using the full XSL
process to produce PDF files does not make any significant
difference in that regard.

In this paper, we are exploring a different way to authoring
and publishing semantically rich structured documents that
can be used everywhere, with the most common tools for
accessing electronic documents: web browsers. The paper is
structured as follows: the next section presents the approach
based on the combination of semantic XHTML and schema-
like information; section 3 explains how this approach helps
an authoring tool, and section 4 discusses the benefits of the
approach.

2. A NEW APPROACH
As an alternative to the complex process described above,

we are experimenting with a new approach that is sim-
pler while keeping the advantages of a rigorous well-defined
structure, a universal publication format, and semantic in-
formation delivered to the end user.

To achieve this goal, the main idea is to put together,
in a single information resource, the various structures and
languages involved in the traditional production process de-
scribed in the previous section. This allows a single tool
to perform efficiently and consistently all the operations
needed. This allows also authors to work freely, with com-
plete support for all the tasks they have to perform, at any
time.

More precisely, the different levels of representation that
have to be put in the information resource are the following:

• HTML encoding (or, better, XHTML), for display dur-
ing the authoring process and for publication;

• Style information, to specify how to visually render the
(X)HTML representation during the authoring phase,
and for publication in different contexts;

• XML structure, to represent the details of the logical
structure of the document, thus carrying some valuable
semantics;

• Schema information, to define and constrain the XML
structure;

• Mapping information, to establish the correspondence
between the XML structure (as defined by schema in-
formation) and the (X)HTML encoding.

2.1 XHTML and style
In the production process, XHTML plays two roles. It is

used to format and display the document during the editing
phase. It is also used as the final publishing format. Using
the same format for both roles allows authors to work more
comfortably, as they can see at any time what will really be
delivered when the document is finished. The term WYSI-
WYG is not really appropriate here, as “What You Get” is
not completely defined with XHTML: the exact form of the
document depends on the browser used to display the doc-
ument, the preferences set by the user, and the style sheets
associated at that time. The style of interface is actually
closer to direct manipulation [9], as the author really ma-
nipulates the final representation that will be produced in
the end: the XHTML representation.

XHTML was preferred to HTML for several reasons. The
first reason is that XHTML is an XML language and it is
much easier to use it in combination with other XML lan-
guages. Also, with XHTML 1.1, we have a clean separation

between structure and style, which offers more flexibility for
using style sheets and thus adapting documents to the en-
vironment where they are used.

For specifying style, we use CSS [7]. Like XHTML, it is
supported by all web browsers, and it allows the presenta-
tion of documents to be changed freely, depending on the
environment or on the task to be performed. For instance,
CSS offers advanced features such as the @media mechanism
that allows a style sheet to specify different styles for dif-
ferent kinds of devices (printer, screen, projector, handheld,
TV, braille, speech, etc.).

2.2 XML structure
Although XHTML is an XML language, it does not carry

much semantics. Its elements have a rather general purpose,
like division (div), paragraph (p), heading (h1), etc. They
allow many different types of documents to be represented,
but at a very low level: in a web page, a div may be used
to group news items, while the same element may represent
a chapter in technical documentation. Without additional
information attached to it, a plain division does not tell
much about its content.

To solve this issue, we follow the principle of semantic
XHTML and microformats [5]. It consists in defining a rich
structure (a technical documentation, the organization of a
web page, the contact information of a person) in terms of
another, less specialized language (typically XHTML), by
stating guidelines and conventions for using the lower level
language.

This approach has many advantages. By using a popu-
lar web markup language without any extension, documents
can be accessed with any web browser. The structure con-
strained by the rules of the microformat provides detailed
information that can be exploited by CSS style sheets to fine
tune the style and the layout of documents on different de-
vices. All the details of the structure are available when the
document is delivered over the web. Applications of differ-
ent kinds can then extract and use information from these
web pages and provide valuable services to end users.

With this approach, we consider XHTML as a (almost)
semantically neutral format for constructing arbitrary tree
structures. Element span can be used for the smallest pieces
of information, p for assembling spans, and div for building
hierarchies on top of ps. Some other XHTML elements, like
lists or tables, may also be used for representing sequential
or tabular structures. Semantics is added through a few
XHTML attributes, such as class or title, that can be
associated with almost every element. These attributes are
used to carry the information that is lacking from the el-
ement name. As an example, consider the following XML
structure representing the contact information for a person
(for instance an author of this article):

<person>

<full-name>Irène Vatton</full-name>

<address>INRIA Rhône-Alpes</address>

<email>irene.vatton@inria.fr</email>

</person>

Example 1: an XML structure

With semantic XHTML, the same information could be
represented by:

<p class="vcard">

Irène Vatton

INRIA Rhône-Alpes

irene.vatton@inria.fr

</p>

Example 2: a semantic XHTML structure

From the semantic point of view, there is not much dif-
ference between both pieces of code. The tree structure is
almost the same. Element names are different, but the in-
formation carried by element names in the XML version is
encoded in the class attributes in the XHTML version. A
few more elements (br) are present in the XHTML version,
but this is not a problem: any processor can just ignore
them if they are considered useless. Both representations
enable the same kind of processing. An XSLT engine for in-
stance can perform valuable transformations on both pieces
of code. XQuery queries can extract as much information
from both versions as well. An address book application
can recognize the various pieces of information and process
them safely.

The big difference however is that the XHTML version can
be sent immediately to a web browser, and even without any
style sheet, something sensible will be displayed. If a CSS
style sheet is associated with the document, it could display
the information nicely, taking advantage of the semantics
carried by the attributes.

In Example 2, the values of the class attribute have been
carefully chosen. They are taken from the hCard microfor-
mat. If this piece of code is received, as part of a web doc-
ument, by a browser that knows about hCard (thanks to
a plugin for instance), this browser could update the per-
sonal address book of its user with the contact information
of this author. More generally, using attribute values that
are part of well-known microformats allows documents to be
processed by various applications that are already deployed
on the web.

2.3 Schema information
The strength of XML is not only the structure it brings to

documents, but also the schemas that control this structure.
Schemas serve different purposes. First, they specify docu-
ment types, by defining the elements and attributes that
can be used as well as the rules for combining them into a
tree structure. Based on this specification of a document
type, schemas are used for validation, i.e. for checking if a
given document follows the definitions and rules of its asso-
ciated schema. Programs that create or generate documents
also use schemas as drivers, to make sure they produce valid
documents.

Validation is very important. It is because the structure of
a document is rigorously specified by a schema, and can be
checked by validation, that it is possible to securely associate
some semantics with it. Valid documents make processing
simpler. There is no need to consider other cases than those
explicitly mentioned by the schema. Valid documents also
make processing more reliable. There is no unexpected cases
that could raise errors in a program or that could lead to
unpredictable behaviours.

Several schema languages are available for XML, ranging
from DTD to RELAX NG and XML Schema. All schemas
are external resources that are referred from documents. For
an authoring tool, this has some consequences. In particular,

an authoring tool has to know what elements are allowed at
each position in the document structure, to guide the author
and to check that new elements created or pasted in the
document are acceptable. With an external schema, this is
not a simple task. It requires that the tool be able to match
a particular position in the structure with the corresponding
rules in the schema. A solution to this issue is to explicitly
list all possible elements at every position in a document
structure. While this may look costly, it is actually not a
problem in the context of semantic XHTML.

Defining the structure of a new document type with a
schema is a complex task, which requires that all elements
be defined from scratch. Even the most common elements
have to be defined, while they already exist in many other
schemas. Reusing an existing schema in a new schema could
address this concern, but at the moment the proposed so-
lutions are complex. Our approach is to build on seman-
tic XHTML again: as the most common text structures
are readily available in XHTML, there is no need to re-
define them. We can just use them wherever they fit in
the document type. Paragraphs, itemized lists, emphasized
character strings, tables, etc. can just be borrowed from
XHTML. This makes the document type definition much
simpler. Only the structures that are specific to a particu-
lar document type need to be defined. This simplification
greatly reduces the cost of including some schema-level in-
formation in the document itself, as proposed above.

To implement this approach, we have designed a language
that plays a role similar to a schema language, but for se-
mantic XHTML documents: XTiger (Extensible Templates
for Interactive Guided Editing of Resources). This language
has two main features: 1) it can define semantic XHTML
structures, such as the one of Example 2; 2) these building
blocks can then be used at some well identified locations
in the document structure. The document structure itself,
at the top level, is the usual structure of a XHTML doc-
ument, which is called a template. The template contains
both XHTML elements, that constitute the skeleton of all
documents of a given type, and some XTiger elements. Al-
though all examples in this paper are based on the XHTML
language, it should be noted that XTiger is independent
from XHTML. It can be used with any other XML language,
even with multiple languages in the case of compound doc-
uments.

In a template, all structure definitions are grouped in a
unique XTiger element xt:head that is inserted in the head
of the XHTML document (we use prefix xt: in front of
all XTiger element names to distinguish the XTiger names-
pace from the XHTML namespace; XHTML names have
no prefix). Two structure definition elements are available,
xt:component and xt:union. Building blocks defined by
xt:component have a name that allows them to be referred
from elsewhere in a template and they contain a piece of
semantic XHTML as well as some XTiger elements. Exam-
ple 3 shows the definition of a component named “author”,
which specifies the structure of Example 2. Note the xt:use

elements. These elements indicate that, at this location in
the structure, only character strings (types="string") can
be used. The xt:use elements also contain an initial value
that can be freely replaced by any other value when editing
a document. Example 4 shows another component defini-
tion, which is used to define the structure of the examples
that appear in this article.

<xt:component name="author">

<p class="vcard">

<xt:use types="string">Author

name</xt:use>

<xt:use types="string">Snail

mail address</xt:use>

<xt:use types="string">email

address</xt:use>

</p>

</xt:component>

Example 3: a semantic XHTML structure

<xt:component name="code-example">

<div class="example">

<pre><xt:use types="string">

Some code</xt:use></pre>

<p class="caption"><xt:use types="string">

Caption</xt:use></p>

</div>

</xt:component>

Example 4: defining a component

The other structure definition element available in XTiger
is xt:union. It defines components that can be chosen
among a list of options. For instance, to define the allowed
content of a section in this article, we could use a union
named ”section-content”. Example 5 states that section-
content may be either the component defined in Example 4,
or a XHTML element p (paragraph), or a XHTML element
ul (unnumbered list).

<xt:union name="section-content"

include="code-example p ul"/>

Example 5: defining a union

With this kind of structure definition, we can describe
the whole structure of a type of document in a template. A
template is constituted of XHTML elements plus XTiger ele-
ments. The XTiger elements indicate where and how struc-
tures defined as components and unions, as well as plain
XHTML elements, can be used. There are four such XTiger
elements. We have already seen the xt:use element, which
indicates that a single, mandatory element must appear at
its location. The xt:use element also indicates the allowed
type(s) for this element. When a sequence of elements is al-
lowed, the xt:repeat element is used. It always contains a
xt:use element, to specify the type(s) of these repeated ele-
ments. Example 6 is an excerpt from the template describ-
ing this article. It specifies that the XHTML div element
that contains information about the authors after the title
must hold one to five ”author” components (those defined
in Example 3).

<div class="authors">

<xt:repeat minOccurs="1" maxOccurs="5">

<xt:use types="author"/>

<xt:repeat>

</div>

Example 6: repeating a component

Similarly, there is a xt:option element for optional struc-
tures. It is equivalent to a xt:repeat element with minOc-
curs=0 and maxOccurs=1. The fourth element is called
xt:bag. A bag can contain any number of elements, which
can themselves contain other elements, but the types of all
these elements, at any level within the bag, is constrained by
the types attribute of the xt:bag element. For instance, for
this article, we could define a component named ”section”
as a XHTML div that, in addition to the h2 heading, would
contain only examples, paragraphs and lists (see Example
7, which refers to the structure defined in Example 5).

<xt:component name="section">

<div class="section">

<xt:use types="h2"/>

<xt:bag types="section-content"/>

</div>

</xt:component>

Example 7: a bag

There are a few more elements in the XTiger language,
and the elements presented above have a few more attributes,
but this is the core of the language. XTiger is a simple lan-
guage. For more details about XTiger, see [6].

2.4 Mapping information
In the traditional publication process of XML documents,

when targeting the web as a publication medium, XML
structures have to be converted into XHTML. This trans-
formation, often performed by a XSLT sheet, is based on a
mapping process, where the XHTML structures to be gen-
erated are associated with XML structure patterns from the
source document.

With XTiger, mapping is useless, as well as transforma-
tion. All structures are defined from scratch as XHTML
structures by the XTiger language. Mapping becomes im-
mediate, as the semantic structure and the XHTML code
coexist in the same file, the one embedding the other.

If a pure XHTML document is needed for publication, the
XTiger elements can be removed from the document. This
is a very simple operation, but removal of XTiger elements
is not necessary. Experience has shown [3] that the XTiger
code usually increases file size by an acceptable ratio. More-
over, web browsers are not disturbed by the XTiger elements
interspersed in the XHTML code. Browsers are built to ig-
nore elements they do not know. This obviously applies to
XTiger. This is a significant advantage, as documents can
be distributed on the web without any further processing,
as soon as the author is finished.

3. HANDLING DIFFERENT STRUCTURES
As we have seen above, a document contains its represen-

tation in semantic XHTML as well as structural constraints
expressed by XTiger elements. These two structures play
different roles, but they are tightly intermixed. For an au-
thoring tool, this raises several issues related to structure
manipulation, validation, presentation and editing.

3.1 Semantically rich structure
To process both structures correctly, they first have to be

distinguished. Namespaces in XML [2] have been created for
that purpose, and they provide the mechanism needed for

XTiger. With namespaces, every element can be associated
unambiguously with the language to which it belongs. It
should be noted however that when using XTiger, attributes
are not mixed: XHTML elements never have XTiger at-
tributes and conversely.

Namespaces work well because both XTiger and XHTML
structures are hierarchical and share the same content. El-
ements from one structure are never split into several el-
ements in the other structure. We have carefully avoided
complex mixing schemes.

Under this condition, integrating both structures is not a
problem, but an advantage, as it greatly helps an authoring
tool. When processing an XHTML element in a document,
the constraints that apply to it are readily available. By
checking the ancestor XTiger elements of the element of in-
terest, a document processor may know what is allowed and
what is not. Obviously this applies only to the constraints
expressed by the XTiger language. Constraints from the
XHTML language still have to be checked in the correspond-
ing DTD. For doing this, only the XHTML elements present
in the structure have to be taken into account. XTiger ele-
ments must be ignored.

XTiger enables an interesting approach to validity (in the
XML sense). Instead of post-hoc validation, it allows an
authoring tool to continuously, dynamically ensure that the
document it builds is always valid. With that approach,
the tool does not need to validate the full document at any
time, but it enforces validity for each action it performs, by
allowing the author to trigger only operations that keep the
document valid. For the XTiger structure it is quite easy.
For XHTML the advantages of this approach have already
been demonstrated [8].

To make sure the XTiger structure is present wherever it
is needed in a document, an authoring tool has to generate
it every time new elements are introduced in the document.
New elements can be created only within the XTiger ele-
ments xt:use, xt:repeat, xt:option and xt:bag. They
all allow both XHTML elements and XTiger components to
be created. When creating a XTiger component, the whole
structure of the component is copied from its definition given
by a xt:component element. In addition, if a xt:repeat el-
ement is part of the component, additional children may be
generated to comply with the minimum number of occur-
rences required.

When an authoring tool creates a XHTML element that
is allowed both by its DTD and by the XTiger structure, the
presence of the XTiger structure impacts the way these ele-
ments are inserted in the structure. Elements that should be
children of a given elements according to the XHTML DTD
often have to be inserted deeper in the structure, because of
intervening XTiger elements. This is actually the most diffi-
cult aspect of handling both structures concurrently. While
XHTML structure checking must simply ignore XTiger ele-
ments, structure construction must take them into account.
Consider Example 8 that specifies the structure of a bibli-
ography at the end of an article.

<ol class="bibliography">

<xt:repeat>

<xt:use types="bibitem"/>

</xt:repeat>

Example 8: a bibliography

It uses the ”bibitem” component defined in Example 9.

<xt:component name="bibitem">

<li class="bibentry">

<xt:use types="string"/>

...

</xt:component>

Example 9: a bibliography entry

When the author wants to add a new item in the bibliog-
raphy, a new XHTML element li with class="bibentry"

is created, but it is not inserted as a child of the ol element
(which should be done according the XHTML DTD), but
two levels deeper (see Example 10).

<ol class="bibliography">

<xt:repeat>

<xt:use types="bibitem">

<li class="bibentry">

<xt:use types="string"/>

...

</xt:use>

<xt:use types="bibitem">

<li class="bibentry">

<xt:use types="string"/>

...

</xt:use>

</xt:repeat>

Example 10: adding an entry in the bibliography

3.2 Presentation structure
Template elements not only interfere with the logical struc-

ture, but also with the presentation structure. In a direct
manipulation system this is important, as the logical struc-
ture is not displayed only through its XML source code or its
DOM tree, but primarily through a formatted representa-
tion. For the formatter too, the presence of XTiger elements
has to be considered.

Due to the way both structures are mixed, the CSS box
model works well for formatting documents with XTiger el-
ements. CSS was designed [7] to format hierarchical struc-
tures by associating nested boxes to the nested elements
of an XHTML (or XML) structure. As the XHTML ele-
ments and the XTiger elements mixed in a document make
a unique hierarchical structure, we can associate a CSS box
with each XTiger element, while keeping the usual boxes for
XHTML elements. The XTiger boxes are specified in CSS
as simply as possible. They do not add extra space or any
particular positioning. It is just a rectangle that delineates
the XHTML elements they contain. That way, XTiger ele-
ments do not disturb the formatting of XHTML elements.

An author can edit a document while seeing the usual for-
matting of the XHTML content. This is important for direct
manipulation.

Though they do not change the formatting of the docu-
ment, XTiger boxes are visible under the form or colored
rectangles. A different color is associated with each type of
XTiger element (see Figure 1). The author can thus perceive
and understand the constraints put by the XTiger elements.
In the upper part of Figure 1, the following colors are as-
sociated to XTiger elements: blue for xt:use, purple for
xt:repeat, yellow for xt:option, and green for xt:bag.

Figure 1: Displaying a XTiger document

3.3 Editing process
The principles discussed above have been implemented

and experimented in the Amaya authoring environment [8].
Users can now create new XHTML documents from a XTiger
template and edit them following the model described by the
template.

When creating a new document, Amaya instantiates the
chosen template. It creates a copy of the template which
becomes the new document, and it removes the xt:head

element (i.e. all structure definitions: xt:component and
xt:union elements). It keeps the head separate from the
new document instance. To maintain the link between the
document instance and its template, it inserts in the new

document an XML Processing Instruction containing the
URI of the template, in the same way CSS style sheets are
linked from XML documents. The new document is then
ready for editing (see Figure 1). Note that editing is allowed
only within the colored frames (i.e. XTiger elements). The
parts of the template that are not within a XTiger element
must stay as they are and can not be edited.

The editing process then follows the principles detailed in
the previous section, maintaining both the XHTML struc-
ture and the XTiger elements in the same data structure.
During the editing phase, the initial document grows and
the new elements from both languages are added. Their
visual representation is simultaneously reflected on the dis-
play, where the user can see both structures. To better
understand the structure being built, the user may ask the
editor to show the DOM tree in a separate view, which is
also updated every time the internal structure is changed.
In this view the XTiger elements and XHTML elements are
displayed in different colors (lower part of Figure 1).

4. DISCUSSION
XTiger templates may be used to specify the overall struc-

ture of a large document, as well as the fine details of some
of its parts. This latter feature allows document designers to
specify how to use microformats in large documents. In that
regard, XTiger is quite different from the templating mech-
anisms offered by most commons document editors, which
only provide the overall structure of a document. Using
an XML syntax, template information can be easily inte-
grated in the XHTML structure and carries more informa-
tion about the document model than templating languages
that use only comments or attributes. The template lan-
guage is very simple (only a few elements and attributes),
but experience has shown that it is powerful enough to rep-
resent faithfully the structure of many different types of
documents. Some templates are available on the web from
http://www.w3.org/Amaya/Templates/.

In this paper, XTiger is used only with XHTML. It can
actually be used also with other XML document formats. In
particular, we have plans to use it with SVG and MathML
in compound documents. With these languages, XTiger
components could define typical graphical or mathematical
structures that occur frequently in some documents. To
make that easier, XTiger includes a xt:library element
that is used to collect component declarations in separate
files, called libraries, that can then be shared and reused in
several templates. A xt:import element allows libraries to
be called from the xt:head element of a template.

Another important feature of XTiger is that a document
can be made available on the web with its XTiger elements
without disturbing browsers. All the details of the struc-
ture (and the corresponding semantics) of the document are
available on the client side. This is not the case when XML
documents are transformed into XHTML on the server side.
Moreover, keeping the XTiger structure with the published
document allows other users to take advantage of it, and
to keep working on the document with exactly the same
possibilities as the original author. This is very helpful for
cooperative work.

We have stressed in the introduction the difficulty of get-
ting explicit semantics properly encoded by authors. With
XTiger, the effort of encoding semantics in documents is
done when designing templates, not by authors writing doc-

uments. Actually, using XTiger not only allows authors to
finely structure their documents, but it also saves time for
them. When a large piece of structure is represented by a
component, inserting an instance of this component in a doc-
ument requires only a mouse click. If the template is well
designed, authors spend most of their time typing in the
content, and do not have to worry about structure. This is
important, because manipulating structure is not easy for
most authors. With XHTML this is indeed complex, as
XHTML elements are very general and authors have diffi-
culty to choose the right element for representing the struc-
ture they have in mind. XTiger templates provide much
appreciated help in that regard. For example, in Figure 1,
adding a new Category is done simply by clicking a purple
’+’ icon and all the required fields are immediately created
and displayed.

The key point is then to design templates. This may
be compared to designing an XML schema, although build-
ing on top of XHTML (or other XML format) reduces the
task, as mentioned above. The main issue is to conceive
a well thought model and to map it to semantic XHTML.
The model must then be encoded as a template. There is
currently not much help for this technical task. Although
the template designer can use Amaya to build a skeleton
in XHTML, she must then edit the source code to intro-
duce XTiger elements. A template design mode in Amaya
would certainly ease this task. This is scheduled for future
developments.

Developing templates is costly, but this cost must be bal-
anced with the many document instances that will be cre-
ated from it. It is in fact a valuable investment. Not only
document authors save time, but they also produce more
valuable documents. Instances built from a template are
better structured, carry more explicit semantics, and can be
exploited by more applications.

In section 2.2, we have already mentioned address book
applications taking advantage of the hCard microformat.
Similarly, the bibliography of a scientific article can be en-
coded in a citation microformat to automatically feed the
bibliographic data base of its readers. This kind of benefit
applies not only to scientific papers, but to all sorts of docu-
ments and applications. In a different area, aggregators such
as kritX, iNods or blogcritics collect reviews from weblogs
and other web sites and rely on the hReview microformat
to find the relevant information. Announcing events on the
web with the hCalendar microformat allows users to quickly
and safely update their own calendar when they find inter-
esting announcements. Web applications such as Slidy or S5
rely on semantic XHTML to present slides with a number
of advanced features. Describing these formats in XTiger
templates makes it sure that they are correctly encoded and
then that applications can work properly, without asking
authors to learn about new formats.

It could be argued that the level of semantics encoded in
semantic XHTML is low. This is true, as compared with
other layers of the semantic web, for instance. But with
tools like Amaya and its XTiger templates, this low-level
semantics enables a lot of useful applications. In addition,
the deployment of these applications is very smooth, as the
formats involved do not require any extension of the exist-
ing web infrastructure or tools. Slidy and S5 are good ex-
amples: access a Slidy document with your favorite browser
and it works immediately. Dowload a few plug-ins and your

browser exploits on the corresponding microformats for you.
Put some hReview elements in your blog, and aggregators
will reference your comments.

5. CONCLUSION
In this paper, we have presented a new approach to doc-

ument structure, which is based on the usual concepts of
XML documents, structure schemas, and mapping between
different levels of representation. But we are using these
concepts in a different way, combining them in a single, sim-
ple language that offers new possibilities for authoring and
publishing semantically rich structured documents.

This approach was implemented in the Amaya authoring
environment and is used with various types of documents.

6. ACKNOWLEDGEMENTS
The work presented here was partly funded by the 6th

Framework Programme of the European Commission as part
of the Palette project (FP6-028038). The implementation of
XTiger would not have been possible without the continuous
support of W3C for the development of Amaya.

7. REFERENCES
[1] T. Berners-Lee. What the Semantic Web can

represent.
http://www.w3.org/DesignIssues/RDFnot.html,
September 1998.

[2] T. Bray, D. Hollander, A. Layman, and R. Tobin.
Namespaces in XML 1.1. W3C Recommendation,
http://www.w3.org/TR/xml-names11/, August 2006.

[3] F. C. Flores, V. Quint, and I. Vatton. Templates,
microformats and structured editing. In Proceedings of

the 2006 ACM Symposium on Document Engineering,

DocEng 2006, pages 188–197. ACM Press, October
2006.

[4] J. Hendler. Agents and the semantic web. IEEE

Intelligent Systems, 16(2):30–37, 2001.

[5] R. Khare. Microformats: the next (small) thing on the
semantic web? IEEE Internet Computing,
10(1):68–75, 2006.

[6] E. Kia, V. Quint, and I. Vatton. XTiger Language

Specification.
http://www.w3.org/Amaya/Templates/XTiger-
spec.html, February
2007.

[7] H. W. Lie. Cascading Style Sheets. Phd thesis, Faculty
of Mathematics and Natural Sciences, University of
Oslo, February 2006.

[8] V. Quint and I. Vatton. Techniques for authoring
complex XML documents. In Proc. 2004 ACM

Symposium on Document Engineering, pages 115–123.
ACM Press, October 2004.

[9] B. Shneiderman. Direct manipulation: A step beyond
programming languages. IEEE Computer,
16(8):57–69, 1983.

[10] L. Villard and N. Layäıda. An incremental XSLT
transformation processor for XML document
manipulation. In WWW2002, the 11th International

World Wide Web Conference, pages 474–485. ACM
Press, May 2002.

