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Abstract. We study the regularity of propagating fronts whose motion
is anisotropic. We prove that there is at most one normal direction at
each point of the front; as an application, we prove that convex fronts
are C

1,1
. These results are by-products of some necessary conditions

for viscosity solutions of quasilinear elliptic equations. These conditions
are of independent interest; for instance they imply some regularity for
viscosity solutions of nondegenerate quasilinear elliptic equations.

1. Introduction

Following [4, 12], we study propagating fronts whose velocity field vΦ is
given by the following geometric law:

vΦ = (κΦ + g)nΦ,

where nΦ and κΦ are respectively the inward normal direction and the mean
curvature associated with a Finsler metric Φ; g denotes a possible (bounded)
driving force.

The main result of this paper states that under appropriate assumptions,
there is at most one (outward or inward) “normal direction” at each point
of the front.

In order to define the front past singularities, we use the level-set approach

initiated by Barles [1] and developed by Osher and Sethian [13]. This ap-
proach consists in describing the front Γt at time t as the zero level-set of a
(continuous or discontinuous) function u : Γt = {x : u(x, t) = 0}. Choosing
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first a continuous function u0 such that the initial front Γ0 coincides with
{x : u0(x) = 0} (consider for instance the signed distance function to Γ0), u
turns out to be a solution of the following Hamilton-Jacobi equation:

∂u

∂t
− Φ◦(Du, x)

[

tr[DζζΦ
◦(Du, x)D2u] +

〈

DζΦ
◦(Du, x),

Du

|Du|

〉

+tr[DζxΦ◦(Du, x)] + g(Du, x, t)
]

= 0, (1.1)

where Du and D2u denotes the first and second derivative in x of the function
u and Φ◦ denotes the dual metric associated with Φ. This equation is known
as the anisotropic mean curvature equation. It is solved by using viscosity
solutions [7]. The function u depends on the choice of u0, but not the
front Γt, even not the two families of sets Ot = {x : u(x, t) > 0} and
It = {x : u(x, t) < 0} [8, 5, 11]. The definition of the front is therefore
consistent and the notions of “outside”and “inside” become precise.

The study of the normal directions reduces to the study of the semi-jets
of discontinuous semisolutions of (1.1). This latter study is persued by using
necessary conditions derived for viscosity solutions of degenerate elliptic and
parabolic quasilinear equations. Besides, these conditions are of independent
interest. For instance, we derive from them regularity of viscosity solutions
of nondegenerate quasilinear elliptic and parabolic equations.

The paper is organized as follows. In Section 2, we first give assumptions
and recall definitions that are used in the paper. In particular, the Finsler
metric and its dual are introduced and the definition of normal directions
and semijets are recalled. In Section 3, we state and prove our main results
(Theorem 1 and Corollary 1). Eventually, in Section 4, we present the
necessary conditions used in the proof of Theorem 1.

2. Assumptions and definitions

In this section, we give assumptions and definitions that are used through-
out the paper.

2.1. Anisotropic motion. In order to take into account the anisotropy and
the inhomogeneity of the environment in which the front propagates, the
metric induced by the Euclidian norm is replaced with a so-called Finsler

metric. In our context, a Finsler metric Φ is the support function of a given
compact set denoted by BΦ◦(x) :

Φ(ζ, x) = max{〈ζ, ζ∗〉 : ζ∗ ∈ BΦ◦(x)}.
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The set BΦ◦(x) is referred to as the Wulff shape. Here are the assumptions
we make concerning Φ and BΦ◦(x).

A0. (i) The Wulff shape BΦ◦(x) is a compact set that contains the origin
in its interior and is symmetric with respect to it;

(ii) Φ ∈ C2(Rn\{0} × R
n);

(iii) for all x ∈ R
n, ζ 7→ [Φ(ζ, x)]2 is strictly convex.

For a given x ∈ R
n, the dual metric Φ◦ is defined as the support function

of the set BΦ(x) = {ζ ∈ R
n : Φ(ζ, x) 6 1}; this set is known as the Franck

diagram.
Let us give few examples. If the Finsler metric is simply the Euclidian

norm and if there is no driving force, the motion is isotropic and (1.1) reduces
to the well-known (isotropic) mean curvature equation:

∂u

∂t
− ∆u +

〈D2uDu, Du〉

|Du|2
= 0. (2.1)

Equations (1.1) and (2.1) are quasilinear and present a singularity at Du = 0.
There ellipticity and degeneracy follow from the fact that ζ 7→ Φ◦(ζ, x) is
a support function; indeed, a support function is convex and linear along
half-lines issued from the origin. Consequently:

DζζΦ
◦(ζ, x) < 0 and ζ ∈ KerDζζΦ

◦(ζ, x),

where 4 denotes the usual order associated with Sn, the space of n×n sym-
metric matrices. A second example of motion is the following: consider a
(riemannian) metric Φ(ζ, x) = Φ(ζ) =

√

〈Gζ, ζ〉 where G ∈ Sn is definite

positive. The associated dual metric turns out to be Φ◦(ζ∗) =
√

〈G−1ζ∗, ζ∗〉.
Finally, let us give a third example in which the inhomogeneity of the envi-
ronment is taken into account: Φ(ζ, x) = a(x)

√

〈Gζ, ζ〉, where a ∈ C2(Rn)
and a(x) > 0 for all x ∈ R

n. The reader can check that in these three exam-
ples the kernel of DζζΦ

◦(ζ, x) coincides with Span{ζ}. We next assume that
the Finsler metric verifies such a property.

A1. ∀x ∈ R
n,∀ζ ∈ R

n\{0},KerDζζΦ
◦(ζ, x) = Span{ζ}.

We also need the following additional assumption.

A2. There exists L > 0 such that for all x, y ∈ R
n and all ζ∗ ∈ R

n,

|Φ◦(ζ∗, y) − Φ◦(ζ∗, x)| 6 L |ζ∗| |y − x|.

2.2. Semi-jets, P-subgradients and P-normals. We solve (4.1) and
(4.2) by using viscosity solutions [7]. In order to ensure the existence of
a solution (using for instance results from [10, 12]), we assume throughout
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the paper that the initial front is bounded. Unboundedness of the domain
can be handled with results from [3]. The definition of viscosity solutions is
based on the notion of semi-jets. Let Ω be a subset of R

n and u be a numer-
ical function defined on Ω and x be a point in Ω. A couple (X, p) ∈ Sn ×R

n

is a so-called subjet (resp. a superjet) of the function u at x (with respect
to Ω) if for all y ∈ Ω :

1

2
〈X(y − x), y − x〉 + 〈p, y − x〉 6 u(y) − u(x) + o(|y − x|2) (2.2)

(

resp.
1

2
〈X(y − x), y − x〉 + 〈p, y − x〉 > u(y) − u(x) + o(|y − x|2)

)

, (2.3)

where o(.) is a function such that o(h)/h → 0 as h → 0+. The set of all

the subjets (resp. superjets) of u at x is denoted by J 2,−
Ω u(x) (resp. by

J 2,+
Ω u(x)). In order to define viscosity solutions for parabolic equations,

one must use so-called parabolic semi-jets P2,−

Ω×[0,T ]u(x, t); see [7] for their

definition.
A vector p such that there exists X ∈ Sn such that (X, p) ∈ J 2,−

Ω u(x) is
a so-called P-subgradient [6] of the function u :

∀y ∈ Ω, 〈p, y − x〉 6 u(y) − u(x) + O(|y − x|2).

The set of all such vectors is referred to as the proximal subdifferential of the
function u and it is denoted by ∂P u(x). Analogously, a proximal superdiffer-

ential (hence P-supergradients) can be defined by ∂P u(x) = −∂P (−u)(x). It

coincides with the sets of vectors p such that ∃X ∈ Sn : (X, p) ∈ J 2,+
Ω u(x).

The geometry of a set Ω can be investigated by studying subjets of the
function denoted by Zero Ω defined on Ω and that is identically equal to
0. The proximal subdifferential of this function coincides with the proximal

normal cone of Ω at x [6]:

NP (Ω, x) = {p ∈ R
n : ∀y ∈ Ω, 〈p, y − x〉 6 O(|y − x|2)}.

An element of NP (Ω, x) is referred to as a P-normal. If p is a P-normal of Ω
at x and λ is a nonnegative number, then λp is still a P-normal. From the
geometrical viewpoint, one can say that NP (Ω, x) is a cone, that is to say
it is made of half-lines issued from the origin. Crandall, Ishii and Lions [7]
proved that for a set with a C2 boundary:

J 2,−
Ω Zero(x) = {(S(x) − Y, λn(x)) : λ ≥ 0, Y < 0},

where n(x) denotes the normal vector and S(x) denotes the second fun-
damental form extended to R

n by setting S = 0 along Span{n(x)}. The
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proximal normal cone is therefore reduced to R
+n(x) = {λn(x) : λ > 0}. If

Ω is a hyperplan and n 6= 0 denotes a normal vector from H⊥, then NP (Ω, x)
is the whole line Span{n}.

3. Main results

In this section, we state and prove our main results, namely Theorem 1 and
Corollary 1. The proof of Theorem 1 rely on necessary conditions verified by
solutions of possibly degenerate elliptic and parabolic quasilinear equations;
these conditions are presented in Section 4.

Theorem 1. Consider a Finsler metric Φ satisfying A0, A1 and A2. Then

the associated propagating front Γt, t > 0, has at most one “outward normal

direction” (resp. “inward normal direction”), that is to say the proximal

normal cone at any point of It ∪ Γt or at any point of It (resp. Ot ∪ Γt or

Ot) is at most a line.

Remarks. 1. Assumptions A0 and A2 ensure the existence and uniqueness
of the solution u of (1.1). Assumption A1 can be seen as a regularity
assumption on the Franck diagram.

2. Theorem 1 remains valid if the front “fattens” (see [14] for details about
the fattening phenomena).

Theorem 1 implies the regularity of convex fronts. See also Theorem 5.5
in [9].

Corollary 1. Let the metric Φ be independent of the position and such that

A0, A1 are satisfied. Assume that the initial front Γ0 is convex. Then the

associated propagating front Γt is also convex and is C1,1; more precisely,

It ∪ Γt and It are convex and their boundary is C1,1.

Let us now prove these two results.

Proof of Theorem 1. Assumptions A0 and A2 ensure that the assump-
tions of Theorem 4.9 in [10] are satisfied. Then, there exists a unique solution
of (1.1). In order to prove Theorem 1, we must prove that for a given point
of the boundary of It, two P-normals p1 and p2 are colinear. Let us choose
λ such that λp1 + (1 − λ)p2 6= 0. We know [3] that the function Zero It

is a

supersolution of (1.1). By applying Proposition 1 (see Section 4), we obtain:

p1 − p2 ∈ KerDζζΦ
◦(λp1 + (1 − λ)p2).

Using Assumption A1, we conclude p1 − p2 is colinear with λp1 + (1− λ)p2.
We conclude that p1 and p2 are colinear.

We proceed analogously with the sets It, Ot ∪ Γt and Ot. ¤
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Proof of Corollary 1. The fact that the front is convex for any time t
follows from Theorem 3.1 in [10]. Choosing for u0 the opposite of the signed
distance function to Γ0, we ensure that the initial datum is Lipschitz and
concave. Therefore, Theorem 2.1 in [12] implies that u is Lipschitz; this
ensures that u has a sublinear growth. By applying Theorem 3.1 in [10],
we know that x 7→ u(x, t) is concave, hence It ∪ Γt and It are convex sets.
The Hahn-Banach theorem ensures the existence of a normal in the sense
of convex analysis. Such a normal is also a P-normal [6]. Using the fact
that Zero It

and Zero It∪Γt
are supersolutions of (1.1) (see for instance [3]),

Theorem 1 implies that there is at most one P-normal. Hence there is exactly
one normal in the sense of convex analysis and C1,1 regularity follows. ¤

4. Necessary conditions for elliptic and parabolic quasilinear

equations

In the present section, we state necessary conditions that are verified by
viscosity sub- and supersolutions (hence by solutions) of quasilinear elliptic
equations on a domain Ω ⊂ R

n :

−
n

∑

i,j=1

ai,j(Du, u, x)
∂2u

∂xi∂xj

+ f(Du, u, x) = 0,∀x ∈ Ω. (4.1)

These equations may be degenerate and/or singular at Du = 0. We also
study the associated parabolic equations on Ω × [0, T ] :

∂u

∂t
−

n
∑

i,j=1

ai,j(Du, u, x, t)
∂2u

∂xi∂xj

+ f(Du, u, x, t) = 0,∀(x, t) ∈ Ω × [0, T ].

(4.2)
In the following, the n × n symmetric matrix with entries (ai,j) is denoted
by A. We assume that (4.1) and (4.2) are degenerate elliptic.

(E) For all p, u, x(, t), A(p, u, x(, t)) < 0.

In Propositions 1 and 2, we prove that the difference of two P -subgradients
(resp. P -supergradients) of a supersolution (resp. of a subsolution) of (4.1)
or (4.2) is a degenerate direction, that is to say it lies in the kernel of A.

Proposition 1 (The elliptic case). Consider a supersolution (resp. a subsol-

ution) u of (4.1), a point x ∈ Ω and two subjets (Xi, pi) ∈ J 2,−
Ω u(x), i = 1, 2

(resp. two superjets (Xi, pi) ∈ J 2,+
Ω u(x), i = 1, 2). Then for any λ ∈ [0, 1]

such that λp1 + (1 − λ)p2 6= 0, the following holds true:

p1 − p2 ∈ KerA(λp1 + (1 − λ)p2, u(x), x).
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A straightforward consequence of Proposition 1 is the following result
dealing with nondegenerate equations.

Corollary 2. Suppose that the equation (4.1) is nondegenerate, i.e.,

〈A(p, u, x)q, q〉 > 0 if q 6= 0.

Then a solution u : Ω → R of (4.1) has “no corners”, that is to say the

function u has at most one P-subgradient and at most one P-supergradient

at any point x ∈ Ω.

This corollary applies for instance to the equation associated with the
search of minimal surfaces:

div
( Du

1 + |Du|2

)

= 0 ⇔ −∆u +
〈D2uDu, Du〉

1 + |Du|2
= 0. (4.3)

Before proving Proposition 1, we state its parabolic version.

Proposition 2 (The parabolic case). Consider a supersolution (resp. a

subsolution) u of (4.2), a point (x, t) ∈ Ω × [0, T ] and two parabolic sub-

jets (Xi, pi, αi) ∈ P2,−

Ω×[0,T ]u(x, t), i = 1, 2 (resp. two parabolic superjets

(Xi, pi, αi) ∈ P2,+
Ω×[0,T ]u(x, t), i = 1, 2). Then for any λ ∈ [0, 1] such that

λp1 + (1 − λ)p2 6= 0, the following holds true:

p1 − p2 ∈ KerA(λp1 + (1 − λ)p2, u(x), x, t).

Corollary 3. Suppose that the equation (4.2) is nondegenerate, i.e.,

〈A(p, u, x, t)q, q〉 > 0 if q 6= 0.

Then a solution u : Ω × [0, T ] → R of (4.1) has “no corners”, that is

to say the function u has at most one P-subgradient and at most one P-

supergradient at any point x ∈ R
n.

The Hamilton-Jacobi equation associated with the motion by mean curva-
ture of graphs is an example of nondegenerate quasilinear parabolic equation:

∂u

∂t
− ∆u +

〈D2uDu, Du〉

1 + |Du|2
= 0. (4.4)

A class of parabolic equations, including (4.4), is studied by a geometrical
approach in [2].

The proof of Proposition 1 relies on the following technical lemma.
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Lemma 1. Consider an arbitrary set Ω and a function u : Ω → R. Let x
be a point in Ω and (Xi, pi), i = 1, 2, be two subjets of u at x. Then for any

matrix X ∈ Sn such that X 4 Xi, i = 1, 2, any λ ∈ [0, 1] and any M > 0,
the following holds true:

(X + M(p1 − p2) ⊗ (p1 − p2), λp1 + (1 − λ)p2) ∈ J 2,−
Ω u(x).

Let us show how Lemma 1 implies Proposition 1.

Proof of Proposition 1. Let X ∈ Sn be such that X 4 Xi for i = 1, 2
and consider any λ ∈ [0, 1] and any M > 0. By applying Lemma 1 to the
supersolution u of (4.1) and by denoting p the vector λp1 + (1− λ)p2 and q

the vector p1 − p2, we conclude that: (X + Mq ⊗ q, p) ∈ J 2,−
Ω u(x). As u is

a supersolution of (4.1) and p 6= 0, the following holds true:

−tr [A(p, u(x), x)(X + Mq ⊗ q)] + f(p, u(x), x) > 0.

Dividing by M and letting M → +∞ yields:

0 6 〈A(p, u(x), x)q, q〉 = tr [A(p, u(x), x)q ⊗ q] 6 0.

The first inequality follows from the ellipticity of (4.1). We conclude that
q ∈ KerA(p, u(x), x).

If the function u is a subsolution, apply the lemma to the function −u
and use it analogously. ¤

One can easily give a parabolic version of this lemma and use it to prove
Proposition 2. We omit these details and we turn to the proof of Lemma 1.

Proof of Lemma 1. By considering v(y) = u(x+y)−u(x), we may assume
that x = 0 and u(x) = 0. Let us denote p = λp1 + (1−λ)p2 and q = p1 − p2.
A straightforward calculus shows us that for any real number r such that

|r| 6 min(2λ
M

, 2(1−λ)
M

) :

1

2
Mr2 6 max{(1 − λ)r,−λr}.

Therefore, for any y such that |〈q, y〉| 6 min(2λ
M

, 2(1−λ)
M

), we get:

1

2
M〈q, y〉2 6 max{(1 − λ)〈q, y〉,−λ〈q, y〉}.

Finally, for any y in a neighbourhood of the origin such that x + y ∈ Ω, we
get:

1

2
〈(X + Mq ⊗ q)y, y〉 + 〈p, y〉 =

1

2
〈Xy, y〉 +

1

2
M〈q, y〉2 + 〈p, y〉
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6 max
{1

2
〈X1y, y〉 + (1 − λ)〈q, y〉 + 〈p, y〉,

1

2
〈X2y, y〉 − λ〈q, y〉 + 〈p, y〉

}

= max
{1

2
〈X1y, y〉 + 〈p1, y〉,

1

2
〈X2y, y〉 + 〈p2, y〉

}

6 v(y) + o(|y|2).

We have therefore proved that (X +Mq⊗ q, p) ∈ J 2,−
Ω−xv(0) = J 2,−

Ω u(x). ¤

Remark. Using Lemma 1, necessary conditions can be derived for any
general nonlinear elliptic equation F (D2u, Du, u, x) = 0 if (E) is satisfied
and if X 7→ F (X, p, u, x) is positively homogenous.
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