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Une nouvelle implémentation de l’évaluation des
attributs

Résumé : Nous introduisons une nouvelle technique pour l’évaluation des attributs
d’une grammaire attribuée. Notre algorithme consiste à évaluer un attribut par réduction
à une forme normale en utilisant un automate d’arbres opérant sur une représentation
arborescente des zippers donnés sous la forme d’une structure de donnée cyclique. Un
zipper est une structure de donnée, introduite par Gérard Huet, consistant à représenter
un arbre avec son contexte, c’est-à-dire un arbre avec un point focal pointant sur
un de ses sous-arbres. Nous mentionnons quelques applications potentielles de cette
représentation des grammaires attribuées comme transformations de zippers.

Mots-clés : Grammaires attribuées, Evaluation des attributs, Structures de données
cycliques, Zipper



Yet Another Implementation of Attribute Evaluation 3

1 Introduction
We introduce another item in the already large list of techniques for attribute evalua-
tion: previous propositions were presented, for instance, in [6, 25, 22, 20, 19, 12, 1, 26].
Our algorithm consists in computing attributes by reductions using a transducer oper-
ating on tree representations of zippers. A zipper [16] is a structure representing a
subtree together with its context, i.e. it is a tree with a focus that points to some node
inside it. More precisely we compute an attribute q in some node u of a tree t ∈ T (Σ)s
as the normal form of the term q(Z(t,u)) where Z(t,u) is a tree representation (us-
ing an extended signature) of the zipper associated with tree t with a focus on node
u. Our approach shares some common features with the previous ones: as in [6, 25]
we use an order-algebraic approach based on least fixed-points in order to compute
attributes for potentially circular attribute grammars (and on potentially infinite data
structures); as in [12] the attribute evaluation is presented as the catamorphism associ-
ated with an algebra derived from the semantics rules; and as in [19, 1, 26] we insist
on a purely-functional algorithm using lazy evaluation. The presentation by Uustalu
and Vene [26] is among these previous works the one that is the most related to our
proposition since it also relies on the underlying structure of zipper. An advantage of
our presentation is that it leads to a straigthforward encoding into Haskell where the re-
sulting code does not differ much from a litteral description of the semantic rules of the
attribute grammar. In the concluding section we mention some potential applications
of this representation of attribute grammars as zipper transformers. In this paper we
use the notations and definitions for multi-sorted signatures, algebras and transducers
introduced in the preliminary sections of the companion paper [2].

2 Attribute grammars

2.1 Decorating structured objects with attributes
A signature can be used to model a family of heteregenous objects while making ex-
plicit their structural relationship. The sorts categorize objects where objects sharing
some common features are declared of the same sort. The operator op :: s1×·· ·×sn →
s corresponds to an identified manner of combining objects of sorts s1 to sn into a com-
pound object of sort s. A term of sort s is an object of that sort whose structural de-
composition is made explicit: the term describes completely how the object has been
build up starting from the basic objects associated with the constant operators of the
signature. Let us consider the example of the assembling of elementary boxes. We
have a unique sort Box because the only kind of manipulated objects are that of (com-
posite) boxes. We have a constant elem :: Box representing an elementary box (which
we suppose has a unit size: its depth and height is 1) and we have four binary operators
comppos :: Box×Box→ Box associated with the four differents manners of assembling
two sub-boxes in order to obtained a new box. The parameter pos ∈ {hb,ht,vl,vr} in-
dicates whether we position the two sub-boxes horizontally (with bottom or top align-
ment), or vertically (with a left or right alignment). A term of sort Box completely
describe the structure of a composite box. From this representation one can expect
to be able to compute various attributes of a box like its size, given by its height and
depth, or the list of elementary boxes it contains (each one associated with its origin
given by its two coordinates). For that purpose we decorate each node of the tree repre-
sentation of a term with attributes. For each sort we distinguish between its synthesized
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4 Badouel, Fotsing & Tchougong

attributes and its inherited attributes. The values of the synthesized attributes attached
to a node u are determined if the values of the other attributes attached to nodes of the
subtree rooted at u (including the inherited attributes of u) are known; whereas sym-
metrically the value of attributes in the context of the subtree rooted at u (i.e. those
nodes that does not belong to the subtree rooted at node u) unambiguously determine
the values of the inherited attributes at node u. Therefore we can view attributes as
providing an interface between the subtree and its context: information flows from the
context into the subtree through inherited attributes, and conversely the subtree can
send information to its context via its synthesized attributes. The rules governing the
computation of the attributes should be syntax directed, i.e. they should be expressed
by rules schemas attached to each operator op :: s1 ×·· ·× sn → s of the signature. An
input attribute of operator op is either an inherited attribute of s corresponding to in-
formation coming from the context or a synthesized attribute of some si corresponding
to information synthesized from the corresponding subtree. The synthesized attributes
of s and the inherited attributes of the si are the output attributes of op. The so-called
semantic rules allow to compute each output attributes in terms of the input attributes.
Back to our example, the size of a box can be computed from the sizes of its subboxes
so it is a synthesized attribute. The list of elementary boxes of a compound box is the
concatenation of the corresponding lists for its two subcomponents, so it is also a syn-
thesized attribute. But the origin of a box depends only on its context (the boxes that
surrounds it), therefore it is an inherited attribute. The semantic rules can be presented
as follows.

Elem :: −→ Boxε Boxε ·height = 1
Boxε ·depth = 1
Boxε · list = [(Boxε · xCoord,Boxε · yCoord)]

hb :: Box1×Box2 −→ Boxε

Boxε ·height = max Box1 ·height Box2 ·height
Boxε ·depth = Box1 ·depth + Box2 ·depth
Boxε · list = Box1 · list ++ Box2 · list
Box1 · xCoord = Boxε · xCoord
Box2 · xCoord = Boxε · xCoord + Box1 ·depth
Box1 · yCoord = Boxε · yCoord + |Box2 ·height−Box1 ·height|
Box2 · yCoord = Boxε · yCoord + |Box1 ·height−Box2 ·height|

Together with the corresponding rules for the related operators ht, vl, and vr. These are
actually rule schemas whose purpose is to define the value of each attribute at every
node of (the tree representation of) the term. For instance if t is a tree and u ∈ Dom(t)
is such that t(u) then the above equation should be interpreted as

height(tu) = max(height(tu·1),height(tu·2))
depth(tu) = depth(tu·1) + depth(tu·2)
list(tu) = list(tu·1) ++ list(tu·2)
xCoord(tu·1) = xCoord(tu)
xCoord(tu·2) = xCoord(tu) + depth(tu·1)
yCoord(tu·1) = yCoord(tu) + |height(tu·2)−height(tu·1)|
yCoord(tu·1) = yCoord(tu) + |height(tu·1)−height(tu·2)|

INRIA



Yet Another Implementation of Attribute Evaluation 5

where tu stands for the subtree of t rooted at u given by Dom(tu) = {v ∈ N∗ | u · v ∈
Dom(t)} and tu(v) = t(u · v). If there is no inherited attribute, the computation of
attribute is context independant, and the above definition takes the form of a transducer
whose states are the synthesized attributes.

Definition 1 An attribute grammar is a structure G = (Σ,∆,Syn, Inh,R) where

• Σ = (S ,Op) and ∆ =
(
S ,Op

)
are signatures respectively called the input and

output signatures, the elements of which are called input and output symbols.

• Syn and Inh are disjoint sets, disjoint also with Σ and ∆, the elements of which,
respectively called synthesized attributes and inherited attributes, are operators
of arity in Σ and sort in ∆ (hence they are unary operators). We let Attr =
Syn∪ Inh denote the set of attributes ; and for each symbol s ∈ S we let Inh(s) =
{q ∈ Inh|α(q) = s}, Syn(s)= {q ∈ Syn|α(q) = s}, and Attr(s)= Syn(s)∪Inh(s).

• For each operator op :: s1 × ·· · × sn → s in Op we define two ∆-sorted sets of
variables whose elements represent occurrences of attributes:

Vop,in =
{

xop,ε,q | q ∈ Inh(s)
}S{

xop,i,q | 1 ≤ i ≤ n q ∈ Syn(si)
}

Vop,out =
{

xop,ε,q | q ∈ Syn(s)
}S{

xop,i,q | 1 ≤ i ≤ n q ∈ Inh(si)
}

where the sort of variable xpo,λ,q for λ ∈ {ε}∪{1, . . . ,n} is given by σ(xλ,q) =
σ(q). We let Vop = Vop,in ∪Vop,out stand for the set of variables associated with
operator op.

• R is a family 〈Rop;op ∈ Op〉 of maps Rop : Vop,out → T (∆,Vop,in) that preserves
sorts: σ

(
Rop(xλ,q)

)
= σ(q). Hence any output variable is assigned a value

given by an expression on the output alphabet which depends on the value of
input variables. We can view an element of R as a schema of equations

xop,λ,q = rhsop,λ,q

whose right-hand sides are given by rhsop,λ,q = Rop(xλ,q).

We let Vt be the ∆-sorted set of variables associated with a closed tree t ∈ Tree(Σ)s be
given as

Vt =
{

xt,π,q|π ∈ Dom(t) t(π) = op :: s1×·· ·sn → s ; q ∈ Att(s)
}

∪
{

xt,π·i,q|π ∈ Dom(t) t(π) = op :: s1×·· ·sn → s ; q ∈ Att(si)
}

where variable xt,π,q has sort σ(xt,π,q) = σ(q). The semantic equations associate a
defining expression for every variable Vt except for the variables xt,ε,q where q∈ Inh(s)
(i.e. for the inherited attribute of the root). Let the system of equations EG,v : Vt →
T (∆,Vt) associated with attribute grammar G and vector v ∈ ∏q∈Inh(s) T (∆,Vt)σ(q) be
defined as:

EG,v(xt,ε,q) = v(q) for q ∈ Inh(s)
EG,v(xt,π,q) = rhsop,ε,q[xt,π.·λ,q′/xop,λ,q′ ]
EG,v(xt,π·i,q) = rhsop,i,q[xt,π.·λ,q′/xop,λ,q′ ]

Let A be any continuous ∆-algebra, the interpretation of a tree t ∈ Tree(Σ)s w.r.t. at-
tribute grammar G and algebra A is the map

([t])G,A : ∏
q∈Inh(s)

Aσ(q) −→ ∏
q∈Syn(s)

Aσ(q)
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6 Badouel, Fotsing & Tchougong

given by ([t])G,A(v)(q) = µEA
G (xt,ε,q) for v ∈ ∏q∈Inh(s) Aσ(q) and q ∈ Syn(s). Otherwise

stated
([t])G,A(v)(q) = vt,ε,q

where vt,π,q = rhsA
op,ε,q[vt,π.·λ,q′/xop,λ,q′ ]

vt,π·i,q = rhsA
op,i,q[vt,π.·λ,q′/xop,λ,q′ ]

where it is assumed that the vector v = 〈vt,λ,q〉 appearing in the “where” clause is the
least solution of the corresponding system of equations. We shall make this assumption
each time a “where” clause occurs in a definition; this conforms to the interpretation of
“where” clauses in Haskell programs.

2.2 Algebra associated with an attribute grammar
The semantic rules of an attribute grammars are syntax-directed in the sense that they
are given by rule schemas associated with each operator of the input signature. For that
reason we can exhibit a Σ-algebra B = GA derived from the attribute grammar G and
the continuous ∆-algebra A such that ([t])G,A = ([B])(t).

Definition 2 the Σ-algebra B = GA derived from a continuous ∆-algebra A and an
attribute grammar G = (Σ,∆,Syn, Inh,R) is such that

Bs = ∏
q∈Inh(s)

Aσ(q) −→ ∏
q∈Syn(s)

Aσ(q)

and the interpretation of an operator op :: s1×·· ·× sn → s is the map opB given by:

opB( f1, . . . , fn)(v)(q) = vop,ε,q
where vop,ε,q = v(q) if q ∈ Inh(s)

vop,i,q = fi(vi)(q) where q ∈ Syn(si) and vi(q′) = vop,i,q′ for q′ ∈ Inh(si)
vop,ε,q = rhsA

op,ε,q[vop,λ,q/xop,λ,q] if q ∈ Syn(s)
vop,i,q = rhsA

op,i,q[vop,λ,q/xop,λ,q′ ] if q ∈ Inh(si)

That definition is circular [4] since in the ”where” clause the inherited attributes vi(q′)=
vop,i,q′ for q′ ∈ Inh(si) appear both in the left-hand side and in the right-hand side of the
defining equations. Thus it should be interpreted as the characterization of the vector
〈vop,λ,q〉xop,λ,q∈Vop as the least fixed-point of the corresponding transformation.

Proposition 3 ([t])G,A = ([GA ])(t)

Proof. By continuity it is enough to verify this identity on trees t ∈ T (Σ)s. That veri-
fication proceeds by induction on the structure of t. If t is of the form t = op(t1, . . . , tn)
for some operator op :: s1 ×·· ·sn → s, its associated set of variables Vt can be decom-
posed as

Vt =
{

xt,ε,q | q ∈ Att(σ(t))
}
∪

([{
xt,i·π,q | xti,π,q ∈Vti

})
and for q ∈ Syn(s) and v ∈ ∏q∈Inh(s) Aσ(q) it comes

([t])G,A(v)(q) = vt,ε,q
where vt,ε,q = v(q) if q ∈ Inh(s)

vt,ε,q = rhsA
op,ε,q[vt,λ,q/xop,λ,q] if q ∈ Syn(s)

vt,i,q = rhsA
op,i,q[vt,λ,q/xop,λ,q] if q ∈ Inh(si)

vt,i·π,q = vti,π,q

INRIA
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By inductive assumption we have

vt,i,q = vt·i,ε,q = ([[ti])G,A(vi)(q) = tB
i (vi)(q)

where B = GA , vi(q′) = vt,i,q′ for q′ ∈ Inh(si). By applying Bekic̀ principle for the
computation by substitutions of the least fixed-point of a system of equations, it follows
that

([t])G,A(v)(q) = vt,ε,q
where vt,ε,q = v(q) if q ∈ Inh(s)

vt,i,q = tB
i (vi)(q) if q ∈ Syn(si)

vt,ε,q = rhsA
op,ε,q[vt,λ,q/xop,λ,q] if q ∈ Syn(s)

vt,i,q = rhsA
op,i,q[vt,λ,q/xop,λ,q] if q ∈ Inh(si)

= opB (
tB
1 , . . . , tB

n
)
(v)(q) = tB(v)(q).

2

Corollary 4 If ϕ : A → A ′ is a morphism of continuous ∆-algebras, t ∈ Tree(Σ)s a
tree of sort s, v ∈ ∏q∈Inh(s) a vector, and q ∈ Syn(s)

tGA ′
(ϕv)(q) = ϕ

(
tGA(v)(q)

)
The above semantic of attribute grammars follows the approaches presented in [19, 1],
it also draws its inspiration from [25, 6] in the sense that it gives a fixed-point semantics
of attribute grammars. We have an almost literal transcription of the above definition
into the language Haskell as the mechanism of lazy evaluation escapes the apparent
cyclicity of the resulting program as long as the attribute grammar itself is non-strict
w.r.t. A , where an attribute grammar is said to be non-strict w.r.t. A if for every tree
t ∈ Tree(Σ)s its interpretation ([GA ])(t) w.r.t. the derived algebra is strict in none of its
arguments. We recall that a function f : A1 ×·· ·×An → A is strict in its kth argument
if f (x1, · · · ,xn) = ⊥ as soon as xk = ⊥ whatever the value of the other arguments. It
means that in order to get information about the result we need information about its
kth argument. Suppose that this information is supplied for each interpretation opA

of operator in ∆ w.r.t. algebra A ; then we can easily adapt the test of strong non-
circularity [9] to derive a polynomial algorithm that checks a sufficient condition for
non-strictness. By analogy we could say that an attribute grammar is strongly non-strict
w.r.t. algebra A when this condition is satisfied.

A translation of attribute grammars into catamorphism (evaluation function for an
algebra) was already presented in [12]. However the presentation that we have just
given is, in our opinion, more explicit and far more elementary than the one given there
and it leads to a straightforward implementation in Haskell. Notice that another advan-
tage of lazy evaluation is that we can define computations of attributes on potentially
infinite data structures. For instance we can define semantics rules on streams as long
as every approximations of the value of a given attribute can be computed using only a
finite prefix of the stream.

Returning to our example of assembling boxes, we first provide an Haskell
definition for the data structure of boxes:

data Box = Elembox | Comp {pos :: Pos, first, second :: Box}
data Pos = Vert VPos | Hor HPos
data VPos = Left | Right

data HPos = Top | Bottom

RR n° 6315



8 Badouel, Fotsing & Tchougong

Thus a box is either an elementary box (which we suppose has a unit size: its depth and
height is 1) or is obtained by composing two sub-boxes. Two boxes can be composed
either vertically with a left or right alignment or horizontally with a top or bottom
alignment.

The corresponding signature Σ has a unique sort (Box), a constant elem :: Box
representing the elementary box and four binary operators
comppos :: Box×Box → Box associated with the four different manners (with
pos :: Pos) of assembling two sub-boxes in order to obtained a new box. The related
notions of algebras and evaluation morphism can be expressed in Haskell as follows.

data AlgBox a = AlgBox {elem :: a
,comp :: Pos -> a -> a -> a}

evalBox :: AlgBox a -> Box -> a
evalBox alg Elembox = elem alg
evalBox alg (Comp pos box1 box2) = comp alg pos sembox1 sembox2

where sembox1 = evalBox alg box1

sembox2 = evalBox alg box2

We consider the ∆ algebra A that interprets max and + as the corresponding operators
on integers and [ ] and ++ as the unit list formation and list concatenation respectively.
The attributes are

origin :: Box → Point
list :: Box → [Point]
size :: Box → Size

where origin is inherited and list, and size are synthesized. Thus the semantic domain
of boxes is given by:

data Size = Size {depth , height :: Int} deriving Show
data Point = Point {xcoord, ycoord :: Int} deriving Show

type BoxSem = Point -> (Size,[Point])

and the interpretation of the operators are given by

elem :: BoxSem

elem pt = (Size 1 1, [pt])

and

hb :: BoxSem -> BoxSem -> BoxSem
hb sem1 sem2 (Point x y) = (Size h d, list)
where h = max h1 h2

d = d1 + d2
list = list1 ++ list2
x1 = x
x2 = x + d1
y1 = y + abs (h2 - h1)
y2 = y + abs (h1 - h2)
(Size h1 d1, list1) = sem1 (Point x1 y1)

(Size h2 d2, list2) = sem2 (Point x2 y2)

and similarly for the other operators (ht, vl, and vr). We see that the above Haskell
code is a direct transcription of the semantic rules of the attribute grammar. Of course
the above function can be abreviated as:

INRIA



Yet Another Implementation of Attribute Evaluation 9

hb :: BoxSem -> BoxSem -> BoxSem
hb sem1 sem2 (Point x y) = (Size (max h1 h2)(d1 +
d2),list1++list2)
where (Size h1 d1, list1) = sem1 (Point x (y + abs (h2-h1)))

(Size h2 d2, list2) = sem2 (Point (x + d1)(y + abs

(h1-h2)))

When verifying that this attribute grammar is strongly non-strict w.r.t. the algebra A
we deduce that the synthesized attribute size does not depend on the inherited attribute
origin. We can make the type of semantic boxes reflects more precisely this fact by
letting

data SBox = SBox{list :: Point -> [Point]

,size :: Size}

we can also group the similar functions hb, ht, vl, and vr into one parametric function
comp. We then end up with the Haskell code presented in Table 2.2 below.

lang :: AlgBox SBox
lang = AlgBox elembox comp where
-- elembox :: SBox
elembox = SBox (\ pt -> [pt])(Size 1 1)
-- comp :: Pos -> SBox -> SBox -> SBox
comp pos box1 box2 = SBox list’ size’ where

list’ pt = (list box1 (pi1 pt))++(list box2 (pi2 pt))
size’ = case pos of
Vert -> Size (max d1 d2)(h1 + h2)
Hor -> Size (d1 + d2)(max h1 h2)
pi1 (Point x y) = case pos of

Vert Left -> Point x y
Vert Right -> Point (x + (max (d2-d1) 0)) y
Hor Top -> Point x y
Hor Bottom -> Point x (y + (max (h2-h1) 0))

pi2 (Point x y) = case pos of
Vert Left -> Point x (y+h1)
Vert Right -> Point (x + (max (d1-d2) 0)) (y+h1)
Hor Top -> Point (x+d1) y
Hor Bottom -> Point x (y + (max (h1-h2) 0))

Size d1 h1 = size box1

Size d2 h2 = size box2

Table 1: algebra associated with the attribute grammar for boxes composition

2.3 Rooted attribute grammars
It is often convenient to consider a top level function that uses an attribute grammar to
evaluate a tree after an appropriate initialization of the inherited attributes of the root
node (these attributes are parameters of the corresponding system of equations). This
can be done by extending the attribute grammar with an additional operator together
with associated semantic rules. For the Box example we can consider an additional sort
RBox, for “box at root”, with one synthesized attribute return :: RBox→ [Point] and no
inherited attribute. We add also an operator Root :: Box→ RBox indicating that a given
box is not a subbox of a larger one, but is the box at the root of the expression. Writing

RR n° 6315



10 Badouel, Fotsing & Tchougong

the following semantics rules

Root :: Box1 → RBoxε Box1 · xCoord = 0
Box1 · yCoord = 0
RBoxε · return = Box1 · list

says that the intended end result is the list attribute of the top level box when it is
positionned at the origin of the coordinate axes (Point 0 0).

Definition 5 Signature Σ is said to be pointed if it has a specific sort a called its axiom;
Then we let Σ> represents the extended signature obtain by adding an additional sort
>, “at top”, together with an additional operator Root :: a→>. An attribute grammar
G = (Σ⊥,∆,Syn, Inh,R) whose input alphabet is the extended signature Σ> is said to
be rooted if sort > has one synthesized attribute return :: top → a′ and no inherited
attribute. We let initinh = rhsRoot,1,inh denote the function that gives the value of the
inherited attribute inh at the root node, and result = rhsRoot,ε,result the functions that
give the end result computed from the synthesized attributes at the root node.

Thus a rooted attribute grammar has semantics rules presented as follows.

op :: X1×·· ·×Xn → Xε{
Xε ·q = rhsop,ε,q

[
Xλ ·q/xop,λ,q

]
q ∈ Syn(s)

Xi ·q = rhsop,i,q
[
Xλ ·q/xop,λ,q

]
q ∈ Inh(si)

together with

Root :: a1 →>ε{
a1 · inh = initinh (a1 · syn ; syn ∈ Syn(a)) inh ∈ Inh(a)
>ε · return = result (a1 · syn ; syn ∈ Syn(a))

However we shall usually give the semantic rules attached to operator Root a special
form by leaving the sort name > implicit and renaming operator Root by the name of
the defined function, and replacing >ε by the type of the computed result (the sort of
attribute return). Thus we shall use presentation of the form:

〈name of function〉 :: a → a′{
a · inh = initinh (a · syn ; syn ∈ Syn(a)) inh ∈ Inh(a)
return result (a · syn ; syn ∈ Syn(a))

For instance the top level function corresponding to the translation of a box into the list
of origins of its elementary subboxes could be written as:

Root :: Box → [Point] Box · xCoord = 0
Box · yCoord = 0
return Box · list

A rooted attribute grammar transforms a tree t ∈ T (Σ)a over the input signature into
the tree return(>(t)) ∈ T (∆)a′ over the output signature.

INRIA



Yet Another Implementation of Attribute Evaluation 11

3 Attribute grammars as zipper transformers
As for transducers, we would like to be able to interpret the semantics equations of the
attribute grammar as rewriting rules so that the computation of attributes is simulated
by reduction to normal forms. The main difference is that the value of an attribute q
at a given node u of a tree t, even a synthesized attribute, may (and generally) depend
of the context of the subtree tu rooted at that node. We have said that the values of the
synthesized attributes of a node u are determined by the values of the other attributes
from the subtree tu which means that if the values of these attributes, say 〈qi〉i∈I , are
known then the value of the synthesized attribute q can be inferred. But the value of an
inherited attribute of u (which belongs that that family 〈qi〉i∈I) depends, by definition,
on values of attributes from the context of tu. Therefore, in general, even the value of
synthesized attribute of a node u indirectly depends on information coming from the
context of the subtree. Attribute grammar were actually introduced for the very purpose
of enabling the designer of a language to manipulate context-dependant information
like the scope of a variable in a program for instance.

3.1 Rewriting a zipper
In order to account for context-dependant information we manipulate a subtree together
with its corresponding context. We assume a particular sort a , called axiom of the
grammar, and restrict attention to trees whose sort is the axiom. A zipper (of sort s)
is given by a pair made of a tree of sort s together with a context for that tree. The
representation of a context in the zipper comes from the following observation: either
the context of the considered subtree t is empty or it is of the form

C[op(t1, · · · , ti−1, [ ], ti+1, · · · , tn)]

where op :: s1×·· ·×sn → s is an operator such that si is the sort of t, and C is a context
whose hole is of sort s. The trees t j for 1 ≤ j ≤ n and j 6= i are the siblings of t. Thus
trees and contexts are given by the following signature.

Definition 6 In signature ZΣ we find two sorts denoted s, and ŝ associated with each
sort s ∈ S in Σ and each operator op :: s1 × ·· ·× sn → s in Σ is also an operator of
ZΣ with the same arity and sort; but it gives also rise to a family of operators opi for
1 ≤ n ≤ n where

opi :: s1×·· ·× si−1× ŝ× si+1×·· ·× sn → ŝi

We finally have a constant operator Nil of sort a representing the empty context. A
zipper c@t of sort s is a pair made of a subtree t ∈ Tree(ZΣ)s together with its context
c ∈ Tree(ZΣ)ŝ.

Interpretation of the semantic rule xop,ε,q = rhsop,ε,q for op : s1 ×·· ·× sn → s and q ∈
Syn(s) is then given by the following rewriting rule

q(x̂ε@op(x1, . . . ,xn))−→ rhsop,ε,q [ q(x̂ε@op(x1, . . . ,xn))/xop,ε,q ;
q
(
opi (x1, . . . ,xi−1, x̂ε,xi+1, . . . ,xn)@xi

)
/xop,i,q ]

whose interpretation is as follows. If the subtree t of zipper c@t matches the pattern
x̂ε@op(x1, . . . ,xn), i.e. t = op(t1, . . . , tn), then the expression q(c@t), standing for the
value of the synthesized attribute q of subtree t in context c, is given by the expression
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12 Badouel, Fotsing & Tchougong

in the right-hand side where variables x̂ε and xi are replaced respectively by the context
c and the subtrees ti given by pattern matching.

Similarly, the interpretation of the semantic rule xop,i,q = rhsop,i,q for op : s1×·· ·×
sn → s, and q ∈ Inh(si) is given by the rewritng rule:

q
(
opi (x1, . . . ,xi−1, x̂ε,xi+1, . . . ,xn)@xi

)
−→

rhsop,ε,q [ q(x̂ε@op(x1, . . . ,xn))/xop,ε,q ; q
(
opi (x1, . . . ,xi−1, x̂ε,xi+1, . . . ,xn)@xi

)
/xop,i,q ]

In that case an inherited attribute appears as an attribute of the context (which is tested
against a pattern) relative to a given subtree. If the attribute grammar is rooted the
semantic rules for the operator Root are translated as:

inh(Nil@Root(x)) −→ initinh[q(Nil@Root(x))/xRoot,1,q q ∈ Syn(a)]
result (Nil@Root(x)) −→ return[q(Nil@Root(x))/xRoot,1,q q ∈ Syn(a)]

Table 3.1 gives the Haskell code for our running example using the above approach.
Each attribute is implemented by a function defined by structural induction on its first
parameter. It has two parameters corresponding to the subtree and its context; the first
of which is the subtree if the attribute is synthesized and the context if the attribute is
inherited. By completeness and because the attribute grammar is rooted, we do have,
in such a definition, one clause associated with each compatible constructor. For
instance the clause

origin Nil box = Point 0 0

shows that the inherited attribute origin is initialized to the value Point 0 0) at the root
node (i.e. when the context is empty). The function init is, in this example, a constant
function; but in more complex situations it could have depended upon the value of the
synthesized attributes of the root. The clause

result box = list box Nil

says that the end result is given by the value of the synthesized attribute list at the root
of the tree.

3.2 A Simplified implementation of attribute evaluation
The rewriting system given in the previous section provides a satisfactory operational
semantics for attribute evaluation; moreover it leads to a simple encoding of the
attribute grammar into a lazy functional language like Haskell. However this
presentation may be further simplified. Maybe the opportunities for improvement are
more patent on the associated Haskell code. Let us consider the following excerpt
from the definition of the inherited attribute origin

origin (First pos cxt box2) box1 =
case pos of

......................................................
where Point xcoord ycoord = origin cxt (Comp pos box1 box2)

Size d1 h1 = size box1 (First pos cxt box2)

Size d2 h2 = size box2 (Snd pos box1 cxt)

which shows that if we have a tree of the form box = cxt [Comppos box1 box2] the
origin of the subbox box1 in context Firstpos cxt box2 depends on the origin
determined by context cxt for the surrounding box Comppos box1 box2, and the size of
the two subboxes box1 and box2 in their respective contexts Firstpos cxt box2 and
Sndpos box1 cxt. When the various parameters of the function origin are given as
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data Box = Elembox | Comp{pos::Pos, first,second::Box}
data Cxt = First Pos Cxt Box | Snd Pos Box Cxt | Nil
data Pos = Hor HPos | Vert VPos
data VPos = Left | Right
data HPos = Top | Bottom
data Point = Point{xcoord, ycoord ::Int} deriving Show
data Size = Size{depth, height ::Int} deriving Show

size :: Box -> Cxt -> Size
size Elembox cxt = Size 1 1
size (Comp pos box1 box2) cxt = case pos of

Vert -> Size (max d1 d2)(h1 + h2)
Hor -> Size (d1 + d2)(max h1 h2)

where Size d1 h1 = size box1 (First pos cxt box2)
Size d2 h2 = size box2 (Snd pos box1 cxt)

list :: Box -> Cxt -> [Point]
list Elembox cxt = [(origin cxt Elembox)]
list (Comp pos box1 box2) cxt =

(list box1 (First pos cxt box2)) ++ (list box2 (Snd pos box1 cxt))

origin :: Cxt -> Box -> Point
origin Nil box = Point 0 0
origin (First pos cxt box2) box1 =

case pos of
Vert Left -> Point xcoord ycoord
Vert Right -> Point (xcoord + (max (d2-d1) 0)) ycoord
Hor Top -> Point xcoord ycoord
Hor Bottom -> Point xcoord (ycoord + (max (h2-h1) 0))

where Point xcoord ycoord = origin cxt (Comp pos box1 box2)
Size d1 h1 = size box1 (First pos cxt box2)
Size d2 h2 = size box2 (Snd pos box1 cxt)

origin (Snd pos box1 cxt) box2 =
case pos of

Vert Left -> Point xcoord (ycoord+h1)
Vert Right -> Point (xcoord + (max (d1-d2) 0))(ycoord+h1)
Hor Top -> Point (xcoord+d1) ycoord
Hor Bottom -> Point (xcoord+d1)(ycoord + (max (h1-h2) 0))

where Point xcoord ycoord = origin cxt (Comp pos box1 box2)
Size d1 h1 = size box1 (First pos cxt box2)
Size d2 h2 = size box2 (Snd pos box1 cxt)

result box = list box Nil

Table 2: evaluation of attributes

origin (First pos cxt box2) box1

we already know that context cxt corresponds to the subtree Comppos box1 box2 and
that box1 and box2 have respective contexts Firstpos cxt box2 and Sndpos box1 cxt. It is
therefore useless to force the programmer to make these extra parameters explicit
since they can automatically be inferred; moreover this unecessary constraint on
programming introduces possible risk of errors. Leaving these extra parameters
implicit however induces a change on the arity of the functions associated with
attributes. They now become unary functions: An inherited attribute has a context
parameter and a synthesized attribute has a subtree parameter; however a context
should know about the subtree it is attached to and a subtree should know its context.
This in turn induces a change on the interpretation of the various constructors. For
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14 Badouel, Fotsing & Tchougong

instance the context constructor Firstpos needs an additional parameter to supply the
subtree the considered context is attached to. The above piece of code could then
write as

origin (First pos cxt box1 box2) =
case pos of

......................................................
where Point xcoord ycoord = origin cxt

Size d1 h1 = size box1

Size d2 h2 = size box2

We end up with the Haskell code given in Table 3.2.

data Box = Elembox cxt | Comp Pos Cxt Box Box
data Cxt = First Pos Cxt Box Box | Snd Pos Cxt Box Box | Nil Box
data Pos = Hor HPos | Vert VPos
data VPos = Left | Right
data HPos = Top | Bottom
data Point = Point{xcoord, ycoord ::Int} deriving Show
data Size = Size{depth, height ::Int} deriving Show

size :: Box -> Size
size (Elembox cxt) = Size 1 1
size (Comp pos cxt box1 box2) = case pos of

Vert -> Size (max d1 d2)(h1 + h2)
Hor -> Size (d1 + d2)(max h1 h2)

where Size d1 h1 = size box1
Size d2 h2 = size box2

list :: Box -> [Point]
list (Elembox cxt) = [(origin cxt)]
list (Comp pos cxt box1 box2) = (list box1)++(list box2)

origin :: Cxt -> Point
origin (Nil box) = Point 0 0
origin (First pos cxt box1 box2) =

case pos of
Vert Left -> Point xcoord ycoord
Vert Right -> Point (xcoord + (max (d2-d1) 0)) ycoord
Hor Top -> Point xcoord ycoord
Hor Bottom -> Point xcoord (ycoord + (max (h2-h1) 0))

where Point xcoord ycoord = origin cxt
Size d1 h1 = size box1
Size d2 h2 = size box2

origin (Snd pos cxt box1 box2) =
case pos of

Vert Left -> Point xcoord (ycoord+h1)
Vert Right -> Point (xcoord + (max (d1-d2) 0))(ycoord+h1)
Hor Top -> Point (xcoord+d1) ycoord
Hor Bottom -> Point (xcoord+d1)(ycoord + (max (h1-h2) 0))

where Point xcoord ycoord = origin cxt
Size d1 h1 = size box1
Size d2 h2 = size box2

Table 3: evaluation of attributes: second version
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Yet Another Implementation of Attribute Evaluation 15

3.3 Zippers as cyclic data structures
If we compare the codes given in respectively Table 3.1 and in Table 3.2, we observe
that we have transformed a program that evaluate attributes by visiting the nodes of a
tree into a simple inductive algorithm operating on a tree representation of a complex
cyclic data structure. We have thus transfer the complexity from the algorithmic side
onto the data structure side by replacing a complex algorithm defined on a simple
inductive data structure into a simple algorithm operating on a complex cyclic data
structure. We will establish shortly the equivalence between the two approaches. But
before doing so we explicit, in this section, the nature of these cyclic data structures
and, in the next section, we explain how one can transform a zipper into such a cyclic
data structure. The transformation of the attribute evaluation algorithm amounts to
replace the signature ZΣ given in Definition 6 by the following signature Z(Σ).

Definition 7 In signature Z(Σ) we find two sorts denoted s, and ŝ associated with
each sort s ∈ S in Σ and each operator op :: s1 × ·· · × sn → s gives rise to a family
of operators opλ for λ ∈ {ε}∪{1, . . . ,n} where opε :: ŝ× s1 ×·· ·× sn → s and opi ::
ŝ× s1 × ·· ·× sn → ŝi. If Σ is a pointed signature with axiom a ∈ S , we shall further
impose in Z(Σ>) that >̂= () is the unit type and we let Root = Rootε and Nil = Root1
which therefore have arities and sorts given by: Nil :: a → â, and Root :: a → >.
Observe that Z(Σ>) = (Z′(Σ))> where Z′(Σ) is the pointed signature with axiom a and
whose operators opε, opi, and Nil allow to define contexts and subtrees: A closed term
t ∈ T (Z′(Σ))s is a representation of a subtree of type s and a closed term c∈ T (Z′(Σ))ŝ
is a representation of a context of type s.

However most of the closed terms builds from this signature Z′(Σ) are not valid
representations of subtrees or contexts. Let us illustrate this phenomenon with the
example of double-linked streams. If A is an alphabet, a stream is a tree on the
monosorted signature Σ (with sort S = {st}) containing one unary operator a :: st → st
for each letter a ∈ A. The tree a(st) stands for the stream whose root node is labelled a
and such that the remaining stream obtained by removing this root node is st.

data Stream a = Cons{val::a, suc::Stream a}

The signature ZΣ provides the associated structure of zipper

data Stream a = Cons{val::a, suc::Stream a}
data StreamCxt a = Snoc{val::a, pred::StreamCxt a} | Nil

data StreamZipper = (StreamCxt a)@(Stream a)

The structure of zipper allows to navigate streams non destructively:

left, right :: StreamZipper a -> StreamZipper a
right cxt@(Cons a str) = (Snoc a cxt)@str

left (Snoc a cxt)@str = cxt@(Cons a str)

In order to navigate a stream in both direction we can alternatively add to each node a
pointer to the preceding node, leading us to the structure of a double-linked stream:

data DStream a = Node{val:: a, prev::CxtDStream, suc ::DStream a}
data CxtDStream a = Root (DStream a)

| CoNode{val’:: a , prev’::CxtDStream a,

suc’::DStream a}
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16 Badouel, Fotsing & Tchougong

which is the inductive data structure associated with signature Z(Σ). If we were to
consider double-linked lists rather than double-linked streams then we would have
just to add one unary constructor associated with the constant operator associated with
the empty list:

data DList a = Node{val:: a, prev::CxtDList, suc ::DList a}
| Nil (CxtDList)

data CxtDList a = Root (DList a)

| CoNode{val’:: a , prev’::CxtDList a, suc’::DList a}

These two data structures are isomorphic, and by identifying them we obtain a more
traditional representation of double-linked lists:

data DList a = Node{val:: a, prev,suc ::DList a} | Nil (DList)

An implicit assumption is that if suc xs is defined then prev(suc xs) = xs, and if
prev xs is defined then suc(prev xs) = xs, similarly prev xs = Nil ys or suc xs = Nil ys
entails ys = xs. These conditions are met in the following double-linked
representation of the list [1,2,3]

dlist = node1
where node1 = Node 1 (Nil node1) node2

node2 = Node 2 node1 node3

node3 = Node 3 node2 (Nil node3)

An abstract data type is often presented by a multi-sorted signature together with equa-
tional constraints [3, 10]. However these equations are usually stated in terms of the
constructors of the signature. They thus constrain the class of valid interpretations to
belong to the corresponding equational variety of algebras. The abstract data type is
then identified with the initial object of that category, the quotient of the initial algebra
by the induced congruence. In the present case, equations are stated in terms of the
selectors of the signature. They limit the class of valid generators and the abstract data
type can be identify with a subcoalgebra of the terminal coalgebra. Elements of this
abstract representation can be represented by graphs whose tree unfolding satisfies the
equations in the following sense. The set of equational contraints determine a binary
relation on the set of nodes of a tree. The tree satisfies the equational contraints if two
subtrees rooted at related nodes are isomorphic. The carrier of the abstract data type
is then given as the set of trees satisfying the equational constraints; and each such
element can be seen as a tree representation of the graph whose nodes are the isomor-
phic class of its subtrees. Due to this graphical representation we use the expression
of cyclic data structures to stand for abstract data types defined from a multi-sorted
signature and a base of cycles given by a set of equations using the selectors of the
signature. It could be interesting to investigate more deeply such a coalgebraic presen-
tation of cyclic data structures; relatively few studies have been conducted on cyclic
data structures apart from e.g. [15, 24, 7, 14, 18] that could serve as starting points.

In order to generate only double-linked lists that are well-formed (i.e. that satisfy
the above identities) we will exclusively generate them using some stream coalgebra.
Such a coalgebra allows to generate streams :

data StrCoalg b a = StrCoalgout::b->a, next::b->b

streamGen :: StrCoalg b a -> b -> Stream a
streamGen (StrCoalg out next) = build

where build gen = Cons (out gen)(build (next gen))
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For instance one can generate the stream of prime numbers using the sieve of
Eratosthenese as follows:

sieve = StrCoalg head next
where next xs = filter (\ n->not((n ‘mod‘ (head xs))==0))(tail xs)

primes = streamGen sieve [2..]

In order to generate a well-formed double-linked stream from a stream algebra we
only have to adapt the above definition of the stream generation function by adding a
new parameter for handling the context:

dStreamGen :: StrCoalg b a -> b -> DStream a
dStreamGen (StrCoalg out next) gen = dstr
where dstr = build gen (Root dstr)

build gen cxts = Node (out gen) cxts dstr’
where dstr’ = build (next gen) (CoNode (out gen) cxts dstr’)

dprimes = dStreamGen sieve [2..]

Then we derive a function translating a stream into a corresponding double-linked
stream:

stream2dStream :: Stream a -> DStream a

stream2dStream = dStreamGen (StrCoalg val suc)

Or equivalently by expanding the definition of function dStreamGen:

stream2dStream str = dstr
where dstr = build str (Root dstr)

build (Str val suc) cxts = Node val cxts dstr’

where dstr’ = build suc (CoNode val cxts dstr’)

Now one can navigate a double-linked stream:

right (Node a cxts dstr) = dstr
left (Node (CoNode b cxts dstr) ) = Node b cxts dstr

first :: Int -> DStream a -> [a]
first 0 str = []
first (n+1) (Node a cxts dstr)= a:(first n dstr)

test = first 5 ((left.right.right.left.right.right.right.right) dprimes)
> test

[11,13,17,19,23]

3.4 Generic attribute grammars
In this section we generalize on the previous example of double-linked streams to
present a translation of trees into zippers. For that purpose we introduce an attribute
grammar canonically associated with a given signature.

Definition 8 The rooted attribute grammar GΣ = (Σ>,Z(Σ>),Syn, Inh,GΣ(R)) asso-
ciated with pointed signature Σ = (S ,Op) with axiom a ∈ S is defined as follows. Its
input alphabet is signature Σ>, and its output alphabet is signature Z(Σ⊥). It has one
inherited attribute associated with each sort Inh = {cxts|s ∈ S} representing the con-
text at the given node of the tree, and one synthesized attribute Syn = {trees|s ∈ S} rep-
resenting the subtree rooted at that node, with arities and sorts given by trees :: s → s
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18 Badouel, Fotsing & Tchougong

and cxts :: s → ŝ, plus a synthesized attribute return :: > → >. The semantics rules
associated with operator op :: s1×·· ·× sn → s are given by

op :: X1×·· ·×Xn → X{
X · trees = opε (X · cxts,X1 · trees1 , . . . ,Xn · treesn)
Xi · cxtsi = opi (X · cxts,X1 · trees1 , . . . ,Xn · treesn)

and the top level function is given by:

eval :: X →>{
a · cxta = Nil(a · treea))
return Root(a · treea)

We let U = GΣ (T (Z(Σ>))) for “unfolding” denote the algebra induced by attribute
grammar GΣ from the free algebra T (Z(Σ⊥)) and we let

unfold t = t ′ where Root(t ′) = (Root(t))U

denote the unfolding of a tree t ∈Tree(Σ)a into its cyclic representation in Tree(Z(Σ))a.
This algebra is given by function

opU( f1, . . . , fn) cxt = opε (cxt, tree1, . . . , treen)
where treei = fi (opi (cxt, tree1, . . . , treen))

associated with operator op :: s1×·· ·× sn → s together with the top level function:

RootU build = Root(tree)
where tree = build (Nil(tree))

And the unfolding function is given by

unfold tree = tree′

where tree′ = builda tree (Nil tree′)
builds (op(t1, . . . , tn)) cxt = opε (cxt, tree1, . . . , treen)

where treei = buildsi ti opi (cxt, tree1, . . . , treen)

For instance we can add the following to the code in Table 3.2 in order to translate a
box into its cyclic representation.

data Bx = Elm | Cmp Pos Bx Bx

unfold :: Bx -> Box
unfold bx = box

where box = build bx (Nil box)
build Elm cxt = Elembox cxt
build (Cmp pos bx1 bx2) cxt = Comp pos cxt box1 box2

where box1 = build bx1 (First pos cxt box1 box2)
box2 = build bx2 (Snd pos cxt box1 box2)

In the example of double-linked streams we introduced this unfolding function as a
special case of the function generating a double-linked list from a stream coalgebra.
The same can be done mre generallt by using an adaptation of the above unfolding
function as follows:
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data Trunk a = Elm | Cmp Pos a a
data Bx = In{out::Trunk Bx}
data BxCoalg a = BxCoalg{next::a->Trunk a}

punfold :: BxCoalg a -> a -> Box
punfold coalg gen = box

where box = build gen (Nil box)
build gen cxt = case next coalg gen of
Elm -> Elembox cxt
Cmp pos gen1 gen2 -> Comp pos cxt box1 box2

where box1 = build gen1 (First pos cxt box1 box2)
box2 = build gen2 (Snd pos cxt box1 box2)

unfold = punfold (BxCoalg out)

More generally this parametric unfolding will be given as:

punfold coalg gen = tree
where tree = builda gen (Root tree)

builds gen cxt = case coalg gen o f
op(gen1, . . . ,genn) → opε (cxt, tree1, . . . , treen)

where treei = buildsi geni opi (cxt, tree1, . . . , treen)

3.5 Transducer associated with an attribute grammar
The attribute grammar associated with a pointed signature given in the preceding sec-
tion is generic in the sense that it leaves the semantic functions uninterpreted by rep-
resenting them by the operators of signature Z(Σ>). The resulting evaluation function
provides the unfolding of a tree, i.e. the tree representation of the associated cyclic data
structure. But we can also consider the evaluation tE of a tree with respect to the alge-
bra E = GΣS for some Z(Σ>)-algebra S . Such an algebra S consists of the semantic
domains Ss, Sŝ, and S> that we interpret as the domains of values for respectively the
synthesized attributes of sort s, the inherited attributes of sort s and the produced end re-
sult; together with the semantic functions opS

ε , opS
i , and function init = NilS giving the

initialization of the inherited attributes at the root node, and function return = RootS

for extracting the value of the end result. Altogether the algebra S are the seman-
tic functions that can be derived from the transducer associated with rooted attribute
grammar which we now define.

Definition 9 The transducer TG = (Z(Σ>),∆,Q,Z(R)) associated with a rooted at-
tribute grammar G = (Σ>,∆,Syn, Inh,R) is defined as follows.

• the set of states Q = Inh∪Syn is made of the inherited and synthesized attributes
with q :: s1 → s2 if q is a synthesized attribute of s1 of sort s2 (including the
synthesized attribute return of >) and q :: ŝ1 → s2 if q is an inherited attribute of
s1 of sort s2.

• For each operator op :: s1×·· ·× sn → s in Σ and each q ∈ Syn(s) we have rule

q(opε(xε,x1, . . . ,xn))−→ rhsop,ε,q[q(xλ)/xop,λ,q]

For each operator op :: s1×·· ·× sn → s in Σ and each q ∈ Inh(si) we have rule

q(opi(xε,x1, . . . ,xn))−→ rhsop,i,q[q(xλ)/xop,λ,q]

Recall that variable xop,λ,q can occur in the right-hand side of a rule if either
λ = ε and q ∈ Inh(s) or λ = i ∈ {1, . . . ,n} and q ∈ Syn(si).
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• Associated with operator Root :: a →> we similarly have the two rules

inh(Nil(x)) −→ initinh[q(x); q ∈ Syn(a)] for inh ∈ Inh(a)
return(Root(x)) −→ result[q(x); q ∈ Syn(a)]

We recall that initinh = rhsRoot,1,inh and result = rhsRoot,ε,result and we have as-
sumed that >̂= () is the unit type and we have let Root = Rootε and Nil = Root1
which therefore have arities and sorts given by: Nil :: a→ â, and Root :: a→>.

Proposition 10 For any ∆-algebra A

GA = GΣ (TΣA)

Proof. The carriers of the induced algebra B = GA are B> = Aa′ , and

Bs = ∏q∈Inh(s) Aσ(q) −→ ∏q∈Syn(s) Aσ(q)

and its functions of interpretation are given by

opB( f1, . . . , fn)(v)(q) = rhsA
op,ε,q [v(q)/xop,ε,q; fi(vi)(q)/xop,ε,q]

where vi(q) = rhsA
op,i,q [v(q)/xop,ε,q; fi(vi)(q)/xop,ε,q]

and
RootB build = resultA(syn)

where syn = build
(
initA(syn)

)
Let S = TGA be the Z(Σ>)-algebra induced by ∆-algebra A and transducer TG. We
have

Ss = ∏q∈Syn(s) Aσ(q) Sŝ = ∏q∈Inh(s) Aσ(q) S> = Aa′

and

opS
ε (inhε,syn1, . . . ,synn)(q) = rhsA

op,ε,q [inhε(q)/xop,ε,q; syni(q)/xop,ε,q]
opS

i (inhε,syn1, . . . ,synn)(q) = rhsA
op,i,q [inhε(q)/xop,ε,q; syni(q)/xop,ε,q]

together with

RootS (syn) = resultS (syn) NilS (syn)(inh) = initS
inh(syn)

The carriers of the algebra E = GΣS are given by

Es = ∏q∈Inh(x) Aσ(q) −→ ∏q∈Syn(x) Aσ(q)

hence
Es = Sŝ → Ss = ∏q∈Inh(s) Aσ(q) −→ ∏q∈Syn(s) Aσ(q) = Bs
E> = S> = Aa′ = B>

Concerning the functions of interpretation we observe thet

opE ( f1, . . . , fn)(cxt) = opS
ε (cxt, tree1, . . . , treen)

where treei = fi(opS
i (cxt, tree1, . . . , treen))

i.e.

opE ( f1, . . . , fn)(cxt)(q) = rhsA
op,ε,q [cxt(q)/xop,ε,q; fi(vi)(q)/xop,ε,q]

where vi(q) = opS
i (cxt, tree1, . . . , treen))(q)

= rhsA
op,i,q [cxt(q)/xop,ε,q; fi(vi)(q)/xop,ε,q]
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and
RootE build = RootS tree where tree = build(NilS (tree))

hence
RootE build = resultA(syn) where syn = build(initA(syn))

and therefore E = B . 2

The following result shows that evaluating a rooted expression by an attribute gram-
mar can be obtained by evaluation of its unfolding by the associated transducers; thus
showing the equivalence of the programs given respectively in Table 3.1 and Table 3.2.

Corollary 11 For every ∆-algebra A , and rooted expression t ∈ Tree(Σ>)> (i.e. of the
form t = Root(t0) where t0 ∈ Tree(Σ)a) one has:

tGA =
(

tU
)TGA

Proof. The canonical morphism ( )TGA : Tree(Σ>)→ TGA is a continuous morphism
of Z(Σ>)-algebras and the result follows from Corollary 4 since GA = GΣ(TGA), and
U = GΣ(Tree(Σ>)), and a rooted tree has no inherited attribute and a unique synthe-
sized attribute. 2

4 Conclusion
We have presented a transformation of an attribute grammar, viewed as a tree trans-
former, into a tree transducer having an extended input signature for describing cyclic
representations of zippers for its input signature. In this concluding section we mention
some potential applications of that transformation.

4.1 Composition of attribute grammars
It is much easier to compose (top-down) tree transducers than to compute the syntactic
composition of attribute grammars. The latter operation introduced by Ganzinger and
Giegerich, as the co-called attributed coupled grammars [13], has already been related
to the functional programming deforestation technique in [8, 11]. We would like to
recover the syntactic composition of attribute grammars through the composition of
the associated (top-down) tree transducers acting on cyclic representations of zippers.

4.2 Attribute grammars for the specification of reactive processes
We are also interested in using the formalism of attribute grammars for the specifica-
tion of reactive processes that lazily produce data structures throught their synthesized
attributes while consumming input data structure from their inherited attributes. Gener-
ally this kind of reactive processes, e.g. the so-called Kahn Networks [23], are specified
in terms of a system of equations on streams. But as already noticed by Uustalu and
Vene [26] zippers can be seen as generalized streams and therefore the representation
of an attribute grammar as a zipper transformer can be used for that purpose. More-
over as noted by Caspi and Pouzet [5] while Haskell easily allow to write data-flow
programs by expressing streams as abstract data type, this implementation can be inef-
ficient as long as some kind of deforestation technique is not involved. But it happens,
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as established by Jürgensen and Vogler, that syntactic composition of top-down tree
transducers is short cut fusion [21]. Thus if we succeed to relate syntactic composi-
tion of top-down tree transducers to the syntactic composition of attribute grammars
through our encoding we would be in a position where the composition of attribute
grammars can be presented as a synchronous composition of reactive processes acting
on generalized streams (the zippers).

4.3 Combinators for the edition of structure documents
We can notice that the Haskell code presented in Table 3.2 is almost an immediate
transcription of the semantic rules of the attribute grammar. Still the programmer need
to be aware of the underlying cyclic representation of zippers and this is an undesir-
able overhead a potential source of programming errors. We would like to be able to
encapsulate these aspects into a structure of monad (or a structure of arrows) so that
all these considerations would be totally transparent to the programmer. Therefore,
we are looking for a set of functional combinators (similar to the functional monadic
parser combinators [17]) that would provide a Domain Specific Language embedded in
Haskell for the encoding of attribute evaluators . Using these combinators the program-
mer will specify his attribute grammar (mainly he will write the semantic rules) but by
doing so he will actually build an Haskell program for the corresponding evaluator of
attributes or even maybe for an associated interactive editor.
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