
HAL Id: inria-00177850
https://hal.inria.fr/inria-00177850

Submitted on 9 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Time- and Space-Efficient Evaluation of Some
Hypergeometric Constants

Howard Cheng, Guillaume Hanrot, Emmanuel Thomé, Eugene Zima, Paul
Zimmermann

To cite this version:
Howard Cheng, Guillaume Hanrot, Emmanuel Thomé, Eugene Zima, Paul Zimmermann. Time-
and Space-Efficient Evaluation of Some Hypergeometric Constants. ISSAC ’07: Proceedings of the
2007 international symposium on Symbolic and algebraic computation, Association for Computing
Machinery, Jul 2007, Waterloo, Canada. pp.85-91, �10.1145/1277548.1277561�. �inria-00177850�

CORE Metadata, citation and similar papers at core.ac.uk

Provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50357064?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00177850
https://hal.archives-ouvertes.fr

Time- and Space-Efficient Evaluation of Some
Hypergeometric Constants

Howard Cheng
Dept. of Mathematics and

Computer Science, Univ. of
Lethbridge

Lethbridge, Alberta, Canada
howard.cheng@uleth.ca

Guillaume Hanrot
INRIA Lorraine/LORIA

Villers-lès-Nancy, France
hanrot@loria.fr

Emmanuel Thomé
INRIA Lorraine/LORIA

Villers-lès-Nancy, France
Emmanuel.Thome@normalesup.org

Eugene Zima
Wilfrid Laurier University

Waterloo, Ontario, Canada
ezima@wlu.ca

Paul Zimmermann
INRIA Lorraine/LORIA

Villers-lès-Nancy, France
zimmerma@loria.fr

ABSTRACT
The currently best known algorithms for the numerical eval-
uation of hypergeometric constants such as ζ(3) to d decimal
digits have time complexity O(M(d) log2 d) and space com-
plexity of O(d log d) or O(d). Following work from Cheng,
Gergel, Kim and Zima, we present a new algorithm with the
same asymptotic complexity, but more efficient in practice.
Our implementation of this algorithm improves over existing
programs for the computation of π, and we announce a new
record of 2 billion digits for ζ(3).

Categories and Subject Descriptors
I.1.2 [Computing methodologies]: Algorithms—Symbolic
and algebraic manipulation

General Terms
Algorithms, Performance

Keywords
Hypergeometric constants, high-precision evaluation

1. INTRODUCTION
In this article, we are interested in the high-precision eval-

uation of constants defined by hypergeometric series of the
form

∞
X

n=0

a(n)

n−1
Y

i=0

p(i)

q(i)
, (1)

where a, p and q are polynomials with integer coefficients.
We shall also assume, without loss of generality, that p and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’07, July 29–August 1, 2007, Waterloo, Ontario, Canada.
Copyright 2007 ACM 978-1-59593-743-8/07/0007 ...$5.00.

q are coprime, have no nonnegative integer as a zero and
that p(n)/q(n) tends to a constant 0 < c < 1 when n goes
to infinity.

Under those assumptions, the series converges, and we can
compute an approximation to the constant by truncating the
series, i.e., by computing

N−1
X

n=0

a(n)
n−1
Y

i=0

p(i)

q(i)
(2)

for an appropriately chosen N = Θ(d) with d being the
number of decimal digits desired. The high-precision eval-
uation of elementary functions and other constants — in-
cluding the exponential function, logarithms, trigonometric
functions, and constants such as π or Apéry’s constant ζ(3)
— is commonly carried out by evaluating such series [11,
13]. For example, we have

1

π
= 12

∞
X

n=0

(−1)n 545140134n + 13591409

6403203n+3/2

(6n)!

(3n)!n!3
(3)

or

2ζ(3) =

∞
X

n=0

(−1)n(205n2 + 250n + 77)
(n + 1)!5n!5

(2n + 2)!5
. (4)

Assuming that q(n) has size O(log n), the special form of
the series (2) implies that the common denominator

N−2
Y

i=0

q(i)

has a relatively small size of O(N log N). An approach to
such computations commonly known as “binary splitting”
has been independently discovered and subsequently redis-
covered by many authors [4, 2, 10, 14, 13]. More general
setup of multiprecision evaluation of holonomic functions
was investigated in [5] and subsequent papers [20, 21, 22].
Good exposition of the method can be found in [3, 11,
1]. In binary splitting, the use of fast integer multiplica-
tion yields a total time complexity of O(M(d log d) log d) =
O(M(d) log2 d), where M(t) = O(t log t log log t) is the com-
plexity of multiplication of two t-bit integers [17]. The space
complexity O(d log d) of the algorithm is the same as the size
of the computed numerator and denominator.

The numerator and denominator computed by the binary
splitting approach typically have large common factors. For
example, it was shown that in the computation of 640,000
digits of ζ(3), the size of the reduced numerator and denom-
inator is only 14% of the size of the computed numerator
and denominator. This suggests possible improvements of
the method, by avoiding the unneeded computation of the
common divisor between the numerator and denominator.
Several approaches have already been taken in that direc-
tion. In particular, [7] suggests to use a partially factored
form for the computed quantities, in order to efficiently iden-
tify and remove common factors, and [23] goes further by
explicitly constructing the common divisor and dividing out
the numerator and denominator.

The present work builds on top of this strategy and uses
a fully factored form in the binary splitting process. We
show that the fully factored form yields a time complexity
of O(M(d) log2 d), and space complexity O(d). This matches
the complexity of the standard approaches, but provides a
practical speedup confirmed by experiments. Our method
appears to be noticeably faster than other optimized binary
splitting implementations aimed at the computation of digits
of π or other constants. We also show in this article that the
exact set of series that are amenable to efficient computation
using the fully factored form is characterized by a simple
criterion: only the series where p(n) and q(n) are products
of linear factors exhibit the large common factor that was
observed in the computation of ζ(3). Therefore our attention
is restricted to that case.

This article is organized as follows. Section 2 recalls the
binary splitting algorithm, and reviews the different ap-
proaches for improving the practical efficiency of the method.
Section 3 examines in detail the size of the reduced frac-
tion computed by the binary splitting algorithm. Section 4
presents the alternative of using a fully factored form in the
binary splitting approach. In Section 5, the analysis of the
algorithm is performed. Section 6 concludes with experi-
mental data, and a comparison with other programs.

2. THE BINARY SPLITTING APPROACH
AND ITS VARIANTS

We give a brief description of the binary splitting approach
here, following the notations from [7].

Our approximation to the constant to be evaluated can
be written S(0, N) where for 0 ≤ n1 ≤ n2 we define

S(n1, n2) =

n2−1
X

n=n1

a(n)
p(n1) · · · p(n − 1)

q(n1) · · · q(n − 1)
.

Letting P (n1, n2) =
Qn2−1

n=n1
p(n), Q(n1, n2) =

Qn2−1
n=n1

q(n),

and T (n1, n2) = S(n1, n2)Q(n1, n2), we have for n1 < m <
n2, with T (n, n + 1) = a(n)p(n):

P (n1, n2) = P (n1, m)P (m,n2)

Q(n1, n2) = Q(n1, m)Q(m,n2)

T (n1, n2) = T (n1, m)Q(m,n2) + P (n1, m)T (m,n2).

This leads to a recursive algorithm to evaluate T (0, N) and
Q(0, N), which corresponds to the evaluation of a product
tree [1]. One then deduces S(0, N) by a division.

Since p(n)/q(n) tends to c, the tail S(N,∞) of the series
is bounded by O(cN). Therefore, to compute the constant

S(0,∞) with error ǫ, we need N = log ǫ
log c

+ O(1) terms: the
number of terms is proportional to the number d of digits
of accuracy desired. The corresponding product tree has
height log N , where the leaves have O(log N) bits and hence
the root has O(N log N) bits. The total evaluation of the
truncated series costs O(M(d log d) log d) = O(M(d) log2 d)
with the best-known multiplication algorithms.

Although some constants such as π and log 2 can be com-
puted to d digits with bit complexity of O(M(d) log d) using
the Arithmetic Geometric Mean [2], the O(M(d) log2 d) bi-
nary splitting algorithm is still competitive up to billions of
digits. For example, D. V. and G. V. Chudnovsky held the
π record using Formula (3) with 8 billion digits in 1996 [11].

2.1 Improvements of the binary splitting
As mentioned earlier, the binary splitting method suffers

from the drawback that the fraction T/Q has size O(d log d),
while an accuracy of only d digits is required. In [11], the
authors circumvent this problem by limiting the precision
of the intermediate results to O(d) digits. This is used by
the PiFast program [11] and results in the same time com-
plexity as the binary splitting method but a reduced space
complexity of O(d). This truncation, however, implies that
the exact reduced fraction is not computed, so that it is not
easy to extend the computation to higher precision using
results already computed. Further, the truncation only op-
erates on the top levels of the computation tree, since below
a depth of order O(log log d), the computed integers have
size O(d) anyway. Below this depth, the computations per-
formed by the PiFast program are expected to be exactly
the same as in the classical algorithm above.

Since in the course of the computation of digits of ζ(3),
T and Q have been found to share a large number of com-
mon factors, Cheng and Zima [7] worked towards efficiently
removing some of these factors from the computation. For
this purpose, a partially factored representation was intro-
duced in the binary splitting process. Subsequently, Cheng,
Gergel, Kim, and Zima [6] applied modular computation
and rational number reconstruction to obtain the reduced
fraction. If the reduced numerator and denominator have
size O(d), the resulting algorithm has a space complexity
of O(d) and the same time complexity as binary splitting.
By carefully analyzing the prime divisors of the numerator
and denominator of (4), it was shown in [6] that the size
of the reduced fraction for ζ(3) is O(d); it was noted that
the analysis was in fact related to using the partially fac-
tored representation with all possible prime factors in the
binary splitting process. However, it was not practical to
use so many primes in the partially factored representation
because it was expensive to convert from standard repre-
sentation by factoring. Additionally practicality of the al-
gorithm depends on the availability of the implementation
of the asymptotically fast rational reconstruction algorithm
(for example, see [19]).

We also mention the gmp-chudnovsky program [23], which
uses the binary splitting method to compute digits of π us-
ing Formula (3). Two modifications are made to the clas-
sical method described above. First, integers P (n1, n2) and
Q(n1, n2) are handled together with their complete factor-
ization. This makes it possible to quickly compute the gcd
of P (n1, m) and Q(m,n2) by merely comparing the factor-
izations. Afterwards, the gcd is divided from both numbers.
The fraction T/Q is therefore reduced. It should be noted

that gmp-chudnovsky still works with expanded integers P ,
Q, and T (albeit reduced).

The second specificity of the gmp-chudnovsky program lies
in the way the leaves p(n) and q(n) are computed. Since
the factorization of these numbers is sought, an optimized
sieve table is built. Formula (3) implies that the integers to
be factored are bounded by 6N , where N is the number of
computed terms. A table of

¨

6N
2

˝

entries is built, with the i-
th cell containing information on the smallest prime divisor
of 2i+1, its multiplicity, and the integer j such that 2j+1 is
the cofactor. Such a table can be computed very efficiently
using a modified Eratosthenes’ sieve. This represents a tiny
part of the total computing time. Unfortunately, this sieve
table is also an impediment to large scale computations, in
that it has a space complexity of O(d log d).

3. SIZE OF THE REDUCED FRACTION
Cheng, Gergel, Kim and Zima showed in [6] that for For-

mula (4) giving ζ(3), when removing common factors be-

tween T and Q, the reduced fraction T̂ /Q̂ has size O(d)
only. We show here that this fact happens for a large class
of hypergeometric constants.

Understanding when the size of the fraction reduces to
O(d) is closely linked to a study of the prime divisors of the
values p(i) and q(i). Indeed, the fraction being significantly
smaller than its expected O(d log d) size means that there are
large cancellations at many primes; it thus means that the
primes occurring in

Qn2−1
i=n1

p(i) and
Qn2−1

i=n1
q(i) are mostly

the same, and with the same multiplicities.
We first notice that since p(n)/q(n) tends to c > 0 when

n → ∞, this implies that p and q have the same degree.
For a polynomial p, we use the notation lc (p) and disc (p)
to denote the leading coefficient and the discriminant of p,
respectively. If p is an irreducible polynomial and ℓ a prime
(or prime power) coprime to ∆(p) := lc (p) disc (p), we shall
denote ρℓ(p) the number of roots of p modulo ℓ. If p =
Qk

i=1 pei
i , and ℓ is coprime to ∆(p) :=

Qk
i=1 ∆(pi), we shall

define ρℓ(p) =
Pk

i=1 eiρℓ(pi), which is still the number of
roots of p, counted with multiplicities.

The following lemmata lead to estimates of the ℓ-valuation
and the size of the quantities Q(n1, n2), T (n1, n2) and their
common divisors when the summation range [n1, n2] grows.

Definition 1. Let Np,ℓ(n1, n2) be the number of integer
roots of p(·) mod ℓ in [n1, n2[:

Np,ℓ(n1, n2) := #{x ∈ [n1, n2[/p(x) = 0 mod ℓ}.

Lemma 1. Let p be a polynomial, and ℓ a prime (or prime
power) coprime to ∆(p). Then,

Np,ℓ(n1, n2) =
ρℓ(p)

ℓ
(n2 − n1) + O(1),

where the implied constant in O(1) depends on p only.

Proof. The roots of p modulo ℓ in the interval [n1, n2[
are exactly integers congruent to one of the ρℓ(p) roots of
p in [0, ℓ − 1]. The Lemma follows, the precise error term
being at most ρℓ(p) ≤ deg p.

Definition 2. For an integer m, let vℓ(m) be the ℓ-va-
luation of m, i.e., the largest integer j such that ℓj divides
m.

Lemma 2. Let ℓ be a prime not dividing ∆(p). Then,

vℓ(P (n1, n2)) =
ρℓ(p)

ℓ − 1
(n2 − n1) + O

„

log n2

log ℓ

«

.

Proof. We shall assume without loss of generality that
p is irreducible, since by our definition of ρℓ(p), the result
in the general case will follow by linearity. Generalizing
Legendre’s formula

vℓ(n!) =
X

j≥1

j n

ℓj

k

,

we find that the ℓ-valuation of P (n1, n2) is exactly

vℓ(P (n1, n2)) =
X

j≥1

Np,ℓj (n1, n2).

Since ℓ does not divide ∆(p), Hensel’s Lemma shows that
ρℓ(p) = ρℓk(p) for all k ≥ 1.

Further, there exists a constant γ such that the inequality
|p(x)| ≤ nγ

2 holds over the interval [n1, n2[. We then have
Np,ℓj (n1, n2) = 0 for j > Jp := γ log n2

log ℓ
, and also ℓ−Jp =

O(n−1
2). Lemma 1 yields for 0 ≤ n1 ≤ n2:

vℓ(P (n1, n2)) = ρℓ(p)(n2 − n1)

„

1

ℓ − 1

«

+ O

„

log n2

log ℓ

«

.

The statement follows.

We need to control (though in a rather rough way) what
happens for primes dividing ∆(p). The following weaker
lemma is sufficient; its proof is very close in spirit to that of
Lemma 2.

Lemma 3. For any prime ℓ, we have

vℓ(P (n1, n2)) = O(n2 − n1),

where the O-constant depends on p only.

Proof. Let r1, . . . , rk be the roots of p in Qℓ, repeated
according to their multiplicities. We have

vℓ(p(x)) = vℓ(lc (p)) +
k
X

j=1

vℓ(x − rj).

Hence,

vℓ(P (n1, n2)) = (n2 − n1)vℓ(lc (p)) +

n2−1
X

x=n1

k
X

j=1

vℓ(x − rj)

=
k
X

j=1

n2−1
X

x=n1

vℓ(x − rj) + O(n2 − n1).

Now, as in the proof of Lemmata 1-2, for each j, the
number of x ∈ [n1, n2[such that x−rj = 0 mod ℓi is O((n2−
n1)/ℓi). Hence,

n2−1
X

x=n1

vℓ(x − rj) = O

„

n2 − n1

ℓ − 1

«

,

from which our claim follows.

We can now state our main theorem regarding the size of
the fraction T/Q in reduced form:

Theorem 1. For ℓ a prime not dividing ∆(pq), one has

vℓ(gcd(T (n1, n2), Q(n1, n2)))

≥
min(ρℓ(p), ρℓ(q))

ℓ − 1
(n2 − n1) + O

„

log n2

log ℓ

«

.

Proof. For 0 ≤ n1 < k < n2, put

τ (n1, k, n2) = a(k)P (n1, k)Q(k, n2).

Then we have

T (n1, n2) =

n2−1
X

n=n1

τ (n1, k, n2).

Applying Lemma 2, we see that

vℓ(τ (n1, k, n2)) = vℓ(a(k)) +
ρℓ(p)

ℓ − 1
(k − n1)

+
ρℓ(q)

ℓ − 1
(n2 − k) + O

„

log n2

log ℓ

«

.

As such,

vℓ(T (n1, n2)) ≥ min
n1<k<n2

vℓ(τ (n1, k, n2))

≥
min(ρℓ(p), ρℓ(q))

ℓ − 1
(n2 − n1) + O

„

log n2

log ℓ

«

.

Joined with Lemma 2 for vℓ(Q(n1, n2)), this gives the de-
sired statement.

Note also that it is clear from the proof that this lower bound
is generically sharp. Indeed, the proof is a sequence of equal-
ities until the end. The last inequality is an equality up to
the vℓ(a(k)) term, which is 0 for almost all ℓ. As for the first
inequality, one sees that vℓ(u + v) ≥ vℓ(u) + vℓ(v) + k with
probability 1/ℓk, hence with high probability the difference
between the lhs and the rhs is absorbed in the error term.

Corollary 1. The following holds:

• If p(n) and q(n) have only linear irreducible factors,
the fraction T (n1, n2)/Q(n1, n2) in reduced form has
size O(min(n2, (n2 − n1) log n2)).

• Otherwise, heuristically, as soon as n1 = o(n2), it is
of size Θ(n2 log n2).

Proof. In the first case, the second part of the O-estimate
is the trivial estimate for the size of Q(n1, n2).

Since S(n1, n2) = T (n1,n2)
Q(n1,n2)

is a partial sum of a converging

series, we have T (n1, n2) = O(Q(n1, n2)). Therefore this
second part holds also for the size of the reduced fraction.

The fact that T (n1, n2) = O(Q(n1, n2)) also implies that

the size of the reduced fraction is log Q(n1,n2)
gcd(T (n1,n2),Q(n1,n2))

+

O(1).
Now, we have

log
Q(n1, n2)

gcd(T (n1, n2), Q(n1, n2))

=
X

ℓ prime

[vℓ(Q(n1, n2))− vℓ(gcd(T (n1, n2), Q(n1, n2)))] log ℓ.

However, since q =
Qk

i=1 qei
i , we can discard in this sum

primes larger than C(q)n2 for some constant C(q) such that

|qi(x)| ≤ C(q)n2 for all i, x ∈ [n1, n2 − 1] (recall that q has
only linear factors). Further, the finitely many primes divid-
ing the discriminant ∆ of a prime factor of pq contribute for
O(n2 − n1) by Lemma 3. The logarithmic height therefore
rewrites as:

X

ℓ≤C(q)n2, ℓ prime
(ℓ,∆(pq))=1

[
n2 − n1

ℓ − 1
[ρℓ(q) − min (ρℓ(p), ρℓ(q))] log ℓ

+O(log n2)] + O(n2 − n1),

where we have used Mertens’ formula
P

ℓprime≤N log ℓ/.ℓ =

log N + O(1), see eg. [18].
Under our assumptions, we have ρℓ(p) = ρℓ(q) = deg p =

deg q, hence this is also
X

ℓ≤C(q)n2, ℓ prime
(ℓ,∆(pq))=1

O(log n2) + O(n2 − n1) = O(n2).

We now turn to the case where q has irreducible factors
of degree greater than 1. In this situation, it is preferable to
compute the size of the reduced fraction by subtracting the
log of the gcd to the asymptotic value of

log Q(n1, n2) = (n2 log n2 − n1 log n1) deg q + O(n2 − n1)

= (n2 − n1) deg q log n2 + O(n2 − n1),

since

n2 log n2 − n1 log n1 = (n2 − n1) log n2 + n1 log n2/n1

(n2 − n1) log n2 + O(n2 − n1).

Again, write

log gcd(T (n1, n2), Q(n1, n2))

=
X

ℓ prime

vℓ(gcd(T (n1, n2), Q(n1, n2))) log ℓ.

Heuristically, almost only primes of the order of magni-
tude of at most n2 − n1 should appear both in T and in Q.
Joined with the heuristic remark following Theorem 1, this
means that we expect the size of the gcd to be of the order
of

(n2 − n1)
X

ℓ≤n2−n1, ℓ prime

min(ρℓ(p), ρℓ(q))

ℓ − 1
log ℓ + O(n2).

Recall deg p = deg q, and let K be the splitting field of pq.
Denote by P the set of primes ℓ such that ρℓ(p) = ρℓ(q) =
deg(p)(= deg(q)).

The size of the gcd is

≤ (n2 − n1)
X

ℓ≤n2−n1, ℓ prime
ℓ 6∈P

deg q − 1

ℓ − 1
log ℓ

+(n2 − n1)
X

ℓ≤n2−n1, ℓ prime
ℓ∈P

deg q

ℓ − 1
log ℓ + O(n2)

= (n2 − n1) log(n2 − n1)(deg q − 1)

+(n2 − n1)
X

ℓ≤n2−n1, ℓ prime
ℓ∈P

log ℓ

ℓ − 1
+ O(n2).

The last sum over primes evaluates to

X

ℓ≤n2−n1, ℓ prime
ℓ∈P

log ℓ

ℓ − 1
=

X

ℓ≤n2−n1, ℓ prime
ℓ∈P

log ℓ

ℓ
+ O(1),

which, by the Chebotarev density theorem (see eg. [15]) —
notice that the primes of P are exactly those for which the
Artin symbol (ℓ,K/Q) equals 1—, is

log(n2 − n1)

[K : Q]
+ O(1).

Thus, the size of the gcd is at most

(n2 − n1) log(n2 − n1)

„

deg q − 1 +
1

[K : Q]

«

+ O(n2).

Hence, under this heuristic, we see that the size of the
reduced fraction can be O(n2) when n1 = o(n2) only if [K :
Q] = 1, which means that p and q are products of linear
factors.

Remark. In the proof of Corollary 1, we show that if
p and q have linear factors only, the size of the gcd is1

(n2 − n1) log(n2 − n1) deg q + O(n2). As long as (n2 −
n1) log(n2 − n1) = O(n2), the size of the gcd is negligible
with respect to the size of Q, which means that there is al-
most no compensation between numerator and denominator
of the fraction. Thus, compensations start to appear in the
evaluation tree only as soon as n2 − n1 is of the order of
n2/ log n2.

4. FULLY FACTORED REPRESENTATION
We extend in this section the “partially factored represen-

tation” of [7, Section 4] to a “fully factored representation”
for P , Q, and T .

4.1 Factored representation of integers
We consider a set B of primes. (In practice, it will consist

of all primes needed to completely factor p(n) and q(n) up to
n = N − 1.) A factored representation over B of an integer
z is an expression of the form:

z =
Y

p∈B

pαp · r,

where αp ∈ N and r ∈ Z. The integer z is represented by
the data ((〈p, αp〉)p, r). For efficiency purposes, the repre-
sentation skips primes p such that αp is zero. Note that we
do not impose that primes in B do not divide the cofactor r,
so different factored representations may correspond to the
same integer, like 22 ·3 ·7 and 2 ·3 ·14 over B = {2, 3}. When
the cofactor r equals 1, we have the (unique) fully factored
representation of z.

A binary splitting method using factored representations
of integers can be written as in algorithm FastEval (see
Fig. 1)2. We need to define the three operations FullFactor,

1Taking into account only primes ≤ n2 − n1, but any com-
pensation occurring for significantly larger primes is bound
to be coincidental.
2In algorithm FastEval, we do not factor the a(n1) term
from T , which will not in general share (additional) common
primes with the denominator Q.

Algorithm FastEval(n1, n2, B).
if (n1 == n2 − 1) { /* leaf computation */

P = FullFactor(p(n1), B);
Q = FullFactor(q(n1), B);
T = FullFactor(p(n1), B) · a(n1);

} else {
m = ⌊n1+n2

2
⌉;

(P1, Q1, T1) ← FastEval(n1, m, B);
(P2, Q2, T2) ← FastEval(m, n2, B);
P = PartMult(P1, P2);
Q = PartMult(Q1, Q2);
T = PartAdd(PartMult(Q2, T1), PartMult(P1, T2));

}

Figure 1: Binary splitting using factored represen-

tation

PartMult and PartAdd. FullFactor computes the full fac-
torization of a given integer over the factor base B, and is
obtained by sieving (see below). Further, we define:

PartMult(
Y

p∈B

pαp · r,
Y

p∈B

pβp · s) =
Y

p∈B

pαp+βp · (rs).

PartAdd(
Y

p∈B

pαp · r,
Y

p∈B

pβp · s)

=
Y

p∈B

pγp

Y

p∈B

pαp−γp · r +
Y

p∈B

pβp−γps

!

,

where γp = min(αp, βp).

4.2 Leaf computations
We have P (n, n + 1) = p(n), Q(n, n + 1) = q(n), T (n, n +

1) = a(n)p(n). The algorithm in Figure 1 requires com-
puting the fully factored representation of these quantities.
This corresponds to the leaves of the evaluation tree.

In order to expect an improvement from the use of the
fully factored representation, we must make sure that the
gain is not offset by the complexity of the leaf computations.
In order to perform this step efficiently, we use a standard
window sieving method.

As mentioned in the introduction, we assume here that
p(n) and q(n) are polynomials with linear factors only — like
in the case of Formulae (3) or (4). Without loss of generality,
we illustrate our sieving procedure with the computation of
the fully factored representation of the quantity q(n) from
Formula (4). This is equivalent to the factorization of 2n+1.
The sieving produces simultaneously the factorization of all
the consecutive odd integers in a range [2n1 +1, 2(n1+W)+
1[, where W is an arbitrary integer. We proceed as follows.

1. For each odd prime (or prime power) ℓ such that 3 ≤
ℓ < 2N , we compute the smallest value iℓ such that

2(n1 + iℓ) + 1 ≡ 0 mod ℓ.

2. Sieve using the procedure in Figure 2.

Besides this description, the important observation is that
the next set of initialization values iℓ for the computation
of q(n1 + W), . . . , q(n1 + 2W − 1) does not have to be com-
puted: the code in Figure 2 has already updated these values
correctly.

Algorithm Sieve(n1, n1 + W − 1)
factored_representation τ[W]
for all primes ℓ < 2N

i = iℓ
while (i < W) { include ℓ in τ[i] ; i = i + ℓ }
iℓ = i−W
for all powers ℓk of ℓ, with ℓk < 2N

i = iℓk

while (i < W) { increase by one the multiplicity of
ℓ in τ[i]; i = i + ℓk }

iℓk = i−W

Figure 2: Pseudo-code for sieving

The translation of this scheme to other factorizations than
that of 2n + 1, as long as we stick to linear polynomials, is
straightforward.

5. ANALYSIS OF THE ALGORITHM

5.1 Cost of sieving
Because p(n), q(n) are assumed to have linear factors only,

their prime divisors are bounded by cn for some constant c,
thus all p(n), q(n) for n ≤ N can be completely factored
over a set of O(N/ log N) primes or prime powers. Since the
initialization of the sieve only has to be done once, the com-
putation of the iℓ values is trivial. In total, the sieving code
in Figure 2 performs O(N/ℓ) sieve updates for each prime
(or prime power) ℓ. The number of times the sieve procedure
is called is O(N/W), and each time all of the O(N/ log N)
primes or prime powers are scanned. This yields a time com-
plexity for sieving which is O(N log log N +N2/(W log N)).
The space complexity for sieving is at most O(W log N).
There is some freedom in the choice of W , but it must
clearly be between O(N/(log N)4) and O(N/ log N), so that
the time and space complexities remain below O(d log3 d)
and O(d), respectively.

5.2 The recursion
Since the factor base B consists of all possible prime divi-

sors of p(n) or q(n), P and Q are always fully factored. Com-
puting the product P (n1, n2) = P (n1, m)P (m,n2) thus just
consists in adding the prime exponents in the lists of factors.
If the factored representations of P (n1, m) and P (m,n2)
have respectively l1 and l2 elements, this can be done in
O(l1 + l2) operations.

At level k — the leaves corresponding to level 0 — the

values of P or Q are bounded by O((Ndeg p)2
k

), thus have
O(2k log N) bits. On the other hand, let l be the number of
different prime factors in the representation of P (counted
with multiplicities), then P ≥ 2l, thus P has Ω(l) bits. It
follows that at level k, we have l = O(2k log N). (We also
have l = O(N

log N
) since there are that number of primes up

to B.)
The total cost of computing P and Q is thus bounded by

Plog N
k=0

N
2k (2k log N) = O(d log2 d).

As concerns T , if we could prove that its non-factored
part is always log N times smaller than the factored part,
we would get a complexity of O(M(d) log d) for T . Indeed,
at level k, the non-factored part of T would have O(2k) bits,
thus the cost of computing it would be O(M(2k)), since
it is obtained from a sum of products T (n1, m)Q(m,n2) +

Opteron, 2.4Ghz
digits our code gmp-chudnovsky ratio

225 60s 61s 0.98
226 136s 147s 0.93
227 322s 352s 0.91
228 768s 853s 0.90
229 1868s 2059s 0.91
230 4654s 5328s 0.87

Pentium 4, 3Ghz
digits our code PiFast ratio

28 × 106 127s 135s 0.94
40 × 106 192s 206s 0.93
57 × 106 291s 323s 0.90

Table 1: Comparison with the gmp-chudnovsky and

PiFast programs for computing digits of π.

P (n1, m)T (m,n2), where no cancellation occurs. Thus the

total cost would be
Plog N

k=0
N
2k O(M(2k)) = O(M(d) log d) for

the non-factored part. (The analysis for the factored part is
similar to that for P and Q.)

Unfortunately, the above property — the non-factored
part of T is log N times smaller than its factored part —
is only true near the root of the product tree, where com-
mon factors cancel between P and Q. Thus the computation
of T costs O(M(d) log2 d) (unless we can do better).

6. EXPERIMENTAL RESULTS
In this section we investigate the benefit of using the fully

factored representation for the purpose of computing the
sum of series such as (3) or (4).

Compared to the sieve table of the gmp-chudnovsky pro-
gram mentioned in Section 2, we address the problem of the
leaf computation in a different way. The sieving procedure
described in Section 4 keeps a space complexity of the order
of O(d). We found that our sieving procedure was competi-
tive with the sieve table from the gmp-chudnovsky program.

The fully factored representation is an asset as soon as
compensations between prime factors start to appear. How-
ever, this is not encountered at the very lowest levels of the
computation tree, near the leaves. Quite naturally, a cut-off
level appears between the use of the factored representation
and the use of the fully expanded integer values. At the
lowest levels of the tree, we use the same approach as the
gmp-chudnovsky program. For P and Q, both the expanded
integer and its factorization are kept. The integer compo-
nent is dropped above a certain height in the tree. The
remark concluding Section 5 suggests that the switch from
one algorithm to the other be done when n2−n1 is of the or-
der of n2

log n2

. However the running time is the measurement
here, and the precise cut-off is chosen by trial and error.

Another implementation note concerns the PartAdd op-
eration mentioned in Section 4, and also the final expansion
of T and Q from the factored form to a flat integer. For this
purpose, we use the same kind of algorithm as mentioned
in [16] for the computation of n!.

We implemented our algorithm in C++ with the GMP
and MPFR libraries [12, 8]. We modified the GMP library
with an improved FFT multiplication code [9]. We compare
our results with the two programs mentioned in Section 2,

which compute digits of π using Formula (3). For the pur-
pose of comparison, we focus on the time for the evaluation
of the fraction T/Q. Because our program and the gmp-

chudnovsky program share the GMP library as a common
backbone, we are convinced that this comparison gives the
most meaningful results. Table 1 gives the relative time
spent in the binary splitting process for our program and
for the gmp-chudnovsky program, measured on a 2.4Ghz
Opteron CPU. The gain seems to grow slightly with the
number of digits computed.

Table 1 also mentions timings of our program against the
PiFast program. The comparison has been made on a 3
GHz Pentium 4 CPU (hence the different timings). The
lack of source code access for PiFast mandates some caution
for the interpretation of the timings, since the operating
system overhead seems to be included. Nonetheless, it seems
that our fully factored binary splitting provides a growing
improvement.

Finally, we used our program to establish a new record-
size computation for 2 billion decimal digits of ζ(3). The
series of Formula (4) was evaluated up to N = 664385619
terms. The computation of Q and T was first spanned
over 16 distinct 2.4Ghz Opteron processors. The cumula-
tive CPU time spent by these processors to compute their
fraction of the result was 20 hours. These results were gath-
ered to form the final fraction T/Q (in factored form) on
a single computer in 3 hours. Converting the fraction T
and Q to integers took 18 minutes. The division took 53
minutes, and the decimal conversion took 2 hours and 37
minutes (these timings are suboptimal, since GMP does not
yet implement Newton’s division).

Error analysis. Using the inequality n
2n+1

< 1
2

and a

rough bound on a(n), it can be shown that Formula (4)
gives an error of at most 2−10N+2 log

2
N+2, which is less than

2−6643856129 here. Using a precision of p = 6643856189 bits,
we converted T and Q to floating-point numbers, divided
both, and converted the binary quotient to a decimal string
of 2·109 +1 digits, all those operations being made in round-
ing to nearest mode with the MPFR library. An error anal-
ysis yields a maximal absolute error of 21−p, which together
with the above truncation error gives a maximal absolute
error of 10−1999999981 .

Acknowledgement. The authors thank Richard Brent for
his clever remarks on a first draft of this paper, and the
three anonymous referees for their very detailed reviews.

7. REFERENCES
[1] Bernstein, D. J. Fast multiplication and its

applications. http://cr.yp.to/papers.html, 2004.

[2] Borwein, J. and Borwein, P. Pi and the AGM.
John Wiley and Sons, 1987.

[3] Borwein, J. and Bradley, D. and Crandall, R.

Computational stratgies for the Riemann zeta
function. Journal of Computational and Applied
Mathematics 121 (2000), 247–296.

[4] Brent, R. Fast multiple-precision evaluation of
elementary functions. Journal of the ACM 23, 2
(1976), 242–251.

[5] Chudnovsky, D., Chudnovsky G. Computer
algebra in the service of mathematical physics and
number theory. Computers in mathematics (Stanford,

CA, 1986), 109–232, Lecture Notes in Pure and Appl.
Math., 125, Dekker, New York, 1990.

[6] Cheng, H., Gergel, B., Kim, E., and Zima, E.

Space-efficient evaluation of hypergeometric series.
SIGSAM Bulletin, Communications in Computer
Algebra 39, 2 (2005), 41–52.

[7] Cheng, H., and Zima, E. On accelerated methods to
evaluate sums of produts of rational numbers. In
Proceedings of ISSAC’00 (2000), pp. 54–61.

[8] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier,

P., and Zimmermann, P. MPFR: A
multiple-precision binary floating-point library with
correct rounding. ACM Trans. Math. Softw. 33, 2
(2007).

[9] Gaudry, P., Kruppa, A., and Zimmermann, P. A
GMP-based implementation of Schönhage-Strassen’s
large integer multiplication algorithm. Proceedings of
ISSAC’07, Waterloo, Ontario, Canada, 2007.

[10] Gosper, R. Strip mining in the abandoned orefields
of nineteenth century mathematics. Computers in
Mathematics (1990), pp. 261–284.

[11] Gourdon, X., and Sebah, P. Binary splitting
method. http://numbers.computation.free.fr/
Constants/Algorithms/splitting.html, 2001.

[12] GMP: The GNU Multiple Precision Arithmetic
Library, 4.2.1 ed., 2006. http://gmplib.org/.

[13] Haible, B., and Papanikolaou, T. Fast
multiprecision evaluation of series of rational numbers.
Algorithmic Number Theory, Third International
Symposium, ANTS-III, volume 1423 of Lecture Notes
in Computer Science, Springer, 1998.

[14] Karatsuba, E. A. Fast evaluation of transcendental
functions. In Problems of Information Transmission,
27: 339-360, 1991.

[15] Lang, S. Algebraic Number Theory. Springer-Verlag,
1994.

[16] Schönhage, A., Grotefeld, A. F. W., and

Vetter, E. Fast Algorithms, A Multitape Turing
Machine Implementation. BI-Wissenschaftsverlag,
1994.

[17] Schönhage, A. and Strassen, V. Schnelle
Multiplikation großer Zahlen. Computing 7 (1971),
281–292.

[18] Tenenbaum, G. Introduction to Analytic and
Probabilistic Number Theory. Cambridge University
Press, 1995.

[19] Wang, X. and Pan, V. Y. Acceleration of Euclidean
algorithm and rational number reconstruction. SIAM
Journal on Computing, 32(2):548–556, 2003.

[20] van der Hoeven, J. Fast evaluation of holonomic
functions. Theoret. Comput. Sci. 210 (1999), no. 1,
199–215.

[21] van der Hoeven, J. Fast evaluation of holonomic
functions near and in regular singularities. J. Symbolic
Comput. 31 (2001), no. 6, 717–743.

[22] van der Hoeven, J. Efficient accelero-summation of
holonomic functions. J. Symbolic Comput. 42 (2007),
no. 4, 389–428.

[23] Xue, H. gmp-chudnovsky.c code for computing digits
of π using the GNU MP library. Available at
http://gmplib.org/pi-with-gmp.html, 2002.

