
HAL Id: inria-00178365
https://hal.inria.fr/inria-00178365

Submitted on 11 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Component Platform for Experimenting with
Autonomic Composition

Françoise Baude, Ludovic Henrio, Paul Naoumenko

To cite this version:
Françoise Baude, Ludovic Henrio, Paul Naoumenko. A Component Platform for Experimenting with
Autonomic Composition. First International Conference on Autonomic Computing and Communica-
tion Systems (Autonomics 2007), Oct 2007, Rome, Italy. �inria-00178365�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50356589?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00178365
https://hal.archives-ouvertes.fr

A Component Platform for Experimenting with Autonomic
Composition

Françoise Baude Ludovic Henrio Paul Naoumenko
INRIA Sophia-Antipolis, I3S, Université de Nice Sophia-Antipolis, CNRS

2004 route des Lucioles – B.P. 93
F-06902 Sophia-Antipolis Cedex
{First.Last}@sophia.inria.fr

ABSTRACT

In this paper, we propose a component-oriented framework
that can support autonomic computing and in particular
bio-inspired approaches. Starting from the Grid Component
Model, a component model targeting at Grid computing and
already featuring some autonomicity, we show how such a
model can be used in a general autonomic computing con-
text. Indeed the model provides hierarchical structure and
reconfiguration for both functional and non-functional lev-
els. This should ease the development of self-* and in par-
ticular, self-evolving applications. With our approach, even
the autonomic strategies themselves can evolve. We con-
sider this model and its implementation as powerful tools
for easily experimenting autonomic behaviours.

Categories and Subject Descriptors

D.1.3 [Software Engineering]: Concurrent Programming—
Distributed programming ; D.2.2 [Software Engineering]:
Design Tools and Techniques

1. INTRODUCTION
The autonomic computing paradigm [24] was inspired by

the (complex) human nervous system. Generally speak-
ing, autonomous applications implement complex manage-
ment strategies through a decentralized independent deci-
sion process. Their goal is to ensure the self-* properties [24],
and more generally all the self-management features. Those
management strategies themselves can be considered as non-
functional aspects. For this reason, many researchers claim
that it would be very useful for designers and developers
of complex autonomic strategies to have a clear separation
between the functional and non-functional aspects of the ap-
plication. To this aim, it is also much easier to work with
a clear representation of the functional and non-functional
architecture of the application. We propose a programming
model and a framework which brings solutions to poten-
tially further ease the development of complex autonomic
strategies. Our solution is ground in a component-oriented

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

approach to develop autonomic applications. Besides, our
intention is also to enable others to use this platform as a
mean to easily experiment new autonomic behaviours: this
requires to be able to quickly design and program new be-
haviours, so the capability to reuse already developed fea-
tures is a strong requirement. Also, as some autonomic be-
haviours one may want to experiment with may be inspired
by nature (as conducted for instance within the EU funded
BIONETS1 research project we are involved in), we need to
provide a framework through which similar but numerous
participants must be modelled and then emulated. As some-
times in nature, self-* properties may result from evolution,
so a second requirement is that the autonomic behaviours
are designed and programmed in a way that permits them to
modify themselves even at runtime. Finally, we also foresee
that emulations be computation intensive, so we require to
be able to deploy and run the platform on a sufficiently big
aggregation of computation resources like computing grids
are, without additional burden for the experimenter. This
is why the component-based framework we propose for ex-
perimenting with autonomic behaviours is grounded upon
a software component model initially dedicated to the pro-
gramming of Grid applications: the Grid Component Model
(GCM) [14]. Besides, our effort contributes to easing the
programming of autonomic Grid applications (which is an
active current research track by itself, see e.g. [34, 1]).

Our purpose in this work is not to provide algorithms for
autonomic strategies but to provide support for such algo-
rithms, meaning control on the non-functional aspects of a
component system, possibility to plug dynamically different
management strategies, and runtime support for autonomic
systems . . .

A component is a software module, with a standardized
description of what it needs and provides (called server (pro-
vided) and client (required) interfaces), that can be be ma-
nipulated by tools for composition and deployment. Inter-
faces can be connected (bound) together to allow compo-
nents to interact, and constitute a component assembly.

From a practical point of view, the component model we
rely on is GCM, detailed in Section 3.2. This model has
usual advantages of component models (structure, hierarchy
and encapsulation) and offers some reconfiguration primi-
tives (bind, unbind, add and remove components). One of
the strong advantages of this model is to represent both the
functional and the non-functional parts of the application as
a component system. This allows to easily design complex
autonomic strategies. Autonomic strategies can be designed

1Bionets EU project at www.bionets.eu

as a component system belonging to the non-functional part
of the application. By using reconfiguration possibilities of
such a system, these strategies can be dynamically updated.
Moreover, the model has been extended to allow consistent
(well-defined) interactions between non-functional and func-
tional parts.

This paper is organized as follows. Section 2 studies the
different programming methodologies that can be envisioned
to program autonomic applications; from this analysis, we
choose to focus on component-oriented programming. The
remaining of the paper demonstrates how component mod-
els can be instrumented to integrate autonomic behaviours.
Section 3.2 presents Fractal and the GCM, two related com-
ponent models. The latter is targeted at large-scale dis-
tributed computing, more precisely we focus in this sec-
tion 3.2 on the structure that can be given to the non-
functional concerns in those two models. Section 4 explains
how autonomic behaviours can be plugged in component sys-
tems, allowing the autonomic management of components;
we propose a methodology for programming autonomic com-
ponents which promotes re-usability and dynamic adapta-
tion of both functional and non-functional components of the
application, leading to a component platform suited for ex-
perimenting with distributed autonomic behaviours. Finally
Section 5 releases the usual constraint of component systems
that requires the strong coupling of components and their
permanent availability: component composition becomes a
plan, for which components fulfilling the services must be
discovered dynamically and can disappear at any point in
time.

2. PROGRAMMING AUTONOMIC APPLI-

CATIONS
This section shortly reviews possible software techniques

to describe and implement the autonomic behaviour of ser-
vices (rules, aspect weaving, components, etc.) and tries to
evaluate if they are effective when the behaviour is complex.

2.1 General Principles
Autonomic computing is a paradigm that proposes to add

to software entities some autonomous capabilities: the en-
tity is capable to self-adapt in reaction to context or envi-
ronmental changes. Adaptation is generally designed and
described in an ad hoc way, which involves trying to predict
future execution conditions at development time and embed-
ding the adaptation decisions in the application code itself.
This approach has several drawbacks: increased complexity
(business logic polluted with non-functional concerns) and
poor reuse of software caused by a strong coupling with a
specific environment. As previously noticed in the littera-
ture (e.g. [16]) adaptations (most notably those related to
resource usage) can be decoupled from pure functional con-
cerns. This approach does not have the same drawbacks as
the ad hoc way.

We believe that the context of autonomic and situated
communications is specially demanding to motivate a sys-
tematic (as opposed to ad hoc) way to develop self-adaptive
software based on the Separation of Concerns principle: adap-
tation to a specific execution context and its evolutions is
considered as a concern which should be treated separately
from the rest of an application. Ideally, application devel-
opers should be able to concentrate on pure business logic,

and write their code without worrying about the character-
istics and resource limitations of the platform(s) it will be
deployed and run on. Then, the adaptation logic, which
deals specifically with the adaptation concern, is added to
this non-adaptive code, resulting in a self-adaptive applica-
tion able to reconfigure its architecture and parameters to
always fit its evolving environment. Adaptation logic which
is reflexive by nature, is the code that monitors a representa-
tion of the system environment and internal state and then
adapts that representation resulting in a reconfiguration of
the actual system.

2.2 Conditional expression / Rule based
As mentioned in [33], the spectrum to express self-adaptability

is broad. At one extreme (bottom) lie conditional expres-
sions in the form of If condition/then action rules: the
program evaluates an expression and alters its behavior based
on the outcome. In its principle, conditional expressions
combine the adaptation specification with the application
specification. In its simplest form, this methodology is not
very flexible (selects among predetermined alternatives), only
supports localized changes because it would be difficult to
unwind the control loop in a synchronized manner on all
– possibly remote – software entities that are concerned at
the same time, and lacks separation of concerns. That’s why
research on distributed rule agents coordinated by a rule en-
gine are conducted (e.g. [27, 34]) to feature both dynamicity
in rule injection and distributed rule-based complex adapta-
tion scenarios. In DIOS++ [27], the rule engine receives at
runtime rule requests from the user. It dynamically creates
rule agents to manage objects if such agents don’t exist yet.
It then composes a script for each agent, which defines pri-
orities. The rule engine is in charge of synchronizing all the
rule agents.

2.3 Aspect Oriented Programming
Aspect oriented programming [25] has been designed to

allow separation of concerns in the design of an application;
with aspects one can design separately the functional and
the non-functional concerns related to the system to be de-
ployed. Embedding “autonomic rules” as aspects allow a
better re-usability of the programs: different aspects can
be designed corresponding to different deployment environ-
ments and can be freely composed with different business
applications.

Concerning dynamic evolution however, pure aspect-oriented
approach is still quite limited. Indeed, aspects are usually
weaved within the functional code at compilation or instan-
tiation time, which prevents this non-functional code from
being modified at runtime. One has to weave again the
adaptation code when deploying on a new infrastructure. Of
course, adaptation code can be encapsulated inside an object
which could be updated dynamically. This is what compo-
nent models suggest: better specify the interfaces of objects
in order to allow a better re-usability and dynamic evolution
of the application. Such restriction w.r.t. runtime weav-
ing motivated the introduction of Dynamic Aspect-Oriented
languages, and in particular their application to autonomous
systems [20], [17]. As noticed in [31] aspect orientation ap-
plied to autonomic systems constitutes a step in the right
direction, but is by essence useful for tackling crosscutting
concerns; whereas in the general case, adaptation may re-
quire to also modify or replace code of the application, be it

devoted to functional or non-functional levels.

2.4 Autonomic Distributed Components
Component-based development has emerged as an effec-

tive approach to building complex software systems; its ben-
efits include reduced development costs through reusing off-
the-self components and increased adaptability through adding,
removing, or replacing components. This is why component
programming frameworks are becoming attractive in net-
working [5], in large-scale distributed computing (a.k.a Grid
computing) be it dedicated to scientific computing [9] or en-
terprise computing [10], in mobile and situated autonomic
communications [28], and more generally in any running
context constituted of fixed or intermittently connected de-
vices. In fact, we have reached a level of complexity, hetero-
geneity, and dynamism and consequently increasingly vari-
able execution contexts, that standard programming envi-
ronments and infrastructures, including component-oriented
ones, have trouble to manage. This raised the necessity for
adding to component models some concepts to ease the man-
agement of the distribution of the various software modules
that constitute the ultimate application (for instance, by
proposing that an aggregation of possibly remote compo-
nents can be manipulated as a single, even if distributed,
software entity, i.e. as a distributed component [8]), and
also to easily plug self-* properties to those software enti-
ties. In general, the followed approach consists in wrapping
around each component an autonomic manager (as the El-
ement manager wrapping a computational element in Au-
tomate [34], or as the Component Application Manager de-
fined in ASSIST [4]) that is guided by the interpretation of
some rules or contracts ([27, 3, 32, 17]) dependent of the
requested self-properties (e.g. self-healing, self-protecting,
self-optimizing, self-configuring . . .) and possibly injected
at runtime. The actions that those rules trigger may en-
compass reconfiguring the component-based application. All
these actions pertain to monitoring the base application and
at the same time, take into account non-functional concerns
due in particular to the running context. As a consequence,
the monitoring itself may become so complex to express that
its design and programming may be eased if relying on the
use of a general-purpose structured programming language,
and this is our opinion, by following a component-based ap-
proach (see next section for further details).

Besides, it appears that component and aspect-oriented
approaches can complement each other very well (e.g. [32,
17, 36]), because at some point, non-functional concerns may
be dependent or have impact to functional ones (e.g. update
the variable that represents a component instance reference
to which service invocations are triggered by the functional
code). So techniques from AOP can be relevant to be used.
For example, an aspect-oriented implementation of a compo-
nent model like AOKell [35] allows to design separately the
functional and the non-functional concerns related to a com-
ponent system. More precisely, non-functional concerns are
first expressed as components that can be freely composed
as needed, and second, they present themselves as aspects,
so that they are transparently integrated within the content
(functional level) of a component by the AOKell mechanics.
Moreover, the system is open, that is non-functional con-
cerns like complex autonomic behaviours can be added as
needed (just create and compose new non-functional com-
ponents): this allows a better re-usability because different

aspects can be designed corresponding to the various facets
of the different deployment environments and chosen ap-
propriately when building a new version of the component
system. Nevertheless, AOKell implements a non-distributed
version of the Fractal component model.

3. STRUCTURING NON-FUNCTIONAL CON-

CERNS WITH COMPONENTS
An application can be split between some functional code

implementing the business features, and some non-functional
code for managing the application, and supporting its exe-
cution. We focus in this section on the Fractal component
model and on its Grid extension : the GCM (Grid Compo-
nent Model) [14]. They both feature separation of concerns
and hierarchical composition of components. GCM supports
better structured design of components management.

In Fractal and GCM component models, the non-functional
(NF) part of the components is called the membrane. It
is composed of controllers that implement non-functional
concerns. During their execution, components running in
dynamically changing execution environments often have to
adapt to these environments. The membrane of Fractal/GCM
components is the adequate location to host adaptation strate-
gies, which in theory can be as complex as needed, i.e. com-
pletely autonomic. When the behavior of a strategy is not
optimal, it has to be updated or changed dynamically. To
do this, the controllers architecture has to support recon-
figurations at runtime, which is the case of a component
system. Examples of use-cases include changing communi-
cation protocols, updating security policies or taking into
account new runtime environments in case of mobile com-
ponents. Adaptability and autonomicity imply that evolu-
tions of the execution environments have to be detected and
acted upon. They may of course imply interactions with the
environment but also with other components for achieving
management strategies.

The Grid Component Model, as some other research works
around a component-oriented framework for the program-
ming of autonomic and distributed applications [3, 32, 34],
features support for a clean separation of concerns between
functional and non-functional ones. The peculiarity of Frac-
tal/GCM is that both functional and non-functional parts
can be designed as component systems, possibly distributed.
Consequently, adaptation and complex autonomic behaviours
can be designed and dynamically reconfigured in a component-
oriented way.

In this section we focus on the structure of the membrane
in the Fractal and GCM component models cited above.
This structure, and in particular the one adopted in GCM, is
a good starting point for plugging adaptation and autonomic
strategies inside the membrane. This structure is also well
suited for dynamic reconfigurations.

3.1 Fractal Component Model
Fractal is a hierarchical component model: each compo-

nent is either composite (i.e., composed of other compo-
nents), or primitive (i.e., a black box encapsulating a ba-
sic functional block). Figure 1 shows a standard Fractal
composite component composed of two other components
(which are inside the functional content). Server interfaces
are represented on the left of a component box, client ones
are represented on the right; arrows are bindings between

interfaces, that will carry messages. In standard Fractal,
non-functional aspects are exposed as controller interfaces
(on the top of the component box). Fractal controllers deal
with non-functional aspects of the component, they are in-
cluded inside the membrane. The way the controllers are
implemented is left unspecified.

Functional Content

Membrane

Controller objects

Figure 1: A standard Fractal component

3.1.1 Non-Functional support in Fractal

Fractal already features some separation of concerns: in
the base model, the functional part of the application can
be designed as a component system or a primitive functional
block. The basic component management (configuration,
life-cycle) is specified as a set of controllers that each com-
ponent can include inside its membrane. Such controllers are
generally provided by the component platform, but as the
Fractal component model is extensible, new controllers can
be added to implement additional management features. All
the controllers are gathered in the component membrane.

In the basic Fractal component model, there is a set of well
known controllers: BindingController for changing the bind-
ings (connections with other components) of a component,
ContentController for managing the functional content of a
component (for example adding or removing a component),
LifeCycleController for managing the life cycle of the com-
ponent (for example starting or stopping a component) and
AttributeController for changing the attributes of a compo-
nent.

3.1.2 Componentizing Membranes in Fractal

Unfortunately, in the Fractal component model composi-
tion of non-functional aspects is left unspecified. Each con-
troller corresponds to a NF interface that can be discovered
(introspected) but not bound to. NF invocations are only
direct invocations on a NF interface. Consequently, in the
first Fractal implementations, controllers were implemented
as a set of objects. This approach had several limitations
for management strategies. First, dynamic reconfiguration
of object controllers is very difficult because the architecture
is designed to be static. And as client NF interfaces were
not supported, composition of NF aspects was impossible.
Several solutions have been proposed to overcome such lim-
itations [30, 36]. Among them, the most conservative w.r.t.
Fractal is probably AOKell, allowing to design component
membranes as composite components. The main advantage
of this approach is its minor increment to the Fractal com-
ponent model. Membranes are implemented as composite
components and are injected inside functional components

(that we call host components). Connecting membranes
means getting a reference on those composite components
and binding them together. The client non functional in-
terfaces of a host component belong to an inner component
(the composite representing the membrane). Though effec-
tive, this solution breaks the encapsulation of components
which may threaten their re-usability and management as
highlighted in [26].

3.2 GCM Component Model
As the GCM is a component model for Grid computing

based on Fractal, it inherits hierarchy, introspection and the
basic controllers from Fractal, and extends it using asyn-
chronous method calls for dealing with possibly high latency.
As this model is targeting the Grid, GCM components are
distributed by essence. They are units of composition and
deployment. A GCM component system can be composed of
a set of components deployed on several machines. A com-
posite GCM component is a distributed logical entity that
can be composed of several components spread over different
hosts.

The GCM also defines collective interfaces which ease de-
sign and implementation of multiple parallel components,
that can be targeted in a collective manner: a client in-
terface may be a multicast interface, meaning that a call
towards this interface can be distributed to many server in-
terfaces depending on the distribution used. Similarly, a
server interface may be a gathercast interface, meaning that
multiple client calls will be synchronised and a single call
will be performed towards the service component.

Coming back to NF concerns, in the GCM we want to
provide tools to plug and dynamically reconfigure autonomic
strategies inside the membrane. This means that these tools
have to manage (re)configuration of controllers inside the
membrane and the interactions of the membrane with mem-
branes of other components. For this, we provide a model
and an implementation, using a standard component-oriented
approach for both the application (functional) level and the
control (NF) level. Having a component-oriented approach
for the non-functional aspects also allows them to benefit
from the structure, hierarchy and encapsulation provided
by a component-oriented approach. This has already been
adopted or advocated in [35, 30, 21].

The solution that is suggested by the GCM is to allow,
like in [35, 30], to design the membrane as a set of compo-
nents that can be reconfigured. The GCM description[14]
suggests the possibility to implement the membrane as a set
of components. [7] goes more into details and suggests a
structure for the composition of the membrane and an API
for manipulating it. In GCM, non-functional components
that are included inside the membrane can be distributed,
just like the functional ones. Note that it does not seem
reasonable to implement, like in AOKell, the membrane as
a composite component because of the distributed nature of
components: a composite GCM component would in gen-
eral involve a much higher overhead than a Fractal one, and
crossing it systematically in order to access a non-functional
feature might be needlessly costly.

In order to be able to compose non-functional aspects,
the GCM requires the NF interfaces to share the same spec-
ification as the functional ones: role, cardinality, and con-
tingency. For example, comparatively to Fractal, the GCM
adds client non-functional interfaces to allow for the compo-

Functional Content

Membrane

Controller

Component

mec

mes

nec

nms
Controller object nes

hes hec

hishic

mic

mis

Controller

Component

fes
fec

fms

fmc

b1

b2

b3
b4

b5
b6

b7

b8

b9

b10

b11

ems

ees eec

Labels of Interface roles:

- m/h: NF/functional interface of the host
- f/n: interface of inner
 functional/NF component
- e: interface of external component
- es/ec: external server/client
- is/ic: internal server/client
- ms/mc: external NF server/client

Figure 2: New structure for the membrane of Fractal/GCM components

sition of non-functional aspects and reconfigurations at the
non-functional level.

The following of this section provides details about the
structure a membrane can adopt. Figure 2 represents the
structure of a membrane and gives a summary of the differ-
ent kinds of interface roles and bindings a GCM component
can provide. Here we give a more detailed explanation about
possible roles of NF interfaces exposed by the membrane,
making references to Figure 2:

• mes: external server interfaces as exist in the Fractal
specification; they allow external entities to access con-
trollers inside the membrane;

• mec: external client interfaces; they give to inner NF
components access to external NF interfaces;

• mis: internal server interfaces; they give inner functional
components access to interfaces of inner NF components;

• mic: internal client interfaces; they give to inner NF
components access to interfaces of inner functional com-
ponents.

All these interfaces give the membrane a better structure
and enforce decoupling between the membrane and its ex-
ternals. For example, to connect nec with fms, our model
adds an additional stage: we have first to perform binding
b3, and then binding b9. This avoids nec to be strongly cou-
pled with mic: to connect nec to another mic, only binding
b9 has to be changed.

In Figure 2, some of the links are represented with dashed
arrows. Those links are not real bindings but “alias” bind-
ings (e.g. b3); the source interface is the alias and it is
“merged” with the destination interface. These bindings are
similar to the export/import bindings existing in Fractal
(b6, b10) except that no interception of the communica-
tions on these bindings is allowed. To conclude, the GCM
provides possibilities consisting in implementing as compo-
nents (part of) the membrane and thus benefiting from the
component structure, which allow membrane to be designed

in a component-oriented way, and to be reconfigurable. The
model is also flexible, as all server NF interfaces can be im-
plemented by both objects or components controllers.

4. PLUGGING AUTONOMIC BEHAVIOURS

INSIDE COMPONENTS
We focus now on autonomic behaviours, as a particular

non-functional concern. We showed in the preceding sec-
tion that in the GCM this aspect can be programmed as a
component system which is itself evolutive.

Existing Autonomic Components.
The GCM can encompass two kinds of autonomic be-

haviours: the one consisting in (autonomously) adapting a
component to its changing environment; and the one consist-
ing in (autonomously) adapting the components to evolving
user-requirements for the applications (generally concern-
ing the quality of services). The second approach has been
widely addressed for behavioural skeletons [2, 3]; this ap-
proach is able to let component autonomously adapt to a
required quality of services, by adapting the quantity and
quality of resources allocated for a given task. The au-
thors actually design the autonomous component as func-
tional ones because non-functional components were not yet
available in the preliminary version of the GCM but their ex-
periences show that this approach will strongly benefit from
a componentization of the membrane. Similar works can be
found also in [6].

Autonomic Components = GCM Components + Auto-
nomic Managers Inside Membranes.

Because of the existing experiments and its capabilities,
we consider thus that the component model presented in
Section 3.2 is particularly adapted to the programming of
non-functional concerns, especially in a distributed environ-
ment.

Our proposal for autonomic control of components is to

encapsulate a set of manager components inside the mem-
brane of each component. These components can be easily
changed dynamically depending on the environment or the
evolution of the component system. Interface and typing of
components allow those autonomic managers to be bound
together in a very structured way, which enables the distri-
bution of the decision process: each autonomic manager can
be responsible of the management of its component, and
still communicate with other managers or with the exter-
nal world if necessary. Moreover, hierarchical structure of
components help managing autonomously a set of compo-
nents and scales better: a decision process can be taken by
delegating sub-decisions to sub-components of a composite
one.

Our proposal just consists in a structure for plugging auto-
nomic behaviours: it is not our purpose here to define new al-
gorithm and decision processes for autonomicity, but rather
to provide a framework in which autonomic behaviours can
easily be programmed and integrated.

The advantage of this structure is that it can easily in-
tegrate most of the programming methodologies for auto-
nomicity presented in section 2. For example a particular
autonomic manager can in fact be a rule interpreter, which
is sent rules and is able to trigger actions (e.g., reconfigu-
ration of the component system) autonomously according
to the rules. Autonomic behaviours (defined by the auto-
nomic manager components) can be weaved inside business
code using aspect methodology, like in AOKell. But most
importantly, this design allows a better dynamic evolution
and code re-use for autonomicity, making our platform a
particularly adapted environment for the experimentation
of autonomic strategies. Indeed, autonomic GCM compo-
nents can be distributed on the Grid and consequently ex-
perimented with on a large scale basis, for example using the
GCM/ProActive component framework (an implementation
of the GCM model over the ProActive[12] Grid middleware).

We showed how the GCM component framework allows
to implement autonomous components with self-adaptation
capabilities, and self improvement of their ability to better
fulfill the required service and quality. But, in a distributed
and possibly low coupled environment, this task becomes
more complex because the lack of reliability of the links
between components entails a possible degradation of the
quality of service achieved by the system; and more impor-
tantly, a possible loss of some of the functionality or services
the system relies on. Next section shows how the GCM can
be adapted in a lighter notion of component composition
to reason about autonomic component systems in a loosely
coupled environment.

5. AUTONOMIC DISTRIBUTED SERVICES
We presented a framework supporting highly autonomic

strategies for both composition of services and adaptation to
evolving requirements. But autonomic computation goes be-
yond the autonomic composition and improvement through
evolution of services. Indeed, the next step is to consider
a network with low connectivity where entities involved in
the computation can be disconnected at any time. This de-
manding context underlines the limitations of the classical
component design of applications: components composed
together are assumed to correspond to runtime entities that
are to be involved, and so present, during a computation.
Self-repairing component frameworks exist, allowing when

a component disappears to create a new one (with possi-
bly the old status of the previous one) at a new place in
the network. In usual networks featuring a lot of resources,
a relatively low failure rate, and enough structure to allow
some form of centralized decision to be taken, this solution
is probably the safest and the most efficient.

Consequences of Low Connectivity.
However, when one switches to distributed computing en-

vironments featuring low connectivity as those relying on a
mobile ad-hoc network, this is not sufficient. Indeed, first
disappearing nodes (and consequently, disappearing services
that were running on those nodes) can appear afterwards.
Moreover, the network is not structured enough to allow
the creation of a unique new entity replacing the missing
one easily. In this section, we release the connectivity con-
straint, and replace it by additional new constraints fitting
more to a self-organized distributed environment:

• Any binding can disappear at any time, sometimes
reappearing later on.

• When a service is needed, this one can be discovered
at runtime according to a description of the desired
service, by the medium (which can be the sender of
a request, or some other entities involved in the net-
work),

• Some services may appear, for example fitting a given
description (as a side note, notice that it is not the
purpose of this paper to propose solutions to decide
whether a service should be created or looked for).

Better Decoupling Communications.
A first aspect to consider in applications resulting from

the composition of distributed services or components is the
way communications are performed. A lot of work has been
performed concerning communication protocols and middle-
ware in the context of ad-hoc networks but as highlighted
by [15, 18], only few efforts have been devoted to program-
ming models for applications that must take for granted that
they rely on such a low-coupled and transient communica-
tion mode. In [15, 18], the authors suggest a communication
model, called AmbientTalk, based on an actor-like language
but with several queues for both sending and receiving mes-
sages whenever possible, i.e. whenever connected. Their
communication model is quite similar to the ASP calculus
presented in [13] that we are currently revisiting by remov-
ing the assumption of establishing a “rendez-vous”, i.e. a
handshake, in the transmission of each service request or
reply. This reference to ASP is interesting because ASP de-
fines the basic communication mode that the GCM relies
upon for transmitting service messages among bound com-
ponents. However, their resulting programming model is
slightly different because there is no blocking synchroniza-
tion in AmbientTalk, whereas ASP relies on a more cou-
pled programming principle allowing to write programs more
deadlocks prone but in a more intuitive manner (similar to
a classical sequential program instead of relying on events
and handlers). To sum up, it should be easy to turn GCM
into a programming model resilient to disconnected commu-
nication modes, taking profit of ideas introduced in Ambi-
entTalk like delaying service request or reply transmissions.

Also, the service publication and discovery machinery that
is intrinsic in AmbiantTalk because it is required to dynam-
ically get references to service instances could very easily be
represented as a non-functional – and so evolvable – concern
accessible through the membrane of GCM components.

Composition Plan: A composition paradigm releasing
the strong connectivity constraint of components.

No matter which programming model is chosen, we ar-
gue that, at the composition level some features have to be
provided to better compose the basic blocks, resulting in a
low-coupled application. Indeed, programming low-coupled
applications easily results in a lot of code for dealing with
the coupling process itself because this process is dynamic
due to the possible volatility of those basic blocks, making
difficult and error-prone the basic functional programming.
Our objective is to be able to propose a composition method
for such applications following a component-like approach :
taking advantage of its qualities concerning structure of the
program and high re-usability of the components; but autho-
rizing low-coupling in the sense that some of the components
may disappear during the process, and (if it is compatible
with the purpose of the application) some other components
fulfilling the same service may be found to replace them dy-
namically.

From the observation that component programming is
very convenient for composing applications but entails too
much coupled interactions, we nevertheless choose to rely
on components but in the following way: components are
composed in an abstract way and so provide a structure for
the application that we can consider as an execution plan (a
specification), which is structured because it is hierarchical;
but we require a strong separation between application spec-
ification and implementation, allowing at runtime entities
fulfilling the component description to be discovered, and
to disappear. In other words, the application is designed
by a component composition, but at runtime the services
appear and disappear and must be bound in a much more
dynamic way compared to what component models usually
support. Fortunately, in our case, GCM natively supports
dynamic reconfiguration, and these reconfigurations can be
triggered dynamically by dedicated autonomous controllers.
Finally, the application does not have to deal explicitly with
disappearing services.

As services appear and disappear, a definition of a compo-
nent involved in a composition may be too precise, i.e. too
constraining. Consequently, the framework must be able
to discover services based on a partial description, or even
replace a service whose description does not correspond to
any available service by a different service resulting from a
dynamic (possibly hierarchical) composition of some more
elementary but currently available services. Because it sup-
ports reconfigurable and adaptive components, but also for
its structured programming model, Fractal/GCM provides
an adequate environment for autonomic services.

The stability of composition is completely lost in such a
world, but this is partially compensated by the stability of
the execution plan: the execution plan never disappears.

To summarize, the composition plan is a stable plan, and
can be considered as the specification of a service. The com-
position plan is different from the instance of the composi-
tion which can evolve depending on the available services or
entities, i.e. this instance can more or less fit the specifica-

tion. In case the evolved instance appears to better fulfill
the initial service specification as indicated by the plan, we
may envision to backup the resulting new architecture, i.e.
to save this architecture and use it as a starting plan in the
future.

To conclude, this new notion of component composition is
particularly adapted to loosely coupled systems, because it
does not rely on stable bindings between composed entities.
For example it would be particularly well fitted to the design
of a component model for Ambient-oriented programming.

How to Get a Composition Plan.
A major question remaining is how this composition plan

can be obtained; several approaches can be envisioned to cre-
ate this plan. They range from an ADL-like [29], hand-made
composition which is provided by an application composer;
to semantically driven automatic composition of services in
order to achieve a user-defined goal given in a more or less
natural language [19].

A realistic compromise relies on an initial state provided
by a programmer, and describing a set of services and com-
position. Then the system evolves by itself, possibly relying
on some bio-inspired evolution strategy, and on the user’s
feedback and requirements; this step would strongly benefit
from a semantic description of the services allowing to gear
the evolution toward the desired goals [23, 22].

6. CONCLUSION AND PERSPECTIVES

Towards Bio-inspired Service Composition Models.
We believe that the programming model and the frame-

work we presented in this paper is particularly adapted to
experiment with bio-inspired or nature-inspired models for
autonomicity and self-organisation, especially autonomic com-
position [11], for the following reasons:

• Autonomic GCM components will be very convenient
for decentralized decision systems; indeed, indepen-
dent components scattered on a Grid will help emu-
lating independent individuals with their own activity
and governance rules scattered on any kind of loosely
coupled network.

• The composition plan for specifying component sys-
tems allows to program and deploy loosely coupled
components, where few hypothesis on stability and on
communication are made.

• GCM relies on ProActive, an implementation of a still
very intuitive and powerful programming model, based
on object-based asynchronous activities, particularly
adapted to autonomous entities (indeed, activities com-
municating by asynchronous requests and replies fit
much better to autonomous entities than multi-threaded
objects communicating via synchronous remote method
invocations).

• Thanks to components inside the membrane that are
able to encapsulate bio-inspired evolution mechanisms,
the autonomicity algorithm, and thus the biology-inspired
strategy itself can be modified, even at runtime.

• Because of decentralization and of pluggable autonomic
managers, one can experiment with the coexistence

and interaction of two species with two different evo-
lution mechanism.

On the long term, this framework will be very convenient
to experiment with a set of predefined bio-inspired compo-
nents, and see how they fit with newly defined business com-
ponents. This would allow emulation and experimentation
on a wide range of bio-inspired communication and compu-
tation mechanism over many different applications.

Acknowledgement.
This work has received the financial support of the Conseil

régional Provence-Alpes-Côte d’Azur, and of the IST FET
funded IP BIONETS project.

7. REFERENCES
[1] M. Aldinucci, C. Bertolli, S. Campa, M. Coppola,

M. Vanneschi, and C. Zoccolo. Autonomic Grid
Components: the GCM Proposal and Self-optimising
ASSIST Components. In Joint Workshop on HPC
Grid programming Environments and Components and
Component and Framework Technology in
High-Performance and Scientific Computing at
HPDC’15, June 2006.

[2] M. Aldinucci, S. Campa, M. Danelutto, P. Dazzi,
D. Laforenza, N. Tonellotto, and P. Kilpatrick.
Behavioural Skeletons for Component Autonomic
Management on Grids. Technical Report TR-80,
CoreGRID, 2007. Proceedings of the CoreGRID
Workshop, Heraklion, June 12–13.

[3] M. Aldinucci, M. Danelutto, and M. Vanneschi.
Autonomic QoS in ASSIST Grid-Aware Components.
In PDP ’06: Proceedings of the 14th Euromicro
International Conference on Parallel, Distributed, and
Network-Based Processing (PDP’06), pages 221–230,
Washington, DC, USA, 2006. IEEE Computer Society.

[4] M. Aldinucci, A. Petrocelli, E. Pistoletti, M. Torquati,
M. Vanneschi, L. Veraldi, and C. Zoccolo. Dynamic
reconfiguration of grid-aware applications in ASSIST.
In 11th Intl Euro-Par 2005: Parallel and Distributed
Computing, Lisboa, Portugal, Aug. 2005.

[5] H. Algestam, M. Offesson, and L. Lundberg. Using
Components to Increase Maintainability in a Large
Telecommunication System. In Ninth Asia-Pacific
Software Engineering Conference (APSEC’02).

[6] F. André, H. L. Bouziane, J. Buisson, J.-L. Pazat, and
C. Pérez. Towards dynamic adaptability support for
the master-worker paradigm in component based
applications. In CoreGRID Symposium in conjunction
with Euro-Par 2007 conference, Rennes, France, 27-28
August 2007. to appear.

[7] F. Baude, D. Caromel, L. Henrio, and P. Naoumenko.
A flexible model and implementation of component
controllers. In CoreGRID Workshop on Grid
Programming Model, Grid and P2P Systems
Architecture, Grid Systems, Tools and Environments,
2007.

[8] F. Baude, D. Caromel, and M. Morel. From
distributed objects to hierarchical grid components. In
International Symposium on Distributed Objects and
Applications (DOA), number 2888 in LNCS, pages
1226–1242, Catania, Sicily, Italy, 3-7 November, 2003.
Springer Verlag.

[9] D. Bernholdt, B. Allan, R. Armstrong, F. Bertrand,
and K. Chiu. A component architecture for high
performance scientific computing. ACTS Collection
special issue, Intl. J. High-Perf. Computing
Applications, 20, 2006.

[10] S. Bouchenak, F. Boyer, E. Cecchet, S. Jean,
A. Schmitt, and J.-B. Stefani. A component-based
approach to distributed system management - a use
case with self-manageable J2EE clusters. In 11th ACM
SIGOPS European Workshop, September 2004.

[11] G. Briscoe and P. D. Wilde. Digital ecosystems:
Evolving service-orientated architectures. In First
IEEE International Conference on Bio Inspired
mOdels of NETwork, Information and Computing
Systems (BIONETICS), 2006.

[12] D. Caromel, C. Delbé, A. di Costanzo, and M. Leyton.
ProActive: an integrated platform for programming
and running applications on grids and P2P systems.
Computational Methods in Science and Technology,
12(1):69–77, 2006.

[13] D. Caromel and L. Henrio. A Theory of Distributed
Objects. Springer-Verlag New York, Inc., 2005.

[14] CoreGRID Programming Model Virtual Institute.
Basic features of the grid component model (assessed),
2006. Deliverable D.PM.04, CoreGRID, Programming
Model Institute.

[15] T. V. Cutsem, J. Dedecker, and W. D. Meuter.
Object-oriented coordination in mobile ad hoc
networks. In A. L. Murphy and J. Vitek, editors,
COORDINATION, volume 4467 of LNCS, pages
231–248. Springer, 2007.

[16] P. David and T. Ledoux. Towards a framework for
self-adaptive component-based applications. In
Proceedings of Distributed Applications and
Interoperable Systems 2003, the 4th IFIP WG6.1
International Conference, DAIS 2003, volume 2893 of
LNCS, pages 1–14. Springer-Verlag, 2003.

[17] P. David and T. Ledoux. An aspect-oriented approach
for developing self-adaptive fractal components. In
Proceedings of 5th International Symposium, SC 2006,
sattelite event of ETAPS, volume 4089 of LNCS, pages
82–97. Springer-Verlag, 2006.

[18] J. Dedecker, T. V. Cutsem, S. Mostinckx, T. D’Hondt,
and W. D. Meuter. Ambient-oriented programming in
ambienttalk. In D. Thomas, editor, ECOOP, volume
4067 of LNCS, pages 230–254. Springer, 2006.

[19] K. Fujii and T. Suda. Semantics-based dynamic
service composition. IEEE Journal on Selected Areas
in Communications (JSAC), special issue on
Autonomic Communication Systems, 23(12), 2005.

[20] P. Greenwood and L. Blair. Using Dynamic
Aspect-Oriented Programming to Implement an
Autonomic System. In Proceedings of Dynamic
Aspects Workshop (DAW) (held with AOSD 2004).
Published as Research Institute for Advanced
Computer Science (RIACS) Technical Report 04.01.,
Lancaster, UK, March 2004.

[21] C. Herault, S. Nemchenko, and S. Lecomte. A
Component-Based Transactional Service, Including
Advanced Transactional Models. In Advanced
Distributed Systems: 5th International School and
Symposium, ISSADS 2005, Revised Selected Papers,

number 3563 in LNCS, 2005.

[22] C. Jacob, D. Linner, H. Pfeffer, and I. Radusc.
Bio-inspired processing and propagation of semantics
in loosely coupled computing environments.
International Journal of Semantic Computing (IJSC),
1(1):121–144, 2007.

[23] J. Keeney, K. Carey, D. Lewis, D. O. Sullivan, and
V. Wade. Ontology-based semantics for composable
autonomic elements. In Workshop on AI in
Autonomic Communications at 19th International
Joint Conference on Artificial Intelligence, 2005.

[24] J. O. Kephart and D. M. Chess. The vision of
autonomic computing. IEEE Computer, 36(1), 2003.

[25] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In M. Akşit and
S. Matsuoka, editors, Proceedings European
Conference on Object-Oriented Programming, volume
1241 of LNCS, pages 220–242. Springer-Verlag, 1997.

[26] M. Léger, T. Coupaye, and T. Ledoux. Contrôle
dynamique de l’intégrité des communications dans les
architectures à composants. In S. V. R. Rousseau,
C. Urtado, editor, Langages et Modèles à Objets, pages
21–36. Hermès-Lavoisier, 2006.

[27] H. Liu and M. Parashar. DIOS++: A Framework for
Rule-Based Autonomic Management of Distributed
Scientific Applications. In 9th Int. Euro-Par
Conference (EuroPar 2003), LNCS.

[28] P. Marrow and A. Manzalini. The CASCADAS
Project: a Vision of Autonomic Self-organising
Component-ware for ICT Services. In International
Conference on Self-Organization and Autonomous
Systems in Computing and Communications
(SOAS 2006).

[29] N. Medvidonic and R. Taylor. A classification and
comparison framework for Software Architecture
Description Languages. IEEE Trans .on Software
Engineering, 26(1), 2000.

[30] V. Mencl and T. Bures. Microcomponent-Based
Component Controllers: A Foundation for Component
Aspects. In Proceedings of 12th Asia-Pacific Software
Engineering Conference (APSEC 2005), pages
729–737. IEEE Computer Society Press.

[31] A. Mukhija and M. Glinz. Runtime adaptation of
applications through dynamic recomposition of
components. In 18th International Conference on
Architecture of Computing Systems (ARCS 2005),
pages 124–138.

[32] A. Mukhija and M. Glinz. The CASA Approach to
Autonomic Applications. In Proceedings of the 5th
IEEE Workshop on Applications and Services in
Wireless Networks (ASWN 2005), pages 173–182.

[33] P. Oreizy, M. Gorlick, R. Taylor, D. Heimbigner,
G. Johnson, N. Medvidovic, A. Quilici, D. Rosenblum,
and A. Wolf. An architecture-based approach to
self-adaptive software. IEEE Intelligent Systems,
14(3):54–62, may/jun 1999.

[34] M. Parashar, H. Liu, Z. Li, V. Matossian, C. Schmidt,
G. Zhang, and S. Hariri. Automate: Enabling
autonomic grid applications. Cluster Computing: The
Journal of Networks, Software Tools, and Applications,
Special Issue on Autonomic Computing, 9(2), 2006.

[35] L. Seinturier, N. Pessemier, and T. Coupaye. AOKell:
an Aspect-Oriented Implementation of the Fractal
Specifications, 2005. http://www.lifl.fr/~seinturi/
aokell/javadoc/overview.html.

[36] L. Seinturier, N. Pessemier, L. Duchien, and
T. Coupaye. A Component Model Engineered with
Components and Aspects. In Proceedings of the 9th
International SIGSOFT Symposium on
Component-Based Software Engineering, 2006.

