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Abstract. This paper gives the sufficient and necessary conditions which guarantee the existence of a diffeomorphism in
order to transform a nonlinear system without inputs into a canonical normal form depending on its output. Moreover we
extend our results to a class of systems with inputs.

1. Introduction. Since Luenberger’s work [9], the design of an observer for observable linear systems
with linear outputs has been a well-known concept. In order to use the same observer for nonlinear systems,
the so-called observability linearization problem for nonlinear systems was born. The sufficient and necessary
conditions which guarantee the existence of a diffeomorphism and of an output injection to transform a single
output nonlinear system without inputs into a linear one with an output injection were firstly addressed
in [12]. Then, for a multi-output nonlinear system without inputs, the linearization problem was partially
solved in [13]. The complete solution to the linearization problem was given in [16]. Another approach was
introduced for the analytical systems in [11] by assuming that the spectrum of the linear part must lie in
the Poincaré domain and it was generalized in [14] by assuming that the spectrum of the linear part must
lie in the Siegel domain. These assumptions are not in generally fulfilled. Other approaches using quadratic
normal forms were given in [1] and [3]. All these approaches enable us to design an observer for a larger
class of nonlinear systems.

Meanwhile, other researchers worked on designing nonlinear observers directly, such as high-gain ob-
servers [6], [4], [7]. Nevertheless, even if the conditions which guarantee the linearization method to design
an observer were not generically fulfilled, this method still remained important for the nonlinear observer
design first because it works well for non-analytic systems, and second because it could be used in the
adaptive theory and also be useful for the observation of systems with unknown inputs. All these reasons
explain why researchers carry on investigating this matter.

In [10], the author gave the sufficient and necessary geometrical conditions to transform a nonlinear
system into a so-called output-dependent time scaling linear canonical form. While [5] gave the dual
geometrical conditions of [10].

In this paper, as an extension of [17], we will propose a method to deduce the geometrical conditions
which are sufficient and necessary to guarantee the existence of a local diffeomorphism z = φ (x) which
transforms the locally observable dynamical system

{
ẋ = f(x),
y = h(x),

(1.1)

where x ∈ U ⊂ IR n, f : U ⊂ IR n → IR n and h : U ⊂ IR n → IR are sufficiently smooth, into the following
form

{
ż = A(y)z + β(y),
y = zn = Cz,

(1.2)

where



A(y) =




0 · · · 0 0 0
α1(y) · · · 0 0 0

...
. . .

. . . · · ·
...

0 · · · αn−2(y) 0 0
0 · · · 0 αn−1(y) 0




, β(y) =




β1(y)
β2(y)

...
βn−1(y)
βn(y)




,

and αi(y) 6= 0 for y ∈ ]−a, a[ and a > 0. This kind of linearization is called Single Output Dependent
Observability normal form (SODO normal form).

For dynamical systems in the form (1.2), we may for example apply the following high gain observer
[2]:

{
˙̂z = A(y)ẑ + β(y) − Γ−1 (y) R−1

ρ CT (Cẑ − y),
0 = −ρRρ − ĀT Rρ − RρĀ + CT C.

(1.3)

where Γ (y) is the n × n diagonal matrix Γ (y) = diag

[
n−1∏
i=1

αi(y),
n−1∏
i=2

αi(y), · · · , αn−1(y), 1

]
and Ā is the

n × n matrix defined as follows

Ā =




0 · · · 0 0
1 · · · 0 0
...

. . .
...

...
0 · · · 1 0


 .

Indeed, here the output of system (1.2) is considered as an input of (1.3). Setting e = z − ẑ, the
observation error can be obtained as follows:

ė =
(
A (y) − Γ−1 (y) R−1

ρ CT C
)
e,

And the convergence of such observer is proved in [2], thus in section 4 we simply highlight the design of
such observer for systems in the form (1.2).

Moreover, we generalize our result to a class of systems with inputs. Then, some useful corollaries are
discussed in order to deal with affine systems and the so-called left invertibility problem.

This paper is organized as follows. The next section addresses notations and technical results which
are key to prove our main result. In section 3, we present our method to deduce the geometrical conditions
for a nonlinear system without inputs in order to transform it into a SODO normal form. Section 4 is
devoted to the generalization of our results to a class of systems with inputs. In the same section, some
practical particular cases are studied, including the state affine systems and the left invertibility problem.
Throughout this paper, examples are discussed in order to highlight our theoretical results.

2. Notations and technical results. Throughout this article, Li−1
f h for 1 ≤ i ≤ n denotes the

(i − 1)th Lie derivative of output h in the direction of f, and set θi = dLi−1
f h as its differential. Assume

that system (1.1) is locally observable, thus θ =
(

θ1, · · · , θn

)T
is a basis of the cotangent bundle T ∗U

of U . Then, we also consider the vector field τ1 defined in [12] as follows

{
θi (τ1) = 0, for 1 ≤ i ≤ n − 1,
θn (τ1) = 1,

(2.1)

and by induction we define

τk = (−1)
k−1

adk−1
f (τ1) , for 2 ≤ k ≤ n. (2.2)

It is clear that {τ1, · · · , τn} is a basis of the tangent bundle TU of U .



Let us recall a famous result from [12].
Theorem 2.1. The following conditions are equivalent
i) There exist a diffeomorphism and an output injection which transform system (1.1) into normal form

(1.2) with αk(y) = 1 for 1 ≤ k ≤ n − 1.
ii) [τi, τj ] = 0 for 1 ≤ i, j ≤ n.

If for some 1 ≤ k ≤ n − 1 the functions αk(y) in the form (1.2) are not constant, then ii) of Theorem
2.1 is not fulfilled. Consequently, the rest of this section is devoted to use [τi, τn] in order to determine all
the functions αi(y) for 1 ≤ i ≤ n − 1.

Lemma 2.2. For a system in the form (1.2) we have for 1 ≤ k ≤ n − 1,

τk = 1
πk

∂
∂zk

+
(
Ak

k−1 (zn) zn−1 + ηk
k−1 (zn)

)
∂

∂zk−1

+
k−2∑
i=1

(
Ak

i (zn) zn−k+i +
n−1∑

j=n−k+i+1

n−1∑
l=j

T k
j,l (zn) zjzl

)
∂

∂zi

+
k−2∑
i=1

(
n∑

j=n−k+i+1

ηk
i (zn) zj + O

[3]
zn (zn−k+i+1, · · · , zn−1)

)
∂

∂zi
,

(2.3)

where πn = 1 and πk−1 = πkαk−1 for 2 ≤ k ≤ n, ηk
i (zn) and T k

j,l (zn) are some smooth functions of zn,

O
[3]
zn (zn−k+2, · · · , zn−1) represents the residue higher than order 2 with coefficient which is function of zn

and

Ak
i (zn) = (−1)

k−i+1


Sk

k−i,1

π′
i

π2
i

+
k−1∑

m=k−i+1

Sk
k−i,m−k+i+1

π′
k−m

π2
k−m




m∏

j=k−i+1

αk−j





 πn−k+i, (2.4)

where Sk
k−i,1 and Sk

k−i,m−k+i+1 are defined as follows

Sk
j,1 = 1, Sk

j,l = Sk−1
j−1,l + Sk−1

j,l−1, for 2 ≤ k ≤ n, 1 ≤ j ≤ k − 1 and 1 ≤ l ≤ k − j. (2.5)

and Sk
0,l = Sk

i,0 = 0.

Proof. For a system in the (1.2) form, equation (2.1) gives τ1 = 1
π1

∂
∂z1

, then, we use equation (2.2) to

obtain τ2 = 1
π2

∂
∂z2

+
(

π′

1

π2
1

πn−1zn−1 +
π′

1

π2
1

βn

)
∂

∂z1
, and

τ3 =
1

π3

∂

∂z3
+

((
π′

1

π2
1

α1 +
π′

2

π2
2

)
πn−1zn−1 +

(
π′

1

π2
1

α1 +
π′

2

π2
2

)
βn

)
∂

∂z2

−

(
π′

1

π2
1

πn−2zn−2 +

(
π′

1

π2
1

πn−1

)′

πn−1z
2
n−1

)
∂

∂z1

−

(((
π′

1

π2
1

πn−1

)′

βn + πn−1β
′
n

)
zn−1 +

π′
1

π2
1

πn−1βn−1 + βnβ′
n

)
∂

∂z1
.

Then by an induction, for 3 < k ≤ n, we get

τk =
1

πk

∂

∂zk

+
(
Ak

k−1 (zn) zn−1 + ηk
k−1 (zn)

) ∂

∂zk−1

+
k−2∑

i=1


Ak

i (zn) zn−k+i +
n−1∑

j=n−k+i+1

n−1∑

l=j

T k
j,l (zn) zjzl


 ∂

∂zi

+

k−2∑

i=1




n∑

j=n−k+i+1

ηk
i (zn) zj + O[3]

zn
(zn−k+i+1, · · · , zn−1)


 ∂

∂zi

,



where

Ak
i (zn) = (−1)

k−i+1


Sk

k−i,1

π′
i

π2
i

+

k−1∑

m=k−i+1

Sk
k−i,m−k+i+1

π′
k−m

π2
k−m




m∏

j=k−i+1

αk−j





 πn−k+i,

with the coefficients Sk
i given by the rule (2.5).

In order to determine the αi(y) for 1 ≤ i ≤ n − 1, we impose that

∂

∂zi

h ◦ φ−1 =

{
0, for 1 ≤ i ≤ n − 1,
1, when i = n.

Now, we are ready to state a set of differential equations which enables us to compute functions αi for
1 ≤ i ≤ n − 1.

Proposition 2.3. If there exists a diffeomorphism which transforms system (1.1) into form (1.2) then

[τk, τn] = λk(y)τk + G[1]
n + R, for 1 ≤ i ≤ n − 1,

where

G[1]
n =

k−2∑

i=1

(
1

πk

T k
k,n−k+izn−k+i

)
∂

∂zi

+
1

πk

T k
k,kzk

∂

∂z2k−n

,

and

R =
k−2∑

i=1




n∑

j=n−k+i+1

η̄k
i (zn) + O[2]

zn
(zn−k+i+1, · · · , zn−1)


 ∂

∂zi

and

λk(y) = diag{δk
1 (y), · · · , δk

i (y), · · · , δk
k(y), 0, · · · , 0}, for 1 ≤ i ≤ k − 1, (2.6)

where δk
k = An

k +
π′

k

πk
and δk

i = An
i − An

n−k+i −
(Ak

i )
′

Ak
i

for 1 ≤ i ≤ k − 1, and Ak
i is given in (2.4).

Proof. According to equation (2.3), for 1 ≤ k ≤ n − 1 we have

[τk, τn] =

(
An

k +
π′

k

πk

)
1

πk

∂

∂zk

+

k−2∑

i=1

((
An

i − An
n−k+i −

(
Ak

i

)′

Ak
i

)
Ak

i zn−k+i +
1

πk

T k
k,n−k+izn−k+i

)
∂

∂zi

+
1

πk

T k
k,kzk

∂

∂z2k−n

+
k−2∑

i=1




n∑

j=n−k+i+1

η̄k
i (zn) + O[2]

zn
(zn−k+i+1, · · · , zn−1)


 ∂

∂zi

.

Set λk(y) = diag{δk
1 (y), · · · , δk

i (y), · · · , δk
k(y), 0, · · · , 0}, where δk

k = An
k +

π′

k

πk
and δk

i = An
i −An

n−k+i −
(Ak

i )
′

Ak
i

for 1 ≤ i ≤ k − 1, then

[τk, τn] = λk(y)τk + G[1]
n + R. (2.7)

Remark 1. In equation (2.7), λk(y) could be uniquely determined since G
[1]
n might be separated accord-

ing to the coefficients of second-order terms in τn.



Finally, the following result enables us to determine all the functions αi(y) for all 1 ≤ i ≤ n − 1.
Proposition 2.4. If there exists a diffeomorphism which transforms system (1.1) into form (1.2), then

αi = πi

πi+1
for 1 ≤ i ≤ n − 2, and αn−1 = πn−1, where





πi = ci exp
[∫ (

exp
∫ (

δi
i − δn−1

i − δi+1
i+1

)
dy − B̄n−1

i

)
dy

]
, for 1 ≤ i ≤ n − 2,

πn−1 = cn−1 exp

(∫ (
δn−1

n−1
−Ān

n−1

2

)
dy

)
,

(2.8)

with B̄k
1 = 0 and for 1 ≤ i, k ≤ n − 1 and 1 ≤ i ≤ n − 1

B̄k
i =

k−1∑

m=k−i+1

Sk
k−i,m−k+i+1

π′
k−m

πk−m

. (2.9)

Proof. Define

Bk
i =

π′
i

πi

+ B̄k
i . (2.10)

According to equation (2.4), for 1 ≤ i, k ≤ n − 1,

(
Ak

i

)′

Ak
i

=

(
Bk

i

)′

Bk
i

−
π′

i

πi

+
π′

n−k+i

πn−k+i

.

As δk
k = An

k +
π′

k

πk
, hence

δn−1
i = An

i − An
1+i −

(
Bn−1

i

)′

Bn−1
i

+
π′

i

πi

−
π′

1+i

π1+i

= δi
i − δ1+i

1+i −

(
π′

i

πi

+ B̄n−1
i

)′

/

(
π′

i

πi

+ B̄n−1
i

)
.

which yields

πi = ci exp

[∫ (
exp

∫ (
δi
i − δn−1

i − δ1+i
1+i

)
dy − B̄n−1

i

)
dy

]
, for 1 ≤ i ≤ n − 2,

where B̄n−1
i is defined in (2.9) and ci ∈ R, ci 6= 0.

As δn−1
n−1 = 2

π′

n−1

πn−1
+ Ān

n−1, where Ān
n−1 =

n−1∑
m=2

Sn
1,m

π′

n−m

πn−m
, then

πn−1 = cn−1 exp

(∫ (
δn−1
n−1 − Ān

n−1

2

)
dy

)
.

Remark 2. For system (1.2), if we set αi = s(y) for 1 ≤ i ≤ n − 1, then

δn−1
n−1 = An

n−1 +
π′

n−1

πn−1
= 2

π′
n−1

πn−1
+

n−1∑

i=2

π′
n−i

πn−i

.

By the definition of πi for 1 ≤ i ≤ n − 1, we have πk = sn−k for 1 ≤ k ≤ n − 1, therefore

δn−1
n−1 = 2

s′

s
+

n−1∑

i=2

i
s′

s
= ln

s′

s
,

where ln = n(n−1)
2 + 1. In such a way, we obtain the same result as the one stated in [10].



3. Main result. If there exists a diffeomorphism which transforms system (1.1) into form (1.2), then
equation (2.8) of Proposition 2.4 gives all αi for 1 ≤ i ≤ n − 1. Therefore, let us consider a new family of
vector fields defined as follows:

τ̃1 = π1τ1 and τ̃i+1 =
1

αi

[τ̃i, f ], for 1 ≤ i ≤ n − 1. (3.1)

Set

θ(τ̃1, · · · , τ̃n) =




0 0 · · · 0 1

0
... · · · πn−1 l̃2,n

... · · ·
. . . · · ·

...
... π2 · · · · · ·

...

π1 l̃n,2 · · · · · · l̃n,n




:= Λ̃,

where

l̃k,j = θk(τ̃j) for 2 ≤ k ≤ n and n − k + 2 ≤ j ≤ n.

Consider the following Rn-valued form ω

ω = Λ̃−1θ := (ω1, ω2, · · · , ωn)
T

, (3.2)

where, for 1 ≤ s ≤ n, we have

ωs =
n∑

m=1

rs,mθm. (3.3)

Then, the following algorithm gives all the components of ω.

Algorithm 1.

for 1 ≤ j ≤ n,
rn,j = · · · = rn−j+2,j = 0 and rn−j+1,j = 1.

for 2 ≤ k ≤ n − 1 and 1 ≤ j ≤ n,

rn−k,j = −
k∑

i=2

l̃k,n−k+i−(j−1)rn−k+i−(j−1),j ,

and then, equation (3.3) becomes: ωs =
n−s+1∑
m=1

rs,mθm.

Theorem 3.1. The following conditions are equivalent
1) There exists a diffeomorphism which transforms system (1.1) into a SODO normal form (1.2).
2) There exists a family of functions αi(y) for 1 ≤ i ≤ n − 1 such that the family of vector fields τ̃i for

1 ≤ i ≤ n defined in (3.1) satisfies the following commutativity conditions

[τ̃i, τ̃j ] = 0, for 1 ≤ i, j ≤ n. (3.4)

3) There exists a family of functions αi(y) for 1 ≤ i ≤ n− 1 such that the Rn-valued form ω defined in
(3.2) satisfies the following condition

dω = 0. (3.5)



Proof. Assume that there exists a diffeomorphism which transforms system (1.1) into form (1.2), then
we compute αi(y) for 1 ≤ i ≤ n − 1 from equation (2.8) in Proposition 2.4. Thus, it is easy to show
that τ1 = 1

π1

∂
∂z1

which yields that τ̃1 = ∂
∂z1

and then, by construction we obtain τ̃i = ∂
∂zi

for 2 ≤ i ≤ n.
Consequently, we have [τ̃i, τ̃j ] = 0 for 1 ≤ i, j ≤ n.

Reciprocally, assume that there exist αi > 0 for 1 ≤ i ≤ n − 1 such that [τ̃i, τ̃j ] = 0 for 1 ≤ i, j ≤ n,
then it is well-known ([8], [15]) that we can find a local diffeomorphism φ = z such that

φ∗(τ̃i) =
∂

∂zi

.

As φ∗(τ̃i) = ∂
∂zi

is constant, hence

∂

∂zi

φ∗(f) = φ∗ ([τ̃i, f ]) = αiφ∗(τ̃i+1) = αi

∂

∂zi+1
,

thus ∂
∂zi

φ∗(f) = αi
∂

∂zi+1
for 1 ≤ i ≤ n − 1. Consequently, by integration we obtain: φ∗(f) = A(y)z + β(y).

Moreover, as dh ◦ τ̃i = 0 for 1 ≤ i ≤ n − 1 and dh ◦ τ̃n = 1, we obtain h ◦ φ−1 = zn.
Finally, in order to prove that in Theorem (3.1) Condition 2) is equivalent to Condition 3), it is sufficient

to prove that equation (3.4) is equivalent to equation (3.5).
Recall that for any two vector fields X, Y, we have

dω(X, Y ) = LX (ω(Y )) − LY (ω(X)) − ω([X, Y ]).

Setting X = τ̃i and Y = τ̃j , we obtain

dω(τ̃i, τ̃j) = Leτi
ω(τ̃j) − Leτj

ω(τ̃i) − ω([τ̃i, τ̃j ]).

As ω(τ̃j) and ω(τ̃i) are constant, then we have

dω(τ̃i, τ̃j) = −ω([τ̃i, τ̃j ]).

Because ω is an isomorphism and (τ̃i)1≤i≤n is a basis of TU, then equation (3.4) is equivalent to equation
(3.5).

Remarks 1. i) The Rn-valued form ω can be viewed as an isomorphism TUn → U × IR n which brings
each τ̃i to the canonical vector basis ∂

∂zI
. Moreover, dω = 0 means that there is a local diffeomorphism

φ : U → U such that ω is the tangent map of φ.
ii) The diffeomorphism φ(x) = z is determined by ω = φ∗(x), which can be given locally as follows

zi = φi(x) =

∫

γ

ωi + φi(0) for 1 ≤ i ≤ n,

where γ is a smooth path from 0 to x lying in a neighborhood V0 ⊆ U of 0.
The following simple example is studied in order to illustrate Theorem 3.1.
Example 1. Let us consider the following system





ẋ1 = γ(y)
1+x4

x1x3,

ẋ2 = β(y)
1+x4

x1,

ẋ3 = µ(y)x2,
ẋ4 = γ(y)x3,
y = x4.

(3.6)

which gives




θ1 = dx4,
θ2 = γdx3 + γ′x3dx4,

θ3 = γµdx2 + 2γ′γx3dx3 +
(
(γµ)

′
x2 + (γ′γ)

′
x2

3

)
dx4,

θ4 = γµ β
1+x4

dx1 +
(
2γ′µ + (γµ)

′
)
γx3dx2

+
(
2γ′γµx2 + γ (γµ)

′
x2 + 3γ (γ′γ)

′
x2

3

)
dx3 + O[2] (x1, x2, x3) θ1.



Then we have τ1 = 1+x4

γµβ
∂

∂x1
. Consequently we obtain





τ2 = 1
γµ

∂
∂x2

+ (1 + x4) γ (γµβ)′

(γµβ)2
x3

∂
∂x1

,

τ3 = 1
γ

∂
∂x3

− γµ (1 + x4)
(γµβ)′

(γµβ)2
x3

∂
∂x2

+
(

(γµ)′

(γµ)2
+ β (γµβ)′

(γµβ)2

)
γx2

∂
∂x1

+ R1,3τ1,

τ4 = ∂
∂x4

+
(

γ′

γ
+ (γµ)′

(γµ) + (γµβ)′

(γµβ)

)
x3

∂
∂x3

−
(

(γµ)′

(γµ) + 2 (γµβ)′

(γµβ)

)
x2

∂
∂x2

+
(

1
1+x4

+ (γµβ)′

γµβ

)
x1

∂
∂x1

+ R1,4 (z3, z2) τ1 + R2,3(z
2
3)τ2.

A straightforward computation gives

δ1
1 = 2

(γµβ)
′

γµβ
, δ2

2 = −2
(γµβ)

′

γµβ
, δ3

3 = 2
γ′

γ
+

(γµ)
′

γµ
+

(γµβ)
′

γµβ
,

δ3
1 = 4

(γµβ)
′

(γµβ)
−

[
(γµβ)

′

(γµβ)

]′

/

[
(γµβ)

′

(γµβ)

]
,

δ3
2 = −

(
2
γ′

γ
+

(γµ)
′

γµ
+ 3

(γµβ)
′

γµβ

)
−

(
(γµ)

′

γµ
+

(γµβ)
′

γµβ

)′

/

(
(γµ)

′

γµ
+

(γµβ)
′

γµβ

)
.

According to equation (2.8) in Proposition 2.4, we obtain




π1 = c1 exp
[∫ (

exp
∫ (

δ1
1 − δ3

1 − δ2
2

)
dy

)
dy

]
= c1γµβ,

π2 = c2 exp
[∫ (

exp
∫ (

δ2
2 − δ3

2 − δ3
3

)
dy −

π′

1

π1

)
dy

]
= c2γµ,

π3 = c3 exp
(∫ (

1
2

(
δ3
3 −

π′

1

π1
−

π′

2

π2

))
dy

)
= c3γ.

Thus α1 = π1

π2
= c1

c2
β, α2 = π2

π3
= c2

c3
µ and α3 = π3

π4
= c3γ, so the new vector fields are

τ̃1 = c1 (1 + x4)
∂

∂x1
, τ̃2 = c2

∂

∂x2
, τ̃3 = c3

∂

∂x3
, τ̃4 =

∂

∂x4
+

x1

1 + x4

∂

∂x1
.

It is clear that [τ̃i, τ̃j ] = 0 for all 1 ≤ i, j ≤ 4. Therefore, according to Theorem 3.1, system (3.6) can be
transformed into SODO normal form (1.2).

Moreover as

Λ̃ =




0 0 0 1
0 0 γ γ′x3

0 γµ 2γ′γx3 (γµ)
′
x2 + 2 (γ′γ)

′
x2

3

γµβ
(
2γ′µ + (γµ)

′
)
γx3 2γ′γµx2 + γ (γµ)

′
x2 + 6γ (γ′γ)

′
x2

3 γ x1

(1+x4)
2 µβ + R


 ,

where R = O
[2]
x4

(x1, x2, x3), a straightforward computation gives

ω = Λ̃−1θ =
(

d x1

c1(1+x4)
, d

(
x2

c2

)
, d

(
x3

c3

)
, dx4

)T

.

As ω = dφ, thus the diffeomorphism which transforms system (3.6) into SODO normal form (1.2) is

φ(x) = z = (
x1

c1 (1 + x4)
,
x2

c2
,
x3

c3
, x4)

T .

with which system (3.6) could be transformed into




ż1 = 0,
ż2 = c1

c2
β(y)z1,

ż3 = c2

c3
µ(y)z2,

ż4 = c3γ(y)z3.

So far, in this paper, we have only considered systems without inputs. The next section is devoted to
systems that are also driven by an input term.



4. Extension to systems with inputs. Consider a system with inputs in the following form

{
ẋ = f(x) + g(x, u),
y = h(x),

(4.1)

where x ∈ U ⊂ IR n, f : U ⊂ IR n → IR n , g : U × IR m → IR n, h : U ⊂ IR n → IR are analytic functions
and for x ∈ U, g(x, 0) = 0.

For system (4.1), the SODO normal form along its output trajectory y(t) is as follows

{
ż = A(y)z + β(y) + η(y, u),
y = zn = Cz,

(4.2)

where A(y) and β(y) are given in (1.2) and η(y, u) =
[

η1(y, u), η2(y, u), · · · , ηn(y, u)
]T

.
Theorem 4.1. System (4.1) can be transformed into SODO normal form (4.2) by a diffeomorphism if

and only if
i) one of conditions in Theorem 3.1 is fulfilled.
ii) [g, τ̃i] = 0 for 1 ≤ i ≤ n − 1.

Proof. From Theorem 3.1, we can state that there exists a diffeomorphism φ such that

φ∗(f) = A(y)z + β(y).

For 1 ≤ i ≤ n − 1, because φ∗ (τ̃i) = ∂
∂zi

is constant, hence we have

∂

∂zi

φ∗(g) = φ∗([g, τ̃i]) = 0.

Therefore φ∗(g) = η(y, u). Thus, we obtain the form (4.2).

Remark 3. If g(x, u) = g1(x)u1 + · · · + gm(x)um, and also both conditions i) and ii) of Theorem 4.1
are fulfilled, then

η(y, u) = B1(y)u1 + · · · + Bm(y)um.

Let us now study some special cases of the term η(y, u).
Corollary 4.2. Assume that conditions i) and ii) of Theorem 4.1 are fulfilled,
a) if [g, τ̃n] = 0, then

η(y, u) = η(u).

b) if g(x, u) = g1(x)u1 + · · · + gm(x)um and

[gk, τ̃i] = 0, for 1 ≤ i ≤ n and 1 ≤ k ≤ m,

then

η(y, u) = B1u1 + · · · + Bmum,

where Bi are constant vector fields.
Example 2. Let us consider the following system





ẋ1 = γ(y)
1+x3

x1x2 + x1

1+x3
u,

ẋ2 = µ(y)
1+x3

x1,

ẋ3 = γ(y)x2 + u,
y = x3.

(4.3)
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Fig. 4.1. Observation error between z1 and ẑ1

A straightforward computation gives:

τ1 =
1 + x3

γµ

∂

∂x1
, τ2 =

1

γ

∂

∂x2
+

(
(1 + x3)

(γµ)
′

γµ2

)
x2

∂

∂x1
,

τ3 =
∂

∂x3
+

(
(µγ)

′

(µγ)
+

γ′

γ

)
x2

∂

∂x2
+

(
1

1 + x3
−

(γµ)
′

γµ

)
x1

∂

∂x1
.

Then, we obtain

δ1
1 = 0, δ2

2 = 2
γ′

γ
+

(µγ)
′

(µγ)
, δ2

1 = −
(µγ)

′

(µγ)
− 2

γ′

γ
−

(
(µγ)

′

(µγ)

)′

/

(
(µγ)

′

(µγ)

)
.

Then, according to (2.8), we have

{
π1 = c1 exp

[∫ (
exp

∫ (
δ1
1 − δ2

1 − δ2
2

)
dy

)
dy

]
= c1γµ,

π2 = c2 exp
(∫ (

1
2

(
δ2
2 −

π′

1

π1

))
dy

)
= c2γ.

which yields α1 (y) = c1

c2
µ (y) and α2 (y) = c2γ (y) . Therefore, we obtain τ̃1 = c1 (1 + x3)

∂
∂x1

, τ̃2 =

c2
∂

∂x2
and τ̃3 = ∂

∂x3
+ x1

1+x3

∂
∂x1

.

As g = x1

1+x3

∂
∂x1

+ ∂
∂x3

= τ̃3 then [g, τ̃1] = [g, τ̃2] = 0 and system (4.3) is transformed into





ż1 = 0,
ż2 = c1

c2
µ (y) z1,

ż3 = c2γ (y) z2 + u,
y = z3.

(4.4)

by the following diffeomorphism

φ(x) = z = (
x1

c1 (1 + x3)
,
x2

c2
, x3)

T .

Following the proposed high gain observer in the form (1.3), the corresponding observer for the system
(4.4) can be designed as follows:





.

ẑ1 = − ρ3

γµ
(ẑ3 − z3) ,

.

ẑ2 = c1

c2
µ (y) ẑ1 − 3ρ2

γ
(ẑ3 − z3) ,

.

ẑ3 = c2γ (y) ẑ2 − 3ρ (ẑ3 − z3) + u,
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Fig. 4.2. Observation error between z2 and ẑ2
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Fig. 4.3. Observation error between z3 and ẑ3

where ρ is the tunable gain. For a more specific but simple simulation, choose c1 = c2 = 1, u (t) = 1,
µ (y) = 1 + y2, and γ (y) = 2 + cos(y). Its simulation results are presented in Fig. 4.1, Fig. 4.2 and Fig. 4.3
which respectively present the convergence of system’s states and their estimations.

In addition, in order to solve the left invertibility problem, the Observability Matching Condition (OMC)
for system (4.1) with m = 1 is as follows

{
LgL

i−1
f h = 0,∀x ∈ U, 1 ≤ i ≤ n − 1,

LgL
n−1
f h 6= 0.

Corollary 4.3. Assume conditions i) and ii) of Theorem 4.1 are fulfilled and the OMC is verified
then

η(y, u) =
[

η1(y, u), 0, · · · , 0
]T

.

Remark 4. The OMC for system (4.1) with m = 1 is equivalent to g ∈ span{τ̃1}.
We give another example in order to highlight Corollary 4.3.
Example 3. Consider the following system





ẋ1 = u,
ẋ2 = µ(y)x1 + µ(y)x2

1 + x2

1+x1
u,

ẋ3 = γ(y) x2

1+x1
,

y = x3.

(4.5)



A straightforward computation gives τ1 = 1
γµ

∂
∂x1

+ 1
γµ

x2

1+x1

∂
∂x2

. From equation (2.8)in Proposition 2.4,

we can determine α1 (y) = c1

c2
µ (y) and α2 (y) = c2γ (y). Thus, we have τ̃1 = c1

∂
∂x1

+ c1
x2

1+x1

∂
∂x2

, τ̃2 =

c2 (1 + x1)
∂

∂x2
and τ̃3 = ∂

∂x3
.

As g ∈ span{τ̃1}, then the OMC condition is fulfilled, therefore system (4.5) could be transformed by
the following diffeomorphism

φ(x) = z =

(
x1

c1
,

x2

c2 (1 + x1)
, x3

)T

.

into




ż1 = u
c1

,

ż2 = c1

c2
µ (y) z1,

ż3 = c2γ (y) z2,
y = z3.

5. Conclusion. In this paper, we have put forward the geometrical conditions which allow us to
determine whether a nonlinear system can be transformed locally into the SODO normal form by means of
a diffeomorphism and of an output injection. In our main result we state two equivalent ways to check these
conditions. In the first one, we have used Lie brackets commutativity and the second one was based on the
one-forms. Moreover, an extension of our results is stated for a class of nonlinear systems with inputs.
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