
HAL Id: inria-00179735
https://hal.inria.fr/inria-00179735

Submitted on 16 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Self-Constrained Resource Allocation Procedures for
Parallel Task Graph Scheduling on Shared Computing

Grids
Tchimou N’Takpé, Frédéric Suter

To cite this version:
Tchimou N’Takpé, Frédéric Suter. Self-Constrained Resource Allocation Procedures for Parallel Task
Graph Scheduling on Shared Computing Grids. 19th IASTED International Conference on Parallel
and Distributed Computing and Systems - PDCS 2007, Nov 2007, Cambridge, Massachusetts, United
States. �inria-00179735�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50355358?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00179735
https://hal.archives-ouvertes.fr

SELF-CONSTRAINED RESOURCE ALLOCATION PROCEDURES FOR
PARALLEL TASK GRAPH SCHEDULING ON SHARED COMPUTING GRIDS

Tchimou N’Takpé and Frédéric Suter
Nancy Université / LORIA

UMR 7503 CNRS - INPL - INRIA - Nancy 2 - UHP, Nancy 1
Campus scientifique - BP 239, F-54506 Vandoeuvre-lès-Nancy

email:{Tchimou.Ntakpe,Frederic.Suter}@loria.fr

ABSTRACT
Two of the main characteristics of computation grids are
their heterogeneity and the sharing of resources between
different users. This is the cost of the tremendous comput-
ing power offered by such platforms. Scheduling several
applications concurrently in such an environment is thus
challenging. In this paper we propose a first step towards
the scheduling of multiple parallel task graphs (PTG), a
class of applications that can benefit of large and powerful
platforms, by focusing on the allocation process. We con-
sider the application of a resource constraint on the sched-
ule and determine the number of processors allocated to the
different tasks of a PTG while respecting that constraint.
We present two different allocation procedures and validate
them in simulation over a wide range of scenarios with re-
gard to their respect of the resource constraint and their im-
pact on the completion time of the scheduled applications.
We find that our procedures provide a guarantee on the re-
source usage for a low cost in terms of execution time.

KEY WORDS
Scheduling, Grid computing, PTG, Allocation.

1 Introduction

Currently deployed grid computing platforms hold the
promise of higher levels of scale and performance than
possible with a single cluster due to improvements in net-
work and middleware technology. The costs of this tremen-
dous computing power right behind the plug are the hetero-
geneity of the resources that compose such platforms and
the competition to access the resources between multiple
users. Such a context raises the question: how to concur-
rently schedule the applications of several users while min-
imizing the perturbations between applications and getting
the best ”bang for the buck” from the platform? To ad-
dress the concurrency issue, several researchers have at-
tempted to design scheduling heuristics in which the task
graphs representing the different applications are aggre-
gated into a single graph to come down to the classical
problem of scheduling a single application [11], or hierar-
chical schedulers in which applications are first dispatched
among clusters and then relying on waiting queues algo-
rithms [4, 5]. A limitation of these scheduling algorithms

is that they assume that the applications graphs only com-
prise sequential tasks. But a way to take a higher bene-
fit from the large computing power offered by grids is to
exploit both task parallelism and data parallelism. Par-
allel applications that use both types of parallelism, often
called mixed parallelism, are structured asparallel task
graphs (PTGs),i.e., Directed Acyclic Graphs (DAG) which
nodes are data-parallel tasks and edges between nodes rep-
resent precedence and/or communication between tasks,
(see [3] for a discussion of the benefits of mixed paral-
lelism and for application examples). Several algorithms
for the scheduling of PTGs on heterogeneous platforms ex-
ist [1, 2, 7] but they consider that all the platform is avail-
able when building the schedule of a single application.
Consequently these heuristics may produce schedules that
require a lot of resources. In a shared environment such
schedules can negatively impact (or be impacted by) other
scheduled applications. The most successful approaches
proceed in two phases: one phase to determine how many
processors should be allocated to each data-parallel task,
another phase to place these tasks on the platform using
standard list scheduling algorithms.

In this paper, we make a first step in the design of
scheduling heuristics of PTGs on a shared platform by fo-
cusing on the allocation procedure. A constraint on the
resource amount that can be used to schedule a given ap-
plication can be fixed either by the application provider or
a meta-scheduler responsible of the scheduling of the mul-
tiple applications that share the platform. We propose two
allocation procedures aiming at respecting such resource
constraints expressed as a ratio of the processing power that
can be used to build the schedule over the globally avail-
able processing power of the platform. The first procedure,
called SCRAP, ensures that the total amount of resources
allocated to the tasks of the PTG respects the constraint
while in the second procedure, called SCRAP-MAX, we
guarantee that the maximum processing power that can be
used at any precedence level of the PTG does not exceed
what is allowed by the resource constraint.

This paper is organized as follows. Section 2 dis-
cusses related work. Section 3 presents our allocation pro-
cedures, which we evaluate in Section 4. Section 5 con-
cludes the paper with a summary of our findings and per-
spectives on future directions.

2 Related Work

Several authors have studied the concurrent scheduling of
multiple applications onto heterogeneous platforms [4, 5,
11]. Authors of [11] address that issue by combining the
different DAGs representing the applications into one sin-
gle DAG. They propose two scheduling heuristics aiming
at minimizing the completion time of the combined DAG
while ensuring a fair schedule for each of the original appli-
cations. This work requires all applications to be submitted
to a single scheduler at the same time, while we follow a
multiple independent schedulers approach leading to a po-
tentially dynamic submission of PTGs. A two-level dis-
tributed scheduling algorithm for multiple DAG has been
proposed in [4]. The first level is a WAN-wide distributed
scheduler responsible for dispatching the different DAGs
(viewed at this level as a single task) to several second level
schedulers that are LAN-wide and centralized. The focus
of this paper is more on environment-related issues,e.g.,
task arrival and machine failure rates or wait queue sizes,
than on scheduling concerns, like ensuring a fair access
to the resources for instance. The hierarchical competitive
scheduling heuristic for multiple DAGs onto heterogeneous
platforms provided in [5] is the most related work as it also
proposes a framework in which each application is respon-
sible of its scheduling, and thus with no direct knowledge
of the other applications. All these algorithms or environ-
ments focus on DAGs and not PTGs,i.e., on applications
only comprising sequential tasks. Consequently the issue
of determining on how many processors a task should exe-
cute, which the core of the present work, does not arise in
these researches.

On the other hand, two heuristics were recently pro-
posed: HPCA (Heterogeneous CPA) [7] and MHEFT
(Mixed-parallel HEFT) [2] to schedule a single PTG on
a heterogeneous platform. HCPA extends the CPA algo-
rithm [9] to heterogeneous platforms by using the con-
cept of a homogeneous reference cluster and by translat-
ing allocations on that reference cluster into allocations
on actual clusters containing compute nodes of various
speeds. MHEFT extends the well-known HEFT algorithm
for scheduling DAGs [10] to the case of data-parallel tasks.
MHEFT performs list-scheduling by reasoning on average
data-parallel task execution times for 1-processor alloca-
tions on all possible clusters. Weaknesses in both HCPA
and MHEFT were identified and remedied in [8], which
performs a thorough comparison of both improved algo-
rithms and finds that although no algorithm is overwhelm-
ingly better than the other, HCPA would most likely lead to
schedules that would be preferred by the majority of users
as it achieves a cost-effective trade-off between application
makespan and parallel efficiency (i.e., how well resources
are utilized). In this work we compare our approach with
the HCPA algorithm and to one of the MHEFT variants
proposed in [8], called MHEFT-MAX, in which no task al-
location on a cluster can be larger than some fraction of the
total number of processors in that cluster.

3 Self-Constrained Resource Allocation

In this section we focus on the first phase of a two step
scheduling algorithm in which the number of processors
allocated to each of a PTG is determined. In the second
step, a classical list scheduling algorithm is used to place
each allocated task on a specific processor set.

The determination of a resource constraint applied on
the scheduling of a given application can be done either
by the provider of each application or by a central meta-
scheduler. Leaving the responsibility of the constraint de-
termination to users may lead to selfish behaviors,i.e., a
loose constraint for each application, that can compromise
an efficient concurrent execution of the different applica-
tions. Conversely a meta-scheduler will be responsible to
adapt the resource constraint on each independent schedule
depending on the global load of the environment.

A constraint on the resources that can be used to
schedule an application can be expressed in several ways
mainly depending on the platform model. In this paper, we
consider a computing platform that consists ofc clusters,
where clusterCk, k = 1, . . . , c containspk identical pro-
cessors. A processor in clusterCk computes at speedrk,
which is defined as the ratio between that processor’s com-
puting speed (in operations per seconds) to that of the slow-
est processor over allc clusters, which we call the reference
processor speedsref . Clusters may be built with different
interconnect technologies and are interconnected together
via a high-capacity backbone. Each cluster is connected to
the backbone by a single network link. Inter-cluster com-
munications happen concurrently, possibly causing con-
tention on these network links. For more details on this
platform model, the reader is referred to [8].

In this model, the resource constraint can be ex-
pressed in terms of a number of processors that cannot be
exceeded during the execution of the schedule. This num-
ber of processors can be either a maximal value,e.g., the
schedule never uses more thanX processors at the same
time, or an average value,e.g., the schedule cannot allocate
more thanX processors per task on average. But on het-
erogeneous platforms, reasoning solely in terms of number
of processors is not really relevant as scheduling a PTG
onto 100 processors computing at 1 GFlop/sec is not the
same as onto 100 processors computing at 4 GFlop/sec.
The resource constraint can also be expressed in terms
of a ratio of the processing power (maximum or average)
that can be used to build the schedule over the globally
available processing power. As this expression of the re-
source constraint on the allocation process seems more
adapted to heterogeneous platforms, we use it in our al-
location procedures and denote it byβ (0 < β ≤ 1).
β can be interpreted as the utilization of the resources:
β = (used power)/(total power).

The question is now to determine how to dispatch
this usable processing power between the different tasks
of the PTG while respecting the constraint. We propose
two different strategies that both rely on the concept of the

reference cluster of HCPA [7]. The reference cluster is a
virtual homogeneous cluster withPref processors, equiva-
lent to the heterogeneous platform. We denote bypref (t),
the current number of processors allocated to a taskt in
the reference cluster and byT ref(t, pref (t)), the corre-
sponding predicted computation time. Finally the function
f(pref (t), t, k) is used to determine the actual allocation of
taskt on clusterCk from its reference allocation.

The main idea of our first procedure, called SCRAP
(Self-Constrained Resource Allocation Procedure), is to
determine the allocation of each task while ensuring the
respect of the usage constraintβ, starting from an initial al-
location of one processor per task. In each iteration of the
procedure we allocate one more processor the task belong-
ing to the critical path that benefits the most of the addition
of a processor to its reference allocation. This iterative pro-
cess will stop if a violation of the resource constraint is
detected as follows.

Let ω(t) be the work of a taskt, i.e., the product
of its execution time by the processing power it uses, and
ω∗ =

∑
t ∈N

ω(t) the total work of the application using
the current allocation. To obtain a estimation of the re-
source amount consumed by this allocation, we divideω∗

by the time spent executing the critical path of the PTG
– that is a rough estimation of its total execution time, or
makespan before the placement phase. We thus defineβ′ as
the ratio ofω∗/makespan over the total processing power
of the platform. Thatβ′ can be seen as a dynamic expres-
sion of the resource constraint evolving along with the al-
location. Ifβ′ exceedsβ, this mean that a violation of the
initial resource constraint occurred and that the allocation
process must be stopped and the last processor addition
canceled. Ifβ′ > β from the initial allocation, SCRAP
does not allocate more processors to any task of the PTG.

It is also important to note that an allocation on the
reference cluster may end up being so large that it cannot
be translated into any feasible allocation on any clusterCk.
For this reason, we stop increasing allocations on the ref-
erence cluster when no clusterCk could accommodate a
translation of the reference allocation. This additional stop
condition is calledsaturated critical path. Our first alloca-
tion procedure is summarized in Algorithm 1.

Algorithm 1 SCRAP
1: for all t ∈ N do
2: pref (t)← 1
3: end for
4: while β′ < β and¬ (saturated critical path)do
5: t←{critical task|(∃Ck|

˚

f(pref (t), t, k)
ˇ

< Pk)

and
“

Tref (t,pref (t))

pref (t)
− Tref (t,pref (t)+1)

pref (t)+1

”

is maximum}

6: pref (t)← pref (t) + 1
7: Update β′

8: end while

In our second allocation procedure, we modify the
application of the resource constraint by taking the prece-
dence levels of the PTG into account. The precedence level

(plev) of a taskt is a (a ≥ 0) if all its predecessors in the
PTG are atplev < a and at least one of its predecessor is
at plev = a − 1. The main idea of this second allocation
procedure is to restrain the amount of resources allocated at
any precedence level toβ. The rationale behind this vari-
ant is that, in the placement phase, ready tasks candidate
to a concurrent placement often belong to the same prece-
dence level. If all these tasks can be executed concurrently,
our constraint ensures that themaximum processing power
usage in that level is less thanβ × Pref × sref .

Algorithm 2 SCRAP-MAX
1: for all t ∈ N do
2: pref (t)← 1
3: end for
4: while β′ < β and¬ (saturated critical path)do
5: t← {critical task| (∃Ck|

˚

f(pref (t), t, k)
ˇ

< Pk)
and(plev Alloc(t)× sref) < (β × Pref × sref)

and
“

Tref (t,pref (t))

pref (t)
− Tref (t,pref (t)+1)

pref (t)+1

”

is maximum}

6: pref (t)← pref (t) + 1
7: Update β′

8: end while

This additional constraint impacts the selection of the
critical task to which allocate one more processor. To be
candidate, a task may show a maximal benefit of the ad-
ditional processor as in SCRAP but now the sum of the
processing power alloted to the tasks, including itself, in
its precedence level (plev Alloc(t) × sref) has also to be
less thanβ ×Pref × sref . Once again the initial allocation
can violate the resource constraint. Algorithm 2 shows our
second allocation procedure, called SCRAP-MAX.

4 Evaluation

We use simulation to explore wide ranges of application
and platform scenarios in a repeatable manner and to con-
duct statistically significant numbers of experiments. Our
simulator is implemented using the SIM GRID toolkit [6].

We consider platforms that consist of1, 2, 4, and8
clusters. Each cluster contains a number of processors be-
tween 16 and 128, picked at random using a uniform prob-
ability distribution. The links connecting the processorsof
a cluster to that cluster’s switch can be Gigabit Ethernet
(bw = 1Gb/s and lat. = 100µsec) or 10Gigabit Ether-
net (bw = 10Gb/s and lat. = 100µsec) and we simu-
late contention on these links. The switch in a cluster has
the same bandwidth and latency characteristics at these net-
work links, but does not experience contention. The links
connecting clusters to the network backbone have a band-
width of 1Gb/s and a latency of100µsec. Half the clusters
use Gigabit Ethernet devices, and the other half use 10Gi-
gabit Ethernet devices. Finally, the backbone connecting
the clusters together has a bandwidth of25Gb/s and a la-
tency of50msec.

In our experiments we choose to keep the network
characteristics fixed and we vary processor speeds to ex-

periment with various communication/computation ratios
of the platform. Processor speeds, which are measured in
GFlop/sec and are homogeneous within each cluster, are
sampled from a uniform probability distribution as follows.
We consider a fixed number of possible minimum speeds:
0.25, 0.5, 0.75, and1; and of heterogeneity factors:1, 2,
5 (when there are more than one cluster in the platform).
The maximum processor speed is computed as the product
of a minimum speed by a heterogeneous factor. For in-
stance, a minimum speed of0.5 and a heterogeneity factor
of 5 means that the processors have uniformly distributed
speeds between0.5 and 2.5 GFlop/sec. We assume that
each processor has a 1GByte memory. The above parame-
ters lead to40 platform configurations. Since there are ran-
dom components, we generate five samples for each con-
figuration, for a total of 200 different sample platforms.

We take a simple approach to model data-parallel
tasks. We assume that a task operates on a data set ofn dou-
ble precision elements. The volume of data communicated
between two tasks is proportional ton. We model the com-
putational complexity of a task as one of the three following
forms, which are representative of many common applica-
tions: a · n (e.g., image processing of a

√
n ×√

n image),
a · n logn (e.g., , a n element array sort),n3/2 (e.g., mul-
tiplication of

√
n × √

n matrices), wherea is picked ran-
domly between26 and29. As a result this exhibits differ-
ent communication/computation ratios. We consider four
scenarios: three in which all tasks have one of the three
computational complexities above, and one in which task
computational complexities are chosen randomly among
the three. Finally, we assume that a fractionα of a task’s
sequential execution time is non-parallelizable, withα uni-
formly picked between0% and25%.

We consider applications that consist of 10, 20, or 50
data-parallel tasks. We use four popular parameters to de-
fine the shape of the DAG: width, regularity, density, and
”jumps”. The width determines the maximum parallelism
in the DAG, that is the number of tasks in the largest level.
A small value leads to ”chain” graphs and a large value
leads to ”fork-join” graphs. The regularity denotes the uni-
formity of the number of tasks in each level. A low value
means that levels contain very dissimilar numbers of tasks,
while a high value means that all levels contain similar
numbers of tasks. The density denotes the number of edges
between two levels of the DAG, with a low value leading to
few edges and a large value leading to many edges. These
three parameters take values between0 and1. In our ex-
periments we use values0.2, 0.5, and0.8 for width and0.2
and0.8 for regularity and density. Finally, we add random
”jumps edges” that go from levell to level l + jump, for
jump = 1, 2, 4 (the casejump = 1 corresponds to no
jumping ”over” any level). Overall, we have432 differ-
ent DAG types. Since some elements are random, for each
DAG type we generate three sample DAGs, for a total of
1, 296 DAGs.

We first evaluate the algorithms using our allocation
procedures with regard to the respect of the initial resource

constraint by comparing the ratio of the processing power
actually consumed by a schedule over the globally avail-
able processing power withβ. If the schedules produced
using our allocation procedures (almost) never violate the
resource constraint imposed by a user, this work should
be conducted one step further to consider the design of a
placement procedure able to concurrently place several al-
located PTGs, each respecting its resource constraint.

 0.001

 0.01

 0.1

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2592

259

26

3

P
er

ce
nt

ag
e

N
um

be
r

of
 c

as
es

beta

SCRAP (all)
SCRAP (w/o init)

SCRAP−MAX (all)
SCRAP−MAX (w/o init)

Figure 1. Respect of theβ resource constraint by SCRAP
and SCRAP-MAX for all simulation runs (all) and when
not considering the cases in which the constraint is violated
by the initial allocation (w/o init).

Figure 1 presents the percentage of simulation runs
that does not respect the initial resource constraint for dif-
ferent values ofβ ranging from0.1 to 1. The right vertical
axis gives the number of cases corresponding to the per-
centage indicated on the left vertical axis. For each proce-
dure we distinguish the cases for which the initial allocation
violates the constraint (w/o init) as we do nothing in such
cases. As expected, the scheduling algorithms relying on
our allocation procedures respect the resource constraintin
99% of the cases forβ ≥ 0.2. Even when the resource
constraint is extreme (β = 0.1) and considering the initial
violations, the constraint is respected in more than 96% of
the cases. We can conclude that our allocation procedures
guarantee the resource usage of the produced schedules.

To complete this first evaluation, we measured the av-
erage and maximum deviation of the resource usage with
regard to the constraint for each value ofβ. When violat-
ing the resource constraint, SCRAP (resp. SCRAP-MAX)
consumes at most 5.4% (resp. 7.4%) more resources than
what is allowed while the average over allβ values for both
procedures exceeds the initial constraint by less than 3%.

As said before, the MHEFT-MAX scheduling heuris-
tic [8] also proposes to constrain the resources that can be
allocated to a task as no allocation on a cluster can be larger
than some fraction of the total number of processors in
that cluster. This way of limiting the resource usage of the
scheduling algorithm is more local and does not offer any
guarantee on the processing power used by the complete

schedule mainly because the MHEFT-MAX constraint is
expressed in terms of number of processors.

 0

 10

 20

 30

 40

 50

 60

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
er

ce
nt

ag
e

beta

MHEFT−MAX
HCPA

Figure 2. Respect of theβ resource constraint by MHEFT-
MAX and HCPA.

Figure 2 shows the percentage of simulation runs for
which the corresponding global constraint is not respected.
For instance, forβ = 0.2, we count the number of runs
of MHEFT-MAX-0.2 producing schedules that use more
than 20% of the available processing power. We can see on
this figure that the percentage of runs that violate the global
resource constraint is one order of magnitude higher than
for SCRAP and SCRAP-MAX. This confirms our choice of
expressing the resource constraint as a power ratio instead
of a maximal number of processors.

We also depict in Figure 2 how asingle-PTG sched-
uler, such as HCPA, will behave in a shared environment.
For each value ofβ we count the number of cases for which
the selfish schedule of HCPA consumes more processing
power than what is allowed by the resource constraint. As
for MHEFT-MAX, that percentage is very high when the
constraint is tight (small values ofβ) and decreases when
we relax the resource usage. One may rightly object that
HCPA was not designed to schedule PTG on shared envi-
ronments, but with this figure we aim at showing the benefit
of designing scheduling algorithm dedicated to shared en-
vironments instead of using existing algorithms.

We finally evaluate our allocation procedures with re-
gard to the slowdown experienced by a PTG as a result of
constraining the resource that can be used to schedule it (as
opposed to the makespan achieved when the PTG is having
all the resources available). We define the slowdown of an
applicationa as

Slowdown(a) = Mall(a)/Mβ(a) (1)

whereMall is the makespan of the PTG when it can use
the resources without constraints andMβ is the makespan
of the same PTG when schedule under a constraintβ.

In Figure 3,Mall(a) is the makespan achieved by the
schedule produced for PTGa under aβ = 1 resource con-
straint. This figure shows the average slowdown of SCRAP

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

0.90.80.70.60.50.40.30.20.1

S
lo

w
do

w
n

beta

SCRAP
SCRAP−MAX

Figure 3. Average slowdown for SCRAP and SCRAP-
MAX when β varies. The reference makespan is achieved
usingβ = 1.

and SCRAP-MAX over the whole range of scenarios when
β varies. That slowdown values are very high for both
procedures which signifies that scheduling an application
while guaranteeing a resource constraint as only a small
impact on makespan. For instance, allowing the alloca-
tions to use only 10% of the available processing power
will only lengthen the schedule by 18% (resp. 23%) for
SCRAP (resp. SCRAP-MAX).

It is also very interesting to notice that constraining
the allocations may improve the placement step and thus
produce shorter schedules, as depicted in Figure 3 by the
slowdown values greater than 1. Indeed respecting the re-
source constraint leads to smaller allocations for some tasks
and allow their concurrent execution that is not possible
with larger allocations determined without any constraint.

We continue this study of the impact of the re-
source constraint on performance in Figure 4, in which the
makespan achieved by HCPA was used to compute the av-
erage slowdown of SCRAP and SCRAP-MAX.

We can see that our allocation procedures lead to
shorter schedules than those produced by HCPA forβ ≥
0.4 while for more restrictive constraints, the slowdown is
at least of 20% (whenβ = 0.1). The better performance
achieved by SCRAP and SCRAP-MAX can be easily ex-
plained by looking at the energy,i.e., the product between
execution time and processing power, consumed by our
algorithms and HCPA. When SCRAP, or SCRAP-MAX,
achieves a better makespan than HCPA it is only because it
uses more processing power to schedule the PTG, while re-
specting the resource constraint all the same. For instance,
whenβ = 0.8, SCRAP-MAX consumes 16% more energy
than HCPA. This also denotes how conservative the allo-
cation procedure of HCPA is. In Figure 2 we can see that
HCPA consumes less than 30% of the available process-
ing power in more than 75% of its schedules. Nevertheless
such a conservative behavior does not allow HCPA to guar-
antee the respect of a resource constraint as SCRAP and

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 s
lo

w
do

w
n

beta

SCRAP
SCRAP−MAX

Figure 4. Average slowdown for SCRAP and SCRAP-
MAX when β varies. The reference makespan is achieved
by the HCPA algorithm.

SCRAP-MAX do.

5 Conclusion and Future Work

In this paper we have studied the scheduling of multi-
ple Parallel Task Graphs (PTGs) onto a shared heteroge-
neous platform. We made a first step towards this objec-
tive by focusing on the allocation procedure in which the
number of processors to allocate to each task of the PTG
is determined. We handled the concurrent access to re-
sources by several applications by imposing a resource con-
straint on the schedule. We then proposed two procedures,
called SCRAP and SCRAP-MAX, that determine alloca-
tions while respecting that constraint expressed as a ratio
of the available processing power of the target platform.
We validated the schedules deriving our the computed al-
locations using simulation with regard to the respect of the
resource constraint and the impact on the application com-
pletion time. First results are convincing are the constraint
is respected in 99% of our experiments and with only a
small lost of performance. We finally compared our heuris-
tics to the HCPA algorithm [7, 8]. We observed that the al-
locations of SCRAP and SCRAP-MAX are less conserva-
tive than those of HCPA and may lead to shorter schedules
while guaranteeing the respect of the resource constraint.

As said before, the present work is a first step towards
the scheduling of multiple concurrent parallel task graphs.
An interesting future work is to design a placement pro-
cedure that takes several allocated PTGs as input, each al-
location respecting a resource constraint. Some challeng-
ing issues arise in the design of thismultiple-PTGs sched-
uler such as ensuring fairness between applications, defin-
ing priority functions to favor applications scheduled under
tighter constraints, or allowing the dynamic submission of
PTGs and thus adapting the resource constraint to the new
load conditions. We also plan to compare the schedules by
this two-step scheduling algorithm to those obtained using
the DAG combination approach of [11], adapted to PTGs.

References

[1] V. Boudet, F. Desprez, and F. Suter. One-Step Al-
gorithm for Mixed Data and Task Parallel Schedul-
ing Without Data Replication. In17th Interna-
tional Parallel and Distributed Processing Sympo-
sium (IPDPS), April 2003.

[2] H. Casanova, F. Desprez, and F. Suter. From Het-
erogeneous Task Scheduling to Heterogeneous Mixed
Parallel Scheduling. In10th International Euro-Par
Conference, volume 3149 ofLNCS, pages 230–237.
Springer-Verlag, August 2004.

[3] S. Chakrabarti, J. Demmel, and K. Yelick. Modeling
the Benefits of Mixed Data and Task Parallelism. In
Symposium on Parallel Algorithms and Architectures,
pages 74–83, 1995.

[4] H. Chen and M. Mahesawaran. Distributed Dy-
namic Scheduling of Composite Tasks on Grid Sys-
tems. In12th Heterogeneous Computing Workshop
(HCW’02), Fort Lauderdale, FL, April 2002.

[5] M. A. Iverson and F.Özgüner. Hierarchical, Com-
petitive Scheduling of Multiple DAGs in a Dynamic
Heterogeneous Environment.Distributed System En-
geneering, (3), 1999.

[6] A. Legrand, L. Marchal, and H. Casanova. Schedul-
ing Distributed Applications: The SimGrid Simula-
tion Framework. In3rd IEEE Symposium on Cluster
Computing and the Grid (CCGrid’03), pages 138–
145, Tokyo, May 2003.

[7] T. N’Takpé and F. Suter. Critical Path and Area Based
Scheduling of Parallel Task Graphs on Heterogeneous
Platforms. InProceedings of the Twelfth International
Conference on Parallel and Distributed Systems (IC-
PADS), pages 3–10, Minneapolis, MN, July 2006.

[8] T. N’takpé, F. Suter, and H. Casanova. A Comparison
of Scheduling Approaches for Mixed-Parallel Appli-
cations on Heterogeneous Platforms. In6th Interna-
tional Symposium on Parallel and Distributed Com-
puting (ISPDC), Hagenberg, Austria, July 2007.

[9] A. Radulescu and A. van Gemund. A Low-Cost
Approach towards Mixed Task and Data Parallel
Scheduling. In15th International Conference on Par-
allel Processing (ICPP), Valencia, Spain, Sep 2001.

[10] H. Topcuoglu, S. Hariri, and M.-Y. Wu. Performance-
Effective and Low-Complexity Task Scheduling for
Heterogeneous Computing.IEEE TPDS, 13(3):260–
274, 2002.

[11] H. Zhao and R. Sakellariou. Scheduling Multiple
DAGs onto Heterogeneous Systems. In15th Hetero-
geneous Computing Workshop (HCW’06), Island of
Rhodes, Greece, April 2006.

