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ABSTRACT Bayesian theory plays a importariile. An example using

The change-point detection problem is cast into a delay eéa_enahzed contrast may be found in [4] (see _also [5). As op
. . : : ) . posed to the test statistic based methods which are sequentia
timation. Using a local piecewise polynomial representati S )
. . . . the ones developed in this framework are rather global: the
and some elementary algebraic manipulations, we give an ex: . . . S
. o ) . change points are simultaneously estimated. Clearly,ishis
plicit characterization of a change-point as a solution of a . S g .
: . . . ._hot suited for on-line implementation. We may also mention
given polynomial equation. A key feature of this polynomial
N o . . . other approaches such as the kernel based ones [6], [7]e Thes
equation is its coefficients being composed by short time win .
. : . ; . pproaches are mainly local.
dow iterated integrals of the noisy signal. The so designe

chanae-point detector shows 00od robustness to variogs t he solution we are presenting here is both sequential and
of no?sesp 9 YRocal. Itis based on a direct estimation of the points of sing

larity of the signal’s derivatives. Following this spiritne im-
Index Terms— Jump parameter systems, Signal detecmediate solution would be to use a signal derivative estimat
tion, Delay estimation, Symbol manipulation, Polynomjad a as those proposed in [8], to locate the singularities. Bixye
proximation will shortly see, an explicit estimation of the derivativenist
necessary. Using a local piecewise polynomial representat
1. INTRODUCTION of the signal, we are able, in section 2, to cast the change-
point problem into a delay estimation. The proposed detec-

Given a piecewise regular signal, the purpose of this paper fion algorithm is next presented in section 3. It's prineifs

to detect its discontinuities and estimate their locatioftse {0 €xpress a change-point as a solution of a polynomial equa-
problem is challenging especially for applications reaugri t|c_>n, the. coefﬁmgnts of which are composed by sh.ort time
on-line detection: the difficulties are stemming from cotru  Window iterated integrals of the noisy signal. These ira&gr

ing noises which are blurring the discontinuities, and trm¢  |0Wpass filter the noise as witnessed (testified) by the exten
bined need of fast calculations for real-time implementatio SIV€ Simulation results presented in section 4. Differgpes

and of reliable detection. A large amount of literature is de Of Singularities are considered therjewchange-p_omt in the
voted to these questions. We refer to the monograph of MM€an, in the local slope, and a jump on the signal’s second
Basseville and V. Nikiforov [1] for a nice tutorial presenta ©Order derivative.

tion and many application examples.

When a statistical model description of the observation data 2. PROBLEM STATEMENT

is available, then it is very common to approach the prob-

lem via hypothesis testing. And, the classical cumulative su 2.1. Signal description

statistic [1] (see [2] for other statistics) is essentialiast of

. . o . Consider the following piecewise smooth signal model,
the algorithms devised within this framework. Furthermore gp 9

since the wavelet transform coefficients of a signal inhiyen K
reveal the presence of irregularities, the combinationahesy w(t) =Y H(t—ti1) filt —ti1), 1)
test statistic has now became classical for change poiatdet i=1
tion [3]. 1The first author would like to acknowledge M. Djafari (LSS f-Giir-

Model selection is another common approach and therein, thavette, France) who kindly provided him with the test signal



where H(+) is the Heaviside function and where eaffft)
is a smooth segment. The only irregularitiescptommonly
calledchange-pointsoccur at timeg;,i = 1,..., K, where ir(s) = @0 te (4)
K is unknow. We set, = 0. Based on the observation S

y(t) = x(t)+n(t), wheren(t) is an additive noise corruption, | the sequel, we will writé:, instead ofi.. () to ease the no-
we want to detect the change-points and estimate their l0Cg5tions. Now, we are going to show thtatmay be expressed

b(t) = bg in (2). Eq. (3) then reduces to

7t7.sb70

tionst;. LetT be given and assume that there is at most ongg 5 function ofr. () only: we will say that:, is identifiable

discontinuity point in each intervdll' = (r — T,7), 7 > T.
In the sequel, we will set
z(t)=ax(t+7-T), t€[0,T],7>T,

for the restriction of the signal in!” and we redefine the dis-
continuity point, say,, relatively tolX with: ¢, = 0 if z, (t)

is smooth and) < ¢, < T otherwise. The problem now re-
duces to detect the nonsmoothness aft), for eachr > T.
For this task, we consider next a polynomial modeldp(t).

2.2. Local polynomial model

By assumption, each sliding interval contains at most one
change point. The corresponding signalt) then admits a
representation of the form
- (t)=[1—H(t—t;)]a(t)+ H(t—t;)b(t—t,) te€]0,T],
2
wherea(t) andb(t) are smooth and . (¢t) = b(¢t) if ¢, = 0.
Here the possible change-pointis viewed as a delay. Our
detection method relies on the direct estimation of thisylel
To proceed we need a model feft) andb(t) above. Now,

with respect ta:, (seee.g.[10] for various types of identifia-
bility). This will stem from the following manipulations.te
first step is to eliminate the unknown coefficientsandb.
For this, multiply both side of (4) by: s&, — ag = e t75by.
Noting thate~*-* satisfies| - + t.|e~** = 0, we have

d

[ds

Differentiation with respect te will eliminate ay. The delay
t, is therefore explicitly given by:

+ tT} (s@r —ag) =0.

2
s%ch + 2(%557 + tT(s%i} +2,)=0.
Recall that, by the very classical rules of operational &alc
lus, derivation with respect tois the operational analogue of
multiplication by—¢: <3, e —tz(¢). And multiplication
by s corresponds to time derivations e % z_(t). While
the first operation is easy to implement, numerical différen
ation is known to be difficult and ill-conditioned. Letbe a
positive integer greater than the highest powes f (5) and
divide both members of (5) by&'. Then only negative pow-

ers of s will intervenes in the resulting equation. Replacing

®)

a polynomial model is found adequate especially when thg,e nohserved signal. by its noisy observation counterpart

length of the intervall?, viz. T, is small. So henceforth,
a(t) = X1, ait andb(t) = 3°9_, b;t’ are two polynomials
of degreep andq respectively.

Let us express Eq. (2) in the operational doriain

P q
i (s) = Z 4t Z
7=0

=0
By using elementary differential algebraic operationstas t

i!CLi
gitl

7'bj
si+l

3)

Y-, We obtain the linear estimater of ¢ :

L
+t?{ - +y7} =0,
sv— sv

wherej, stands for%yT. Recall that division by*, k > 0

corresponds té*"-iterated time integration:
(k — 1)1~ (s) o= [1(t — a)*La(a)da.
The estimate of . thus follows upon expressing (6) back in

A~ ~/
Yr Yr
sv—1 + 257

(6)

expression and translating the result back in the time domaifime domain, fors > 2:

one can show that is identifiable with respect to(t). These
operations, which lead to the design of an estimatot, of
based on the noisy observatig(r), are exposed below.

3. DETECTOR SYNTHESIS AND
IMPLEMENTATION

3.1. Change-point estimation

We start considering the simplest model for(t), viz. a
piecewise constant model. We thus havet) ag and

2Algebraic manipulations of delays are easier via the formmati§ oper-
ational calculus. See [9] for more details.

i

[/T(ut — T)(T — )" 2y, (t)dt
0

= /T{(u + Dt 4+ 2THT — )" 2 ty, (t)dt (7)
0

If the interval IT is devoid of a change point, then the right

hand side and the bracketed term above must be zero up to the

(output) noise level. In this situation, we will have = 0.
Note that noises are viewed highly as highly fluctuating phe-
nomena (see [11] for the mathematical details). They are at-
tenuated by the iterated time integrals, which are simple ex
amples of low-pass filters.



3.2. Synthesis of change point detector 2(t)

The generalization of the preceding developments to higher | =——

order polynomial models is straightforward. To see thisiket

multiply both sides of (3) by’ where? 2 max{p, ¢} + 1.
Then we may writes‘d, = A(s) + e **B(s) where A(s)
andB(s) are two polynomials i, with degree at most— 1.
Let us isolateB(s) as in B(s) = e'~*(s‘2, — A(s)) and
annihilate it byj—:;. We obtain:

Z ()t —aon}i =0

Now, the unknown polynomial(s) has to be eliminated.
This is achieved by applying aga'b“-‘f7 to the above expres-
sion. The resultis next divided by, v > ¢, to avoid time dif-
ferentiation. Replacing, by its corresponding noisy obser- (c) Change-point detected
vationg, and returning to the time domain, we finally obtain,
for each time instant, a polynomial expressioRy,, (43 (7, ;)

(a) No change-point i (b) Change-point not detected

x(t)

Fig. 1. Detector

of the form:
- p According to these scenarios, a change-point is meant by the
D b)) = / (T —+ P(t)tidt. (8 passage from case 2 to casei.8, when starting beyong a
(rHay (T t) 0 vl = ) ; () ©) threshold|Dy,1¢41 (7, %-)| falls down and crosses zero. Since

) ) ) ) the characteristics of the noise are unknown, the seleofion
EachP;(t) in (8) is a polynomial depending on the parameterspg threshold will subsequently be based on some heuristics
p, ¢, v andT and is defined as: Also, the performance of the proposed detection method are
investigated in the next section, through Monte Carlo sanul

Z . B .
4 20 — 1 (_1)2E_L_‘7K! tion
Py(t) = :
=2 GC Ve
(T — (1 (r— (T — )2 4. SIMULATION RESULTS

Clearly, this expression does not provide an estimatot.for The change-point detector in (8) is now numerically imple-
However, it does provide us with a change-point detecter, thmented using the trapezoidal method, under various signal

implementation of which is described below. and noise settings. Very simple local polynomial models are
used for all signal settings. Robustness to noise cormptio
3.3. Implementation is highlighted using several noise models with differentrpo

ers: normal, uniform and Perlin nofseTable 1, where the
To see how to Implemelﬁ){p}{q} (’7'7 tq—) as a detector, let us notationM{p}{q} refers to (3) W|th degreeﬁ and q, sum-
sett, to a fixed value, say, = rT' for somer € (0, 1).  marizes the simulation results. For all simulations, tha-sa
Consider the following scenarios: pling period (without unit) isI, = 1 and the detector is in-

e Case 1:I] does not contain a change-point. Then, thenipited during107, (10 samples) after each detection. For
equalityDy, (4} (7,7T") = 0 holds except for the local mis- each setting, the distribution of the estimated changatgpi
mode”ing error and the noise contributions. This situai® Computed over 100 Monte Carlo Simu'ationsy are shown be-
depicted in figure 1-(a). low. We start with a piecewise constant signal. The origi-

» Case 2:I] contains a change-point, locateditZ rt.  nal noise-free signal (in dashed line figure 2-(a) and 2i€))

In this case Dy, (4} (7, rT) largely deviates from zero. The composed of 7 different segments, with two very close jumps
selected value for; does not correspond to a root of the poly- separated by 30 samples. The signal is corrupted by a white
nomial in (8), as shown in figure 1-(b). Gaussian noise in figure 2-(a) and by a Perlin noise in 2-(c).

» Case 31! contains a change-pointgtwhich coincides  The results in figures 2-(b) and (d) show how all the change-
with rT. ThenDy,; (43 (7, 7T") must vanishes up to the noise points are correctly detected for both noise settings. They
and the local mismodelling errors. Figure 1-(c) illustedtiéis jjlustrate the ability of the method to detect separatelgyve
situation. close change-points. In the next experiment, we consider a

Rema_rk 1 Choosingt, = 0.57 seems to be the bes.t choice 3Perlin’s noiseg12] are fractal like and they are quite popular in com-
especially for the detection of very close change points. puter graphics.




Figures Signal model| T Noise type| SNR Estimated number of segments
reference see (3) inTe indB | 1 2 3 4 5 6 7 8 >9
figure 2-(a)-(b)|  Myoy10} 60 Normal 13 0O 0O O O O 28 40 26 6
figure 2-(b)-(c) | Myo310} 60 Perlin 15 |0 0 O 0 4 24 36 25 11
figure 3 Moy 60 Uniform 6 ' 0 0 0 2 9 25 27 24 13
figure 4 M1y40} 30 Normal 10 |0 45 31 3 6 3 0 0 1
Table 1. Simulation summarized
(a) Noisy free signal (- -), signal (-) (b) Histogram of the detection (a) Noisy free signal (- -), signal (-) (b) Histogram of the detection
e oS Fig. 4. Non polynomial signal
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