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École polytechnique,

91128 Palaiseau,

France

Michel.Fliess@polytechnique.edu

ABSTRACT

The change-point detection problem is cast into a delay es-
timation. Using a local piecewise polynomial representation
and some elementary algebraic manipulations, we give an ex-
plicit characterization of a change-point as a solution of a
given polynomial equation. A key feature of this polynomial
equation is its coefficients being composed by short time win-
dow iterated integrals of the noisy signal. The so designed
change-point detector shows good robustness to various type
of noises.

Index Terms— Jump parameter systems, Signal detec-
tion, Delay estimation, Symbol manipulation, Polynomial ap-
proximation

1. INTRODUCTION

Given a piecewise regular signal, the purpose of this paper is
to detect its discontinuities and estimate their locations.The
problem is challenging especially for applications requiring
on-line detection: the difficulties are stemming from corrupt-
ing noises which are blurring the discontinuities, and the com-
bined need of fast calculations for real-time implementation
and of reliable detection. A large amount of literature is de-
voted to these questions. We refer to the monograph of M.
Basseville and V. Nikiforov [1] for a nice tutorial presenta-
tion and many application examples.
When a statistical model description of the observation data
is available, then it is very common to approach the prob-
lem via hypothesis testing. And, the classical cumulative sum
statistic [1] (see [2] for other statistics) is essential inmost of
the algorithms devised within this framework. Furthermore,
since the wavelet transform coefficients of a signal inherently
reveal the presence of irregularities, the combination wavelet–
test statistic has now became classical for change point detec-
tion [3].
Model selection is another common approach and therein, the

Bayesian theory plays a important rôle. An example using
penalized contrast may be found in [4] (see also [5]). As op-
posed to the test statistic based methods which are sequential,
the ones developed in this framework are rather global: the
change points are simultaneously estimated. Clearly, thisis
not suited for on-line implementation. We may also mention
other approaches such as the kernel based ones [6], [7]. These
approaches are mainly local.
The solution we are presenting here is both sequential and
local. It is based on a direct estimation of the points of singu-
larity of the signal’s derivatives. Following this spirit,one im-
mediate solution would be to use a signal derivative estimator,
as those proposed in [8], to locate the singularities. But, as we
will shortly see, an explicit estimation of the derivative isnot
necessary. Using a local piecewise polynomial representation
of the signal, we are able, in section 2, to cast the change-
point problem into a delay estimation. The proposed detec-
tion algorithm is next presented in section 3. It’s principle is
to express a change-point as a solution of a polynomial equa-
tion, the coefficients of which are composed by short time
window iterated integrals of the noisy signal. These integrals
lowpass filter the noise as witnessed (testified) by the exten-
sive simulation results presented in section 4. Different types
of singularities are considered therein1: change-point in the
mean, in the local slope, and a jump on the signal’s second
order derivative.

2. PROBLEM STATEMENT

2.1. Signal description

Consider the following piecewise smooth signal model,

x(t) =

K∑

i=1

H(t − ti−1) fi(t − ti−1), (1)

1The first author would like to acknowledge M. Djafari (LSS, Gif-sur-
Yvette, France) who kindly provided him with the test signals.



whereH(·) is the Heaviside function and where eachfi(t)
is a smooth segment. The only irregularities ofx, commonly
calledchange-points, occur at timesti, i = 1, . . . ,K, where
K is unknow. We sett0 = 0. Based on the observation
y(t) = x(t)+n(t), wheren(t) is an additive noise corruption,
we want to detect the change-points and estimate their loca-
tions ti. Let T be given and assume that there is at most one
discontinuity point in each intervalIT

τ = (τ − T, τ), τ > T .
In the sequel, we will set

xτ (t) = x(t + τ − T ), t ∈ [0, T ], τ > T,

for the restriction of the signal inIT
τ and we redefine the dis-

continuity point, saytτ , relatively toIT
τ with: tτ = 0 if xτ (t)

is smooth and0 < tτ 6 T otherwise. The problem now re-
duces to detect the nonsmoothness ofxτ (t), for eachτ > T .
For this task, we consider next a polynomial model forxτ (t).

2.2. Local polynomial model

By assumption, each sliding intervalIT
τ contains at most one

change point. The corresponding signalxτ (t) then admits a
representation of the form

xτ (t) = [1−H(t−tτ )]a(t)+H(t−tτ )b(t−tτ ) t ∈ [0, T ],
(2)

wherea(t) andb(t) are smooth andxτ (t) = b(t) if tτ = 0.
Here the possible change-pointtτ is viewed as a delay. Our
detection method relies on the direct estimation of this delay.
To proceed we need a model fora(t) andb(t) above. Now,
a polynomial model is found adequate especially when the
length of the intervalIT

τ , viz. T , is small. So henceforth,
a(t) =

∑p

i=0
ait

i andb(t) =
∑q

j=0
bjt

j are two polynomials
of degreep andq respectively.

Let us express Eq. (2) in the operational domain2:

x̂τ (s) =

p∑

i=0

i!ai

si+1
+ e−tτ s

q∑

j=0

j!bj

sj+1
(3)

By using elementary differential algebraic operations on this
expression and translating the result back in the time domain,
one can show thattτ is identifiable with respect tox(t). These
operations, which lead to the design of an estimator oftτ
based on the noisy observationy(t), are exposed below.

3. DETECTOR SYNTHESIS AND
IMPLEMENTATION

3.1. Change-point estimation

We start considering the simplest model forxτ (t), viz. a
piecewise constant model. We thus have:a(t) ≡ a0 and

2Algebraic manipulations of delays are easier via the formalism of oper-
ational calculus. See [9] for more details.

b(t) ≡ b0 in (2). Eq. (3) then reduces to

x̂τ (s) =
a0

s
+ e−tτ s b0

s
. (4)

In the sequel, we will writêxτ instead of̂xτ (s) to ease the no-
tations. Now, we are going to show thattτ may be expressed
as a function ofxτ (t) only: we will say thattτ is identifiable
with respect tôxτ (seee.g.[10] for various types of identifia-
bility). This will stem from the following manipulations. The
first step is to eliminate the unknown coefficientsa0 andb0.
For this, multiply both side of (4) bys: sx̂τ − a0 = e−tτ sb0.

Noting thate−tτ s satisfies
[

d
ds

+ tτ
]
e−tτ s = 0, we have

[ d

ds
+ tτ

]
(sx̂τ − a0) = 0.

Differentiation with respect tos will eliminatea0. The delay
tτ is therefore explicitly given by:

s
d2

ds2
x̂τ + 2

d

ds
x̂τ + tτ (s

d

ds
x̂τ + x̂τ ) = 0. (5)

Recall that, by the very classical rules of operational calcu-
lus, derivation with respect tos is the operational analogue of
multiplication by−t: d

ds
x̂τ� −txτ (t). And multiplication

by s corresponds to time derivation:sx̂τ� d
dt

xτ (t). While
the first operation is easy to implement, numerical differenti-
ation is known to be difficult and ill-conditioned. Letν be a
positive integer greater than the highest power ofs in (5) and
divide both members of (5) by asν . Then only negative pow-
ers ofs will intervenes in the resulting equation. Replacing
the unobserved signalxτ by its noisy observation counterpart
yτ , we obtain the linear estimator̃tτ of tτ :

ŷ′′
τ

sν−1
+ 2

ŷ′
τ

sν
+ t̃τ

{
ŷ′

τ

sν−1
+

ŷτ

sν

}
= 0, (6)

whereŷ′
τ stands for d

ds
ŷτ . Recall that division bysk, k > 0

corresponds tokth-iterated time integration:
(k − 1)!s−kx̂(s)� ∫ t

0
(t − α)k−1x(α)dα.

The estimate oftτ thus follows upon expressing (6) back in
time domain, forν > 2:

[∫ T

0

(νt − T )(T − t)ν−2yτ (t)dt

]
t̃τ

=

∫ T

0

{(ν + 1)t + 2T}(T − t)ν−2 tyτ (t)dt (7)

If the intervalIT
τ is devoid of a change point, then the right

hand side and the bracketed term above must be zero up to the
(output) noise level. In this situation, we will havẽtτ = 0.
Note that noises are viewed highly as highly fluctuating phe-
nomena (see [11] for the mathematical details). They are at-
tenuated by the iterated time integrals, which are simple ex-
amples of low-pass filters.



3.2. Synthesis of change point detector

The generalization of the preceding developments to higher
order polynomial models is straightforward. To see this letus

multiply both sides of (3) bysℓ whereℓ
△
= max{p, q} + 1.

Then we may write:sℓx̂τ = A(s) + e−tτ sB(s) whereA(s)
andB(s) are two polynomials ins, with degree at mostℓ−1.
Let us isolateB(s) as in B(s) = etτ s(sℓx̂τ − A(s)) and
annihilate it by dℓ

dsℓ . We obtain:

ℓ∑

i=0

{(
ℓ

i

)
dℓ−i

dsℓ−i
(sℓx̂τ − A(s))

}
tiτ = 0.

Now, the unknown polynomialA(s) has to be eliminated.
This is achieved by applying againd

ℓ

dsℓ to the above expres-
sion. The result is next divided bysν , ν > ℓ, to avoid time dif-
ferentiation. Replacinĝxτ by its corresponding noisy obser-
vationŷτ and returning to the time domain, we finally obtain,
for each time instantτ , a polynomial expressionD{p}{q}(τ, tτ )
of the form:

D{p}{q}(τ, tτ ) =

∫ T

0

y(τ − (T − t))

ℓ∑

i=0

Pi(t) tiτ dt. (8)

EachPi(t) in (8) is a polynomial depending on the parameters
p, q, ν andT and is defined as:

Pi(t) =

ℓ∑

j=0

(
ℓ

i

)(
2ℓ − i

j

)
(−1)2ℓ−i−jℓ!

(ℓ − j)!(j + ν − ℓ − 1)!

(T − t)j+ν−ℓ−1(τ − (T − t))2ℓ−i−j

Clearly, this expression does not provide an estimator fortτ .
However, it does provide us with a change-point detector, the
implementation of which is described below.

3.3. Implementation

To see how to implementD{p}{q}(τ, tτ ) as a detector, let us
set tτ to a fixed value, saytτ = rT for somer ∈ (0, 1).
Consider the following scenarios:

• Case 1:IT
τ does not contain a change-point. Then, the

equalityD{p}{q}(τ, rT ) = 0 holds except for the local mis-
modelling error and the noise contributions. This situation is
depicted in figure 1-(a).

• Case 2:IT
τ contains a change-point, located att⋆τ 6= rt.

In this case,D{p}{q}(τ, rT ) largely deviates from zero. The
selected value fortτ does not correspond to a root of the poly-
nomial in (8), as shown in figure 1-(b).

• Case 3:IT
τ contains a change-point att⋆τ which coincides

with rT . ThenD{p}{q}(τ, rT ) must vanishes up to the noise
and the local mismodelling errors. Figure 1-(c) illustrates this
situation.

Remark 1 Choosingtτ = 0.5T seems to be the best choice
especially for the detection of very close change points.

T

x(t)

t
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τ

τ1

(a) No change-point inIT
τ .

T

x(t)

t

tτ
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(b) Change-point not detected

τ3

x(t)

t

tτ

T

(c) Change-point detected

Fig. 1. Detector

According to these scenarios, a change-point is meant by the
passage from case 2 to case 3,i.e. when starting beyong a
threshold,|D{p}{q}(τ, tτ )| falls down and crosses zero. Since
the characteristics of the noise are unknown, the selectionof
the threshold will subsequently be based on some heuristics.
Also, the performance of the proposed detection method are
investigated in the next section, through Monte Carlo simula-
tion.

4. SIMULATION RESULTS

The change-point detector in (8) is now numerically imple-
mented using the trapezoidal method, under various signal
and noise settings. Very simple local polynomial models are
used for all signal settings. Robustness to noise corruption
is highlighted using several noise models with different pow-
ers: normal, uniform and Perlin noise3. Table 1, where the
notationM{p}{q} refers to (3) with degreesp and q, sum-
marizes the simulation results. For all simulations, the sam-
pling period (without unit) isTe = 1 and the detector is in-
hibited during10Te (10 samples) after each detection. For
each setting, the distribution of the estimated change-points,
computed over 100 Monte Carlo simulations, are shown be-
low. We start with a piecewise constant signal. The origi-
nal noise-free signal (in dashed line figure 2-(a) and 2-(c))is
composed of 7 different segments, with two very close jumps
separated by 30 samples. The signal is corrupted by a white
Gaussian noise in figure 2-(a) and by a Perlin noise in 2-(c).
The results in figures 2-(b) and (d) show how all the change-
points are correctly detected for both noise settings. They
illustrate the ability of the method to detect separately very
close change-points. In the next experiment, we consider a

3Perlin’s noises[12] are fractal like and they are quite popular in com-
puter graphics.



Figures Signal model T Noise type SNR Estimated number of segments
reference see (3) in Te in dB 1 2 3 4 5 6 7 8 ≥9

figure 2-(a)-(b) M{0}{0} 60 Normal 13 0 0 0 0 0 28 40 26 6
figure 2-(b)-(c) M{0}{0} 60 Perlin 15 0 0 0 0 4 24 36 25 11
figure 3 M{1}{1} 60 Uniform 16 0 0 0 2 9 25 27 24 13
figure 4 M{1}{0} 30 Normal 10 0 45 31 3 6 3 0 0 1

Table 1. Simulation summarized
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Fig. 2. Piecewise constant signal: changes in the mean

piecewise polynomial signal with degrees 0 to 2, corrupted
by a uniform distributed noise. The signal is continuous and
it contains 6 change-points. These are of order 1 (discontinu-
ity on the derivative) or order 2 (discontinuity on the second
order derivative) and hence more difficult to detect. The ob-
tained results, depicted in Figure 3 remain good. The two
close change-points, att = 400Te andt = 430Te, are how-
ever difficult to separate.
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Fig. 3. Piecewise polynomial signal: order 1 and 2.

In view of the preceding experiments, the method presents
a good robustness to noise. It also appears that the noise char-
acterisctics do not have a significant effect on the detection.
We consider now a piecewise non polynomial signal with 3
segments, through an additive white Gaussian noise (see fig-
ure 4-(a)). The results illustrated in figure 4-(b) show thata
very simple local model (order 0 or 1) is sufficient. Indeed,
for any fixed orders, the local mismodelling error can be made
arbitrary small by decreasingT .
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Fig. 4. Non polynomial signal
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Mathématiques, vol. 342, pp. 797–802, 2006.

[12] K. Perlin, “An image synthesizer,” inSIGGRAPH’85, 1985,
pp. 287–296.


