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Nonlinear control for linear motors with friction - Application to an
inverted pendulum system

Samer Riachy, Thierry Floquet, and Jean-Pierre Richard

Abstract— A linear motor is used here as an actuator for
a cart-pendulum system. The global, upward stabilization of
the inverted position is aimed at. In such an under-actuated
situation, (i) constraints on the motor motion (limited length)
have to be taken into account and (ii) friction effects may have
a strong influence (limit cycles). A two-step path planning-
plus-tracking strategy allows for dealing with constraint (i).
Regarding point (ii), and since friction effects are hardly
modeled, a second-order sliding mode algorithm is chosen.
The resulting controller is designed without any knowledge of
neither the electromagnetic circuits of the linear motor (the
model is a simple gain), nor the friction models (only upper
bounds for the friction forces acting on both the linear motor
and pendulum are required). Experimental results show good
performances in tracking and regulation, both for the swing-up
and stabilization phases of the inverted pendulum.

I. INTRODUCTION

Control of electric drives constitutes a large domain of
research. When coupled to a mechanical system, as in the
case of a cart-pendulum system, the modeling may result in
a high order model. The resulting system becomes difficult
to investigate in control. In this paper, the linear drive will
be modeled in a very simplified way (i.e., a linear gain) and
this lack of modeling information will be compensated by a
robust control design.

The cart-pendulum system has played a long-standing
test-bed role in control laboratories. An interesting problem
(and probably the most impressive for demonstration) is the
swing-up and upward stabilization of the inverted pendulum
around its unstable, top equilibrium position (say: angle
θ = 0). It constitutes an under-actuated situation, in which
two outputs (translatory motion of the cart, say: x variable,
and rotation angle θ of the rod) have to be controlled
by means of a single actuator. Besides, such an electro-
mechanical process is nonlinear, since the global motion
presents several equilibrium points, and a simple linear
model cannot represent it. Lastly, it refers to several concrete
situations1.
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1The damping of a mass hanged to a travelling crane refers to the bottom
position (local) control [7]; The top position (local) control is encountered
when balancing new two-wheel vehicles as B2 [8] or Segway [9]; The
bottom-to-top –then, global– stabilization arises in particular wheel-chairs
[2], [10] that can raise from a 4-wheels to a 2-wheels situation, so as to
make the sited person reach a higher position.

Considering the cart-pendulum system, two main problems
are encountered:

1) Constraints on the motor motion, which must move
within a limited length, have to be taken into account.
Here, it is chosen to combine a linear motor (whose
high acceleration performance allows for generating
high speeds within short lengths) with a two-step path
planning + tracking strategy. Such a control ensures
the tracking of a planned (then, admissible) reference
trajectory in x, which is computed so as to be ad-
missible with regard to the constraints, and to make
the angle θ behave according to a tunable, Van der
Pol-like equation. An additional closed-loop control
guarantees the tracking of this reference whatever the
perturbations are.

2) Friction effects may have a strong influence. This will
be shown in the paper by considering control laws
from the literature [3], the design of which was relying
on a simplified model without friction. The resulting
concrete application makes limit cycles appear. Here,
we take it explicitly into account and, since friction
effects are hardly modeled, a second-order sliding
mode algorithm is chosen (for a detailed discussion
on Higher Order Sliding Modes see [5] and references
therein). The resulting controller is designed without
any knowledge of neither the electromagnetic circuits
of the linear motor, nor the friction models (only upper
bounds for the friction forces acting on both the linear
motor and pendulum are required).

The developed second order sliding mode controller is
shown to be robust to unmodeled nonlinear phenomena and
disturbances. In addition good performances are obtained in
stabilization, trajectory tracking, swing-up and balancing of
an inverted pendulum coupled to the linear motor.

II. TRACKING OF A MODIFIED VAN DER POL REFERENCE
SIGNAL

In the next section a second order sliding mode controller
is developed for the linear motor to swing-up and balance an
inverted pendulum. In order to swing the inverted pendulum,
the linear motor needs to follow a modified Van der Pol
reference signal [4].

The pendulum coupled to the linear motor is shown in
Fig.1 and is governed by (1)-(3)



Fig. 1. Inverted pendulum located at the LAGIS laboratory.

(M +m)ẍ+ml sinθ θ̇
2−ml cosθ θ̈ = τ +w1(t)−ψ(ẋ), (1)

4
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ml2
θ̈ −ml cosθ ẍ−mgl sinθ = w2(t)−ϕ(θ̇) (2)

τ = KV (3)

where x is the cart position, θ is the angular deviation of the
pendulum from the vertical, M is the cart mass, m is the rod
mass, l is the distance to the center of mass of the pendulum,
g is the gravitational acceleration, τ is the force generated
by the linear motor, w1(t),w2(t) are external disturbances,
ψ(ẋ) and ϕ(θ̇) are friction forces, affecting the linear motor
and the pendulum, respectively. Note that the linear motor is
modeled in (3) as a linear gain K acting on the input voltage
V.

The general idea of the swing-up control is inspired from
[4], while the local control relies on [6]. For lack of space,
only general ideas are given here. The modified Van der Pol
oscillator is given by:

..
z +ε

[
(z2 +

ż2

µ2 )−ρ
2
]

ż+ µ
2z = 0, (4)

This modification possess a stable limit cycle (a sinusoidal
one), the advantage of which is to be expressible in the
explicit form

z2 +
ż2

µ2 = ρ
2 (5)

Our objective is to design a controller that causes the actuated
part of the cart-pendulum system, i.e. the linear motor, to
track a trajectory generated by the modified Van der Pol
equation (4), i.e:

lim
t→∞

[z(t)+ x(t)] = 0, (6)

while attenuating the effect of the friction forces, external
disturbances, and unmodeled dynamics.

Consider the sliding variable:

y(t) = z(t)+ x(t), (7)

that combines the actuated position x(t) of the system and
the reference variable z(t) governed by the modified Van der

Pol equation (4). The control problem is to drive the system
output (7) onto the surface y = 0 in finite time and maintain
it there in spite of the friction forces, external disturbances,
and unmodeled dynamics affecting the system.

By differentiating (7) twice, one obtains:
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Relating the quasihomogeneous synthesis from [6], the fol-
lowing second order sliding mode control law

u =
3ϕv cosθ

4lJ
θ̇ +

ψv

J
ẋ+ ε
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2z

−αsign(y)−β sign(ẏ)−hy− pẏ (9)

with the parameters such that

h, p≥ 0, α−β >
3(ϕc +N2)

4lJ
+

ψc +N1

J
(10)

is proposed.
It was demonstrated in [4] that the resulting quasihomo-

geneous system (8), (9) with the parameter subordination
(10) is finite time stable regardless of unmodeled dynamics,
friction forces and uniformly bounded external disturbances
affecting the system. So, after a finite time, the cart-pendulum
system evolves on the second order sliding manifold i.e. on
the zero dynamics surface y = 0. The control objective is
thus achieved in finite time (non asymptotic).

Fig. 2. Experimental tracking of the Van der Pol reference signal (reference
and ouput).

Fig. 2 shows experimental results of the linear motor
(green) tracking the Van der Pol reference (blue). It can be
seen that the linear motor position starts from the Van der Pol
reference signal, this initial condition is chosen for practical
reason (short cart length).

III. SWING UP CONTROL AND STABILIZATION

To swing the pendulum up from the bottom position to
the top position, the orbitally stabilizing synthesis (4), (8),
(9) is applied to pump into the system as much energy as
required to approach the basin of attraction of a locally
stabilizing controller. Switching to a local second order



sliding mode controller (a detailed discussion can be found
in [6]) completes the objective of swing-up and balancing of
the inverted pendulum.

A. Cart-pendulum prototype

In order to study the performance of the proposed synthe-
sis experimental tests were made. The real parameters of the
laboratory cart-pendulum system are given in table I.

TABLE I
PARAMETERS OF THE CART-PENDULUM.

Notation Value Units
M 3.4 kg
m 0.147 kg
l 0.175 m

ψv 8.5 N · s/m
ϕv 0.0015 N ·m · s/rad
ψc 6.5 N
ϕc 0.00115 N ·m

B. Swinging controller design

To swing the pendulum up from the downward position
to the upright position, the orbitally stabilizing synthesis (4),
(8), (9) is applied to pump into the system as much energy as
required to approach a homoclinic orbit with the same energy
level as the one corresponding to the desired equilibrium
point. The idea is inspired from [3] which consists of driving
a frictionless cart-pendulum to its homoclinic orbit obtained
by zeroing both the total energy of the system and the cart
velocity. The model used in this paper is that of a real
life cart-pendulum, having friction both on the cart and the
pendulum axis. So, we speak of a quasi-homoclinic orbit
which still gives large oscillations of the pendulum from the
downward position to the upright one which is the main
interest for swing-up. In experiments, the total energy of the
cart-pendulum

E(q, q̇) =
1
2
(M +m)ẋ2−mlẋθ̇ cosθ +

2
3

ml2
θ̇

2

+mgl(cosθ −1) (11)

is calculated at each instant when the cart is at its maximal
displacement (i.e. zero cart velocity) on the modified Van der
Pol trajectory. Starting from a negative value E1 = −2mgl
when the system is at rest on the downward pendulum
position, the energy increases due to (9) until it comes
slightly greater than zero (to take into account friction forces)

E0 � 0. (12)

The swinging controller is then switched off, and the pen-
dulum is left to travel on its quasi-homoclinic orbit toward
the upright position. Being crucial to a successful swing up,
this is achieved by tuning both the controller parameters
α, β , h, p and the reference parameters ε , ρ , µ of the
Van der Pol modification (4). Appropriate values of the pa-
rameters to be tuned are carried out in successive numerical
experiments. In our experimental study, the controller gains
in (9) were set to α = 20rad/sec2, β = 5rad/sec2, h =

0, p = 0 whereas the reference parameters were tuned to
ε = 10 [rad]−2s−1, ρ = 0.2 rad, µ = 0.7×2π s−1.

C. Locally stabilizing controller design

The locally stabilizing controller developed in [6] is de-
fined as:

τ =
Dcosθ[

3+8lλ2θ̇ sinθ
] ×[

−µ(θ , θ̇)−α1sign(s)−β1sign(ṡ)−h1s− p1ṡ
]
,
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D = l(4M+m+3msin2
θ), s = tanθ−λ1ω−λ2ω̇, λ1,λ2 > 0

(15)
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3
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1+ sinθ
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)
, |θ |< π

2
, (16)

is tested in an experimental study. Quite impressive exper-
imental results are obtained for the local stabilization of
the pendulum about the upright position with the controller
parameters α1 = 30 m/s2, β1 = 7.5 m/s2, h1 = 0, p1 = 0,
λ1 = 2 1/m, λ2 = 1 s/m. The results can be observed in
Subsection III-E where the proposed controller is introduced
into a hybrid synthesis of swinging the Cart-Pendulum up
and balancing it about the vertical.

D. Hybrid Controller Design

In order to accompany swinging the pendulum up by
the subsequent stabilization around the upright position, the
swinging controller, presented in Subsection III-B, is turned
off once the system reaches the corresponding homoclinic
orbit, and then the locally stabilizing controller from III-
C is turned on whenever the pendulum enters the basin
of attraction, numerically found for the latter controller.
The resulting hybrid controller, thus constructed, moves the
inverted pendulum, located on the cart, from its downward
position to the upright position and stabilizes it about the
vertical whereas the cart is stabilized at the desired endpoint.
While being not studied in details here, the capability of the
closed-loop system to reach the homoclinic orbit and entering
the attraction basin of the locally stabilizing controller is
supported by experimental results.

E. Experimental results

Experimental results are plotted in Figs. 3-4. They show
that the pendulum starts from the ”stable” position π , oscil-
lates until it reaches the unstable equilibrium position 0 and
remains there.

Other approaches have been implemented and compared
(see Fig. 5 corresponding to [3]). It can be seen that the
swing-up controller was not able to drive the pendulum
close to its top position. This is mainly due to the neglected



Fig. 3. Cart position and rod angular position versus time.

Fig. 4. Control input versus time.

friction effects. A linear static state feedback has also been
implemented for local upright stabilization (see Fig. 6). Large
amplitude oscillations (limit cycles) occur.

A drawback of sliding mode control could be the high
frequency oscillations in the control signal (see Fig. 4) called
chattering. There is a huge literature on how to attenuate this
problem. A simple solution, which we used here, is to replace
the sign function in (9) by a continuous one (arctan).

IV. CONCLUSIONS

Orbital stabilization of a cart-pendulum system, presenting
a simple underactuated (two degrees-of-freedom, one actua-
tor) manipulator with friction, was under study. The system
was constrained to track a modified Van der Pol oscillator
that possesses a stable limit cycle, governed by a standard
tunable linear oscillator equation. A quasihomogeneous sec-
ond order sliding mode based control synthesis was utilized
to design a variable structure controller that drives the
pendulum to a desired zero dynamics manifold in finite time
and maintains it there in sliding mode in spite of the presence
of external disturbances. Once the cart-pendulum reached
a sufficient level of energy, the control was switched to a
locally stabilizing quasihomogeneous controller, solving the
problem of moving the pendulum from its stable downward

Fig. 5. Experimental results for the control designed in [3] (cart position
and pendulum angular position).

Fig. 6. Experimental results for linear static state feedback local stabiliza-
tion [1] (cart position and pendulum angular position).

position to the unstable inverted position and stabilizing it
about the vertical.

Capabilities of the quasihomogeneous synthesis and its
robustness against friction forces and external disturbances
were successfully illustrated on an underactuated cart-
pendulum testbed and it is hoped to suggest a practical
framework for orbital stabilization of underactuated manip-
ulators.
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