
HAL Id: inria-00180336
https://hal.inria.fr/inria-00180336

Submitted on 18 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Abstracting connection volatility through tagged futures
Johan Fabry, Carlos Noguera

To cite this version:
Johan Fabry, Carlos Noguera. Abstracting connection volatility through tagged futures. Ambien
Intelligence Developments (AmI.d), Sep 2007, Sophia Antipolis, France. pp.1-12. �inria-00180336�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50354834?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00180336
https://hal.archives-ouvertes.fr

Abstracting connection volatility through tagged
futures

Johan Fabry and Carlos Noguera

INRIA Futurs - LIFL, ADAM Team
40, avenue Halley,

59655 Villeneuve d’Ascq, France
{johan.fabry|noguera}@lifl.fr

Abstract. The property of connection volatility, fundamental to the
ambient intelligence (AmI) domain, makes it hard to develop AmI appli-
cations. The underlying reason for this is that the code for this concern
is scattered and tangled with the core functionality of the application.
In this paper we introduce the abstraction mechanism for connection
volatility that we have created, which allows for this concern to be im-
plemented in a non-tangled fashion. The core of our mechanism consists
in extending the existing concept of futures with meta-data, i.e. tags, to
specify values to be used in an offline state. The implementation of our
abstraction mechanism, in Java, is called Spoon Graffiti. The meta-data
of the futures is described using annotations and the intended behavior
is achieved trough source-code processing, using the Spoon annotation
processor. As a result of using tagged futures and Spoon Graffiti, the
specification of offline behavior of an AmI application can be performed
in a non-tangled way, which significantly eases development.

1 Introduction

Developing Ambient Intelligence (AmI) software is a non-trivial task. This is be-
cause, not only do we need to deal with many of the known issues of distributed
systems, e.g., inherent concurrency and network latency, but also we face the fun-
damental problem of connection volatility. As ambient devices frequently come
in and out of range of each other, connections will be constantly established
and broken. Connection volatility is therefore a fundamental problem of AmI:
whereas in non-AmI programs connections are assumed to be permanent, in AmI
the inverse is the norm.

Developing applications that behave correctly in the presence of connection
volatility is a difficult task. An important reason for this is that the code for
this concern is scattered throughout the application, and tangled with the core
functionality of the application. Furthermore, no abstraction mechanisms have
yet been developed that provide an adequate amount of support for connection
volatility. In this paper we introduce the concept of tagged futures as a valid
abstraction mechanism for connection volatility in AmI applications. Tagged
futures allow the specification of the offline behavior of the application in a

straightforward and non-tangled manner. Furthermore, our proposal includes
support to semi-automatically transition from an online to an offline state, and
vice-versa. Again this support is provided at a higher level of abstraction and is
not tangled with the core application code.

A number of abstraction mechanisms have previously been developed for
connection volatility [?,?,?,?,?,?,?], however, none of these provide adequate
support for specifying offline behavior of the application. One such abstraction
is the use of futures [?], as proposed in an ambient context by Dedecker et.al. [?].
We can use futures as empty place-holders for return values of network oper-
ations. Futures have the important advantage that they do not introduce any
tangling of the connection volatility concern in the application. Their downside
is however that in a disconnected setting they only allow an application to con-
tinue working in a very limited fashion. It is our opinion that the restrictions that
are imposed are too strong, as we shall show in Sect. 2.2. We therefore propose
to enrich futures, to allow them to be more amply useful. Tagged futures allow
metadata, i.e., tags, to be attached to them. This metadata can then specify
a mock value to be used during disconnected operations. As we shall show in
this paper, the use of such metadata makes futures applicable in a more realistic
setting.

2 Future Problems

Futures, also sometimes referred to as promises, essentially are placeholder values
for an as yet undetermined object. When the actual value for that object has been
determined, the future is automatically resolved. Resolving causes the future to
transparently become the new object. Futures can be passed around as if they
were the resolved value, without this affecting the behavior of the application.
It is only when the future itself is accessed, e.g., through a method call or a field
access that the behavior of the application differs. Accesses to a future block
until the future is resolved. When the future is resolved, any blocked accesses
are forwarded to resolved value for the future. An important advantage of futures
is that, in the code, they are indistinguishable from the objects for which they
are place-holders. As a result, this abstraction for connection volatility does not
introduce any tangled code.

We can use futures as return values of network operations, allowing the ap-
plication to continue to function in a disconnected fashion. As long as the future
itself is not accessed, the application will function as normal. However, when
a future is accessed, the application will block. The application will only con-
tinue after the future has resolved, in other words, only after the network link is
established, the remote call has been executed and its return value is known.

2.1 The Shopping Application

We will employ a running example to illustrate an important limitation of fu-
tures, and show how our proposal can address this limitation. This running
example is a shopping list application, a screen shot of which is shown in Fig. 1.

Fig. 1. Screen shot of the shopping application when inside a store.

The list can contain two kinds of products: generic products such as eggs
and flour, and specific products that also identify a brand and container size.
In Fig. 1, the first two items are specific products, and the last two are generic
products. When inside a store, the list contains extra information. This is ob-
tained using a network local to the store itself. The location of the products
inside the store is shown, and for specific products their price and discounts, if
any, are also displayed.

In a first step, we have implemented the shopping application as a non-AmI
distributed system, taking care to have a clean modular decomposition of the
application. Figure 2 shows the class diagram of this implementation, where
we have omitted impertinent classes. The diagram is fairly self-explanatory. The
only classes meriting an extra description are Shop Product Info and Specific
Info: These classes contain the extra information for a given product that is
displayed when inside a shop. Whenever the user wishes to add an item, the
Shopping List firstly creates a Product or Specific Product, depending on
the amount of information given. The shopping list then requests the Shop for
the extra information for that product, and links this to the Product before
adding the item to the list.

Shop
Description

Discount

Name
Product Shopping List

Location
Shop Product Info

Price
Specific Info

Brand
Unit Quantity

Specific Product

1

1

1
*
1

1

1

*

Fig. 2. Diagram of relevant classes of the shopping application

2.2 Features Missing From Futures

When the shopping list application is not connected to the server, using futures
as placeholders for the Shop Product Info or Specific Info allows it to con-

tinue operating despite no such information being available. The future is linked
to the Product or Specific Product, and the item is added to the shopping
list. When entering a shop, the shopping list application will connect to a server
and the future will be resolved, allowing the extra information to be shown.
Consequently, it seems that futures are indeed a suitable abstraction for dealing
with disconnected operations in this context.

The above scenario however does not take into account the behavior of the
user interface (UI) shown in Fig. 1. Whenever an item is added to the list,
the UI should, of course, reflect this. Therefore, after the item is added, the
UI refreshes itself, reading out the required values for the different elements
in the grid. When disconnected from the server, some of these values will be
contained within futures, e.g., the place of an item. As a result these calls will
block, blocking the UI and rendering the application unusable until a network
connection is established, which resolves the future.

It is clear that the above behavior is not what a user would expect. It should
be possible to add and remove products at all time, regardless of whether the
application is connected or not. Furthermore, to enable this, the user will be
willing to accept some information not to be available in the list, and to be
replaced with mock values. For example, when disconnected, place and price
of products may be represented by a question mark, and the discount may be
empty. It is however essential that, once a connection has been established, such
mock values are replaced with the true values as obtained from the server. Vice-
versa, whenever the connection is lost, these mock values should be put in place
again. This will allow new values to be obtained from a server when a connection
is re-established. In our example, this will allow a user to wander from store to
store, and always have the extra information for the current store being shown.
When entering a store the connection will be re-established with the server for
that store, which entails that the futures will resolve to the data for that store.

3 Tagged Futures

It is our intent to allow futures to be useful beyond what is currently possible
when faced with connection volatility, as we have discussed above. To achieve
this, we propose in this paper to extend futures as follows:

Mock values: can be specified as results of accesses to unresolved futures.
Update mechanism: when the futures are resolved, interested parties are in-

formed and can take appropriate actions.
Invalidation mechanism: reverts a resolved future to its prior form on net-

work disconnects.

The kernel of our proposal lies in adding tags, i.e., metadata to futures. Both
the update and invalidate mechanism are a natural consequence of adding this
metadata, as we discuss next.

3.1 Adding Metadata to Futures

The main contribution we present in this paper is the concept of adding meta-
data, as tags, to futures. This will alleviate some of the limitations of futures,
therefore less restricting the applications’ behavior in a disconnected setting.

Concretely, the first kind of metadata we add is mock values. These mock
values are specified by the programmer of the application, in the class for which
the future is a stand-in. These mock values will then be returned as a result of
an access to the future, i.e., a method call or a field read. Note that we consider
specifying such mock values as optional: if no mock value is given, the access
will simply block.

As a result of this extension of futures, mock values will now be used by other
objects in the system. Whenever futures are resolved, these mock values are no
longer required and should also be replaced by the real values. Furthermore,
any computation that has been performed using the mock values should be
invalidated, and re-executed with the real values. To allow this, we propose the
use of an update mechanism in addition to future resolution. This mechanism
informs objects that use mock values that the future has been resolved. This
allows them to perform any necessary updates, as they see fit.

The above two features provide support for a program to change from a
disconnected to a connected state. To provide support for the inverse: changing
from a connected to a disconnected state, we propose to use an invalidation
mechanism. This mechanism invalidates all objects that are the result of the
resolution of a future. As a result, these objects revert to their original future.
In analogy to network connection, all computation dependent on these, now
invalid, objects is invalid. The above update mechanism will again be triggered,
allowing necessary updates to be performed.

3.2 Futures, Passive Futures, Possible Futures, and Future
Observers

Conceptually, our introduction of tagged futures adds four new kinds of ob-
jects to a distributed system that serve to handle connection volatility. These
new kinds of objects are Futures, Passive Futures, Possible Futures and Future
Observers.

Futures are placeholders for objects that are unavailable due to the absence of
network connections. When the connection is established, futures will automat-
ically resolve to the real value. When the connection is dropped, the real value
will automatically revert to the future. Methods and fields of futures may be
tagged with mock values, to be returned when these are accessed. If no mock
values are given, these accesses block until the future is resolved. In the shopping
application, we can use futures for the Shop Product Info and Specific Info
classes. When disconnected, these will return mock values for the location and
price of objects, e.g., a question mark.

Passive Futures are a simplified version of futures. Passive futures do not have
the ability to resolve to the real value when the network connection is established.
Instead, passive futures let some other object assume responsibility for their
resolution. The object responsible will usually be another future. We introduce
passive futures to allow the resolution of multiple related futures to be handled by
one coordinating authority. In the shopping application a passive future can be
used for the Discount. When disconnected it will return an empty description
for the discount. Upon connection, futures for Specific Info will handle the
resolution of associated Discount instances.

Possible Futures are the objects that are substituted by futures or passive futures
when the application is offline. In the shopping application, the classes Shop
Product Info, Specific Info and Discount therefore are Possible Futures.

Future Observers are objects that may use a mock value of a future. These need
to be notified when a future is resolved and also when an object is reverted
to a future. This allows them to perform necessary updates. In the shopping
application, the shopping list is a future observer. It observes all futures for Shop
Product Info and Specific Info objects, and will refresh the UI after futures
are resolved or reverted. As a result, when in a shop the additional information
will be shown, and outside of a shop the mock values for this information.

4 Implementing Tagged Futures with Spoon Graffiti

We have chosen to implement our proposal using source-code transformations so
that tagged futures have a minimal impact at runtime. The system we created
is based on the Spoon transformation engine [?], and is called Spoon Graffiti1.
Spoon allows the transformation of a program by means of successive processing
rounds. These are implemented as visitors of a model derived from the pro-
gram’s abstract syntax tree. They are directed by the annotations present on
various source code elements (classes, methods, fields, etc). Spoon is seamlessly
integrated with the Eclipse IDE. This permits our tool to report errors on the
definition of the tags in a transparent way, that is, errors can be presented just
as compilation errors. This is specially useful when processing annotations that
have Java expressions as arguments, as will be presented in the next section.

Thanks to using source-code transformations, the only overhead which re-
mains at runtime is a class that reifies the online or offline state of the application.
This minimal infrastructure is dependent on the distribution mechanism used,
which currently is Java RMI. This class can however easily be re-implemented for
a different distribution mechanism. The bulk of the behavior of the application,
with regard to connection volatility, is implemented outside of this infrastruc-
ture, and we discuss it next.

1 Because the future is tagged.

4.1 Tagged Futures as Annotations

To add support for connection volatility to a distributed application, a developer
adds annotations to the code, as well as a number of additional methods. The
use of annotations allows this extra behavior to be added without tangling it
with the core behavior of the application.

The behavior of Futures and Passive Futures is realized by modifying the
code of the classes of Possible Futures. Modifying the classes thus avoids issues
regarding object identity, as the Future is the same object as the Possible Future.
The downside of this is that, if the Futures are not passive, Possible Future
classes need to implement a method for resolution. Similarly, generic behavior
is added to classes that contain the annotations for a Future Observer. Methods
that perform the actual update of the observer need to be implemented by the
developer. We discuss this in more detail following the five types of annotations
we have defined, which are shown in Tab. 1.

Type Optional Argument Usage

@Future Method, Field An expression Future, Passive Future
@Connect Method Future

@ObservedFuture Local Variable Future Observer
@Online Method Class Future Observer
@Offline Method Class Future Observer

Table 1. Defined annotations with their type and corresponding usage

The @Future annotation is added to a method or a field, making the class
that contains it a possible future class. If no argument is given to the annotation,
calls to that method or accesses to that field when the application is offline
will block. Otherwise the result of evaluating the argument expression (which is
encapsulated in a string literal) is returned. Note that in possible future class,
methods and fields that have no such @Future annotations are not modified. This
is so to support behavior which is unaffected by the presence of a connection.

Possible Futures that also contain the @Connect annotation will be replaced
by futures that are not passive. The annotation declares the method that is called
to resolve the future. The method will be called when a reconnection occurs. It
should act as an initializer for the object: assigning to all fields the values it
obtains over the network.

Future observers indicate which possible futures they observe using the
@ObservedFuture annotation, which is given to instance variables of methods.
At runtime, all values assigned to these variables will be considered as being
observed. Upon network connection, these futures will be resolved by a call to
their method annotated with @Connect. If a future is observed by multiple ob-
servers, this method will only be called once. Also, if a future is not observed,
the method will not be called, i.e., it will not be resolved.

Future observers declare their interest in notification of future resolution or
reverting to futures by annotating methods with @Online respectively @Offline.
These methods should take one argument, of the type of the superclass of all pos-
sible future classes. After a future resolves respectively a possible future reverts,
these methods will be called with the just changed object as argument.

5 The Shopping Application Revisited

We now illustrate how tagged futures and our implementation using Spoon Graf-
fiti provides for a usable and non-tangled abstraction of connection volatility.
We do this by revisiting the shopping application, of which the modifications
are outlined in Fig. 3.

Shop
Description

Discount

Name
Product Shopping List

Location
Shop Product Info

Price
Specific Info

Brand
Unit Quantity

Specific Product

1

1

1
*
1

Future Observer

Passive FutureFuture

Passive Future

Future

1

1

*

Fig. 3. Offline shopping application, with object kinds defined by the annotations.

We do not treat the entire application here, but instead focus on significant
sections. We first discuss the Specific Info and Discount classes, before talking
about the Shopping List and the Shop. Below is an excerpt of the code for the
Specific Info and Discount classes:

public class SpecificInfo extends ShopProductInfo {

private String price; private Discount disc;

@Future("\"TBD\"")

public String getPrice () { return price; }

public String getDiscount () {return disc.reduction_type; }

@Connect

public void become (){

SpecificInfo realSPI = (SpecificInfo)

Shop.getProductInfo(target_product);

location = realSPI.location;

price = realSPI.price; discount = realSPI.discount; }

[... constructors omitted ...] }

public class Discount {

@Future("\"TBD\"")

public String reduction_type;

[... constructors omitted ...] }

This code first shows how the @Future annotation can be applied to both
methods and fields. Second it illustrates a use of a method without a @Future
annotation tag, to delegate to a Discount object, which itself takes care of
disconnected operations. A similar case is in Shop Product Info, which allows
a reference to the product name to be obtained by the shopping list. Third, this
code provides an example of how to resolve a future, in the become() method.
This method obtains a new Specific Info from the server, and simply copies
over all the relevant data, including the Discount object. As a result, futures
for Discount objects can be passive. We omitted in the listing above the two
constructors for each class: one for a normal instantiation used when online, and
one for an ’empty’ instantiation used when offline.

public class ShoppingList implements TableModel {

public void addProduct(ShopProductInfo prod , Integer amt){

@ObservedFuture ShopProductInfo p2 = prod;

products.add(prod); prod_amounts.add(amt);

this.changed(prod); }

@Online

@Offline

private void changed(ShopProductInfo prod){

for(TableModelListener listener : tml)

listener.tableChanged(new TableModelEvent(this)); }

[... fields and table model methods omitted ...] }

public class Shop {

@Future("ShopProductInfo.createEmptySPI(prod)")

public static ShopProductInfo getProductInfo(Product prod){

[... body omitted ...] }

[... server implementation omitted ...]

}

The Shopping List class implements the Java Swing Table Model class, which
allows it to be used in a Swing table, as shown in Fig. 1. Adding a product to the
list, in the addProduct method implies that futures for it are observed, which is
declared through the @ObservedFuture annotation. Future resolution, reverting
to futures, as well as adding and removing products all trigger the changed()
method. This method simply refreshes the UI.

The Shop is a passive future, that in an offline state returns empty Shop
Product Info objects when queried, as indicated by its @Future annotation. The
convenience method called in the argument of the annotation creates empty
Shop Product Info or Specific Info objects. As the Shop itself contains no state
that needs to be updated when the connection goes online or offline, it can be
represented by a passive future when offline. Note that by having the Shop itself
as a tagged future we do not need any extra mechanism for the creation of futures
when the application is offline.

This concludes the revisit of the shopping application. When this application
is offline, the extra information for a product will be displayed as TBD. When the

application goes online, the extra information will automatically be obtained
from the server and displayed. To implement this behavior, no code needed
to be added to, or changed in, methods that provide the core functionality of
the application. As a result, this implementation shows that tagged futures,
as implemented in Spoon Graffiti, are indeed a non-tangled abstraction that
provides adequate support for connection volatility.

6 Related Work

Related work can be subdivided in to major categories: distributed languages
and distributed middleware.

Using futures as return values of a synchronous call has previously been
used in languages such as ABCL/f [?] and Argus [?] (where they are known
as promises). However in both these languages accessing a future blocks, which
yields the problem we have elaborated in Sect. 2.2. In the AmbientTalk lan-
guage [?,?], calls are asynchronous, and a special when construct is used to delay
execution of a block of code until the future is resolved. Again, as accessing an
unresolved future blocks, this yields the problem described in Sect. 2.2. Further-
more, we consider the use of the when construct to produce code which is more
tangled than our solution.

A significant amount of research has been performed on middleware for mo-
bile networks, however to the best of our knowledge no system has yet been
constructed that provides abstractions specifically for connection volatility in an
AmI context. The most appropriate middleware solution seems to be Rover [?],
as it allows for queuing of a remote message call in conjunction with weak replica
management. While this can conceivably be used to implement behavior sim-
ilar to the used of tagged futures, this would firstly not be encapsulated as
one abstraction and secondly be unlikely to be tangled code. Similar to Rover,
Coda [?] and XMiddle [?] also provide support for replica management but have
no specific abstraction mechanism for connection volatility.

7 Conclusions and Future Work

In this paper we have proposed an extension to futures to provide better support
for connection volatility in AmI applications. To the best of our knowledge,
this is the first work performed to provide such an abstraction, allowing the
specification of offline behavior in a non-tangled way.

Our proposal add tags to futures, specifying mock values to be used when
offline, together with an update and invalidation mechanism for these mock
values. We have discussed how we have implemented these extensions, and have
shown though an example how they cleanly add support for connection volatility.
We believe that tagged futures are an elegant abstraction for connection volatility
which will significantly ease development for AmI applications.

Future work consists of exploring other kinds of metadata, e.g., instead of
immediately reverting to a future when going offline, specifying a timeout, in-
dicating a time-span in which this data is valid when offline. Furthermore, we
consider adding support for writing to futures, so that when going online this
data is written to the server. This amounts to replica management and will
therefore entail a conflict detection and resolution mechanism, as in Coda [?],
Rover [?] or XMiddle [?].

Spoon Graffiti, the full code of the shopping application example, as well as
other examples can be obtained from: http://spoon.gforge.inria.fr

