
HAL Id: inria-00180477
https://hal.inria.fr/inria-00180477

Submitted on 19 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Open Static Pointcuts Through Source Code Templates
Carlos Noguera, Renaud Pawlak

To cite this version:
Carlos Noguera, Renaud Pawlak. Open Static Pointcuts Through Source Code Templates. Inter-
national AOSD Workshop on Open and Dynamic Aspect Languages, Mar 2006, Bonn, Germany.
�inria-00180477�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50354712?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00180477
https://hal.archives-ouvertes.fr

Open Static Pointcuts Through Source Code Templates

Carlos Noguera and Renaud Pawlak
INRIA Futurs - JACQUARD project

LIFL,Université des Sciences et Technologies de Lille
{noguera,pawlak}@lifl.fr

Abstract
Aspect languages define ways to modularize croscutting concerns
by means of expressing them as aspects. The expressiveness of an
aspect language is very much affected by the expressiveness of the
language it uses to describe pointcuts. This is due to the fact that
pointcuts define what is crosscutting in a crosscutting concern. We
present a mechanism to express type-safe source code templates in
pure Java that improves the expressiveness of pointcut languages,
and an extension to AspectJ that uses templates to enhance its
pointcut designator language.

Keywords AOSD, Pointcut languages, Templates.

1. Introduction
Aspect languages define ways to modularize croscutting concerns
by means of expressing them as aspects. Aspect languages usually
express, as stated in [1], a set of joinpoints that conform to a given
model; a way to select a subset of joinpoints, pointcuts; and the
behavior to execute at selected joinpoints advice.

The expressiveness of an aspect language is very much affected
by the expressiveness of the language it uses to describe pointcuts.
This is due to the fact that pointcuts define what is crosscutting in
a crosscutting concern. To provide a certain degree of genericity,
pointcut languages usually rely on wildcards to specify a family of
joinpoints related by name, as is the case with AspectJ. However,
wildcard-based pointcut languages have drawbacks.

For example, a common place to insert aspects is whenever
a Java bean state changes. The pointcut to match the changes
on an object’s (of class A) state in AspectJ, would then be:
call (public A.set ∗(..)) . This, however, may match unintended
joinpoints, and exclude others that do not comply with the naming
convention.This is a known problem with current aspect language
implementations [4, 2, 7].

In order to alleviate this problem, a more expressive pointcut
language is required. We propose to match, not only on the signa-
ture, but also on the structure of the method; so that, for the set-
ter example, it would suffice to state that the structure of a setter
method is that of, for example, a method that receives a parameter
x of type T and assigns that parameter to a field of the a subtype.
Given that the structure of a method is more related with its be-

Copyright is held by the author/owner(s).

ACM [to be supplied].

havior than the method’s name, specifying structure should allow a
more expressive pointcut language.

To express this setter pattern it would be interesting to use
a source code template that defines the structure to look for by
defining which parts are fixed, and which parts can be varied. In
figure 1, such a structure is presented. In it, parts enclosed in _ are
variable while the rest are fixed (_SubType_ is a subtype of _Type_).

Type _name_ ;

p u b l i c vo id _methodName_ (_SubType_ _x_) {
t h i s . _name_ = _x_ ;

}

Figure 1. Setter structure

In this position paper, we propose a way to extend AspectJ’s
pointcut language with structural constructs in the form of type-
safe native Java source code templates. These templates allow the
definition of complex pointcuts that are difficult (or impossible) to
express using wildcard-based pointcut languages. The rest of the
paper is organized as follows: in section 2, source code templates
using a framework called Spoon are introduced. The use of tem-
plates as Pointcut Descriptors (PCDs) is discussed in section 3.1,
an extension of AspectJ that uses pointcuts and some applications
are shown in sections 3.2 and 3.3. Finally, how this approach relates
to others, and some concluding remarks can be seen in sections 4
and 5

2. Source Code Templates in Spoon
Spoon [6] is a framework for source code processing that we
have developed in the context of the Jacquard INRIA project1. It
provides features such as compile-time reflection, a query system,
and Java 5 support.

Spoon implements source code transformations by reifing the
target’s source code into a typed compile-time (CT) model. When-
ever these transformations consist of adding or replacing elements
of the model, aside of reflection, we have introduced templates as
containers of reusable model elements. Given a template, Spoon is
able to use its CT model to add or replace an element in the model.
The way these templates defined and used is explained in the fol-
lowing sections.

2.1 Definition of Type-safe templates in Java
Templates in Spoon are normal Java 5 classes that implement the
Template interface. Each template defines a number of attributes
that act as parameters representing the variable parts of the tem-
plate. These parameters can represent typed expressions, one or

1 http://www.lifl.fr/jacquard/

many statements blocks, types, and the identifiers of variables and
methods. All other attributes and methods in the Template class
correspond to the fixed part of the template. Figure 2 shows a
complete template2 which describes a method with a (fixed) name
m, and a single parameter with a variable type and name (_T_,
paramName). The body of the method contains a single if state-
ment with its corresponding body.

p u b l i c c l a s s I f T e m p l a t e <_T_> implements Templa te {
Templa t ePa rame te r <Boolean > _cond_ ;
Templa t ePa rame te r <Void > _Tbody_ ;

@Parameter Class <_T_> _T_ ;
@Parameter S t r i n g _paramName_ ;

p u b l i c vo id m(_T_ _paramName_) {
i f (_cond . S ())

TBody . S () ;
}

}

Figure 2. Template

Parameters in templates correspond to two main groups:
TemplateParameters, and @Parameters. The first corresponds
to expressions, statements, and collections of statements. Tem-
plateParameters are parametrized by the type of the element they
represent. Since templates do not use special syntax, they can be
compiled by a standard Java 5 compiler. To be able to take advan-
tage of the compiler’s type-checker, TemplateParameters have an
S() method that has as a return type the type parameter stated on
the TemplateParameter’s declaration. In Fig 2 this can be seen in
the parametrization of the TemplateParameter _cond_. Since _cond_
is parametrized by Boolean, that will be the return type of _cond_.S().
When that expression is used in the body of the if , the com-
piler correctly type-checks it as the expected boolean. In general,
TemplateParameters parametrized by Void correspond to statements
(blocks, ifs, loops).

@Parameters, on the other hand, are use to capture types and
identifiers; in the example above, _T_ corresponds to the type of the
parameter in the method, whereas _paramName_ corresponds to the
name of the parameter.

2.2 Template Matching
Templates, as described in the previous section, define a source
code model in which some elements are variable. By matching
against parts of a program’s source code, we are able to find which
elements conform to the pattern described in the template. For
example, if it was necessary to find all the ifs that do not have
a corresponding else or else if expression, it would be possible
to use the template defined in figure 2, since it describes the desired
structure. To this end, we have implemented in Spoon a way to
match templates to elements of the program.

The matching is performed by traversing the model of the tem-
plate and the model of the program in parallel. For each sub-
element of both models, one of the following cases occur: if they
are equal, then it is checked if their children match; if they are not,
and the template’s current element is a parameter, a match is found;
otherwise, the two models do not match. This process is illustrated
by figure 3. It is important to note that by comparing the two mod-
els, instead of the source code itself, the process can match on ex-
pressions that are written differently, but mean the same thing; for
example, f = 0 and this . f = 0 if f is a field.

2 a type parameter <_T_> is needed to compile the template

Template

i f (_cond . S ())
TBody . S () ;

if

cond.S() _TBody_.S()

Target

i f (x == 0)
x ++;

if

==

x 0

x++

match

match

Figure 3. Template model matching

While templates may be useful for describing some code struc-
tures in a given program, they may fall short when using them to
express, for example, negative matches (when trying to match the
places where a structure does not occur), optional matches or more
complex matching strategies. For these cases we have implemented
a way to open up the matching process by allowing the programmer
to control how certain template parameters are matched. To this
end, the @Parameter annotation takes an optional match parameter
that specifies a class of type ParameterMatcher to which the match-
ing engine will delegate the match decision.

In figure 4, a fragment of the template introduced in figure 2
with a custom matcher is shown. In it, access to both the model of
the template and the target code to match, as well as the template
matching engine are provided.

. . .
@Parameter (match= T e s t M a t c h e r . c l a s s)
Templa t ePa rame te r <Void > _Tbody_ ;

. . .
p u b l i c vo id m(_T_ _paramName_) {

i f (_cond . S ())
TBody . S () ;

}
}

p u b l i c c l a s s T e s t M a t c h e r
implements P a r a m e t e r M a t c h e r {

boolean match (Templa teMatcher t e m p l a t e M a t c h e r ,
CtElement t e m p l a t e ,
CtElement toMatch) {

/ / P a r t i c u l a r match s t r a t e g y
}

}

Figure 4. Open template parameter

3. Open Static Pointcuts
In this section, a way to use templates as PCDs is discussed. As a
proof of concept, we have implemented an extension to AspectJ 5
that includes a limited form of template pointcuts. Finally we show
some examples to support the usefulness of template pointcuts.

3.1 Templates as Pointcut Designators
As stated in section 1, templates offer a more expressive way to
define certain static pointcuts by declaring the structure of the
joinpoints, rather than wildcard-based pointcut languages.

To implement template pointcuts, the aspect tool must check
each joinpoint in the program to see if it matches the template, and
advice those that do. Template pointcuts can be used in combina-
tion with dynamic pointcuts constructs, for example, to advice a
call to a given method when it has a certain structure, i.e. matches
a template.

3.2 Definition in AspectJ 5
To test the utility of using templates as pointcuts, we have added
them to AspectJ. To this end, we base the prototype on the “annota-
tion based development style” (@AspectJ) introduced in AspectJ 5.
@AspectJ allows the writing of aspects as normal Java classes that
use annotations to define pointcuts, advice and inter-type declara-
tions. Since aspects are valid Java classes that do not use special
syntax, we are able to process them using Spoon to add the notion
of template pointcuts. Note that in order to do this, the source code
of the whole program must be available to Spoon.

Whenever a template pointcut is needed, the AspectJ pointcut is
annotated with a @Matches annotation that takes as parameter the
class that contains the template. Spoon is then used to process the
annotated aspect. It uses the template in the annotation’s parameter,
and tries to find all the places (methods or classes depending on the
template) that correspond. When an element matches the template,
it is annotated with a marker annotation derived from the name of
the template, and the original @AspectJ pointcut is modified to take
into account the marker annotation.

A template may refer to the structure of the method that is be-
ing called (target), or it may refer to the structure of the method
that produces the call (source). This distinction is taken into ac-
count by using @Matches for target methods, and @SourceMatches
for source methods. The use of one or the other produces different
modifications to the original @AspectJ PCD; @Matches are trans-
lated into @annotation(Marker), while @SourceMatches are translated
into @withincode(Marker). Other annotations such as @NotMatches
are implemented with their respective modifications to the @As-
pectJ PCD.

An example is presented in figure 5. In it, the template intro-
duced in figure 2 is used to define a “guarded method”, which
stands for a method that only executes if a condition is met.
After the aspect has been processed by Spoon, the PCD on
the example will be changed to "call * org.test.A.*(..) &&
@annotation(Marker_IfTemplate)".

@Aspect p u b l i c c l a s s Example {

@Matches (I f T e m p l a t e . c l a s s)
@Before ("call * org.test.A.*(..)")
p u b l i c vo id a d v i c e () {

Logger . l o g ("call to guarded method") ;
}

}

Figure 5. @AspectJ and template pointcut

3.3 Applications
Idiom checking. With AspectJ, it is possible to declare that a
pointcut corresponds to unwanted patterns in the source code. This
is archived by using declare error and declare warning followed by
a PCD that matches the unwanted pattern. Using only AspectJ’s
pointcut syntax, the expressiveness of the errors becomes limited
to calls and executions. However, using templates, it is possible
to express unwanted idioms in the source code inside methods.
For example, given that Strings in Java are immutable, writ-
ing String s = new String("x"); creates two strings: one because of

the new and one for "x". A template containing this idiom can
be created and associated with an AspectJ’s declare warning to
warn whenever string objects are being wasted. Such a template
would be written as String _s_ = new String("_string_"); (where
both _s_ and _string_ are variables) and then used to annotate a
declare warning.

Partially weaved aspects. Aspects are normally used to add be-
havior to a base program. If it is the case that the program already
(partially) implements it, the programmer must be careful not to in-
ject the behavior twice. This situation can negate the advantages of
wildcard-based pointcut languages since the name of the joinpoint
alone says nothing of whether the behavior is present or not.

Template pointcuts can aid in this case by filtering out those
joinpoints that already address the concern. The @NotMatches an-
notation can be used in an AspectJ pointcut to include joinpoints
that do not match a given template. Using this annotation, it is pos-
sible to filter out those methods that have a structure similar to that
of the corresponding advice. For example, in the aspect on figure 5,
all calls to a “guarded method” are logged. It would be interesting
not to advice methods that already implement logging within their
body. This is achieved by annotating the PCD with an additional
@NotMatches(Logged.class) – defined in figure 6. The @NotMatches
annotation modifies the PCD by inserting a @annotation(Marker). In
the Logged template a special annotation @Statement is used to say
that the structure to match is only that of the statement contained
inside the dummy method.

p u b l i c c l a s s Logged implements Templa te {

Templa t ePa rame te r < S t r i n g > _message_ ;

@Statement
p u b l i c vo id dummy () {

Logger . l o g (_message_ . S ()) ;
}

}

@Aspect p u b l i c c l a s s Logging {

@NotMatches (LoggedTemplate . c l a s s)
@Before (/∗ AJ p o i n t c u t e x p r e s s i o n ∗ /)
p u b l i c vo id l o g () {

Logger . l o g ("Some message") ;
}

}

Figure 6. Template used to filter partially implemented concerns
and corresponding aspect

Caller-side patterns Certain tasks in Java are achieved through
a well-established protocol; for example reading from text files. A
usual way to read from a text file is by using a FileInputStream ,
and then convert it into a BufferedInputStream so that lines can be
extracted from the file. BufferedInputStreams, however, can be used
as decorators for other stream sources, such as URL connections.
Therefore, to place an advice each time that a line is read from a
file by BufferedInputStream#readLine() , it is necessary to filter out
those calls that do not come from a FileInputStream . Using tem-
plates, this can be achieved by creating a template that describes
the pattern (shown in figure 7), and annotating the advice with a
@SourceMatches annotation. The _before_ and _after_ template pa-
rameters represent multiple statements, that are used to allow the
pattern to appear anywhere inside a method.

p u b l i c c l a s s F i l e R e a d e r T e m p l a t e
implements Templa te {

@Parameter S t r i n g _f i l eName_ ;
@Parameter S t r i n g _ f i s _ ;
Templa t ePa rame te r <Void > _whi l eB lock_ ;
T e m p l a t e P a r a m e t e r L i s t _be fo re_ , _ a f t e r _ ;

@Sta r tBlock
p u b l i c vo id t e s t () throws IOExcep t i on {

_ b e f o r e _ . S () ;
F i l e I n p u t S t r e a m _ f i s _ =

new F i l e I n p u t S t r e a m (_f i l eName_) ;
B u f f e r e d R e a d e r _ i n p u t _ =

new B u f f e r e d R e a d e r (
new I n p u t S t r e a m R e a d e r (_ f i s _)) ;

whi le (_ i n p u t _ . r e a d L i n e () != n u l l)
wh i l eB lock . S () ;

_ a f t e r _ . S () ;
}

}

Figure 7. Template to match the structure of file reading in Java.

4. Related Work
In [4], Gybels et al. introduce a pointcut language for Smalltalk that
addresses the issues presented here. However, they use Prolog pred-
icates as PCDs; these predicates reason about dynamic as well as
static pointcuts. By using logic programming and unification, they
count with a more expressive way to describe pointcuts. Neverthe-
less, describing complex static shadows with logic predicates is not
as straight forward as using source code templates.

In a similar approach, Kniesel et al [5] propose an extension to
the AspectJ language called LogicAJ. They also use Logic asser-
tions to obtain a more expressive pointcut language that carries the
same advantages as Gybels’ approach. Still, despite the use Java as
a base language, they do not offer a notion of type safeness in their
approach.

Also, Eichberg et al [3] propose the use of the XQuery func-
tional language on XML representations of Java classes to describe
pointcuts. The use of functional language provides advantages over
logic-based approaches such as improved composability. Since the
pointcuts are described on an XML model of the program, their
XQuery expressions can become hard to understand when com-
pared with native source code templates in which the structure they
represent is closer to the one of the method.

Josh [2] is an aspect language inspired in AspectJ proposed by
Chiba et al. As main feature, Josh proposes open pointcuts. Point-
cuts in Josh are defined by implementing a method, in pure Java,
that decides if a joinpoint should be adviced or not by inspecting
the structure of the joinpoint. Their approach is similar to ours
in the use of CT reflection to specify open pointcuts. In the ad-
vice, template-like parameters for context exposure are used. Josh’s
pointcut language, although open, suffers from the lack of declara-
tiveness of XQuery when compared with Spoon templates. Never-
theless, the use of template parameters in the advice permits greater
genericity than the one provided on our prototype.

5. Conclusion
We have presented an mechanism to express type-safe source code
templates in pure Java, and an extension to AspectJ that uses tem-
plates to enhance its PCD language.

The use of templates to extend AspectJ’s pointcut language is
constrained by its joinpoint model. Given that AspectJ is, mainly,
a dynamic aspect language, it can be difficult to exploit the full ex-

pressiveness of template-based pointcuts. Nevertheless, the proto-
type does enhance the static part of AspectJ, proving its usefulness
in particular for the declare errors /warnings construct.

It may be argued that the use of templates that rely on a certain
code structure that specifies a behavior are more brittle than a
pure wildcard-based approach. However, given that templates are
defined as pure java classes, they will be taken into account by
automatic refactoring tools whenever, for example, renaming or
moving entities (classes or methods) in the system. This will be
a step towards reducing the gap between the base program and
aspects applied to it whenever the system evolves.

While templates provide a way to express patterns that occur
in the source code, these patterns may not be generic enough
to encompass the diverse ways in which a certain task can be
performed (using intermediate variables, for example). For these
complex patterns, programmatic checks can be implemented using
the callback mechanism introduced in section 2.2. Using this, Josh-
like open pointcuts can be implemented. However, we believe that
using a mix of templates and programatic checks eases the task
of writing pointcuts by allowing the programmer to fall back on
compile-time reflection only for the places that really warrant them,
instead of having to describe the whole structure using reflection
alone.

By using template based pointcuts on a fully static AOP lan-
guage, it will be possible to, for example, provide access to the
variables bound during template matching in the advice. This can
improve the performance of aspects that need access to the signa-
ture of the adviced methods.

References
[1] K. v. Berg, J. M. Conejero, and S. Chitchyan. AOSD ontology 1.0.

Technical report, AOSD-Europe Network of Excellence, May 2005.

[2] S. Chiba and K. Nakagawa. Josh: an open AspectJ-like language. In
AOSD ’04: Proceedings of the 3rd international conference on Aspect-
oriented software development, pages 102–111, Lancaster, UK, 2004.
ACM Press.

[3] M. Eichberg, M. Mezini, and K. Ostermann. Pointcuts as Functional
Queries. In Programming Languages and Systems: Second Asian
Symposium, APLAS 2004, pages 366–382, Taipei, Taiwan, November
2004. Springer-Verlag Heidelberg.

[4] K. Gybels and J. Brishau. Arranging Language Features for More
Robust Pattern-based Constructs. In AOSD, 2003.

[5] G. Kniesel and T. Rho. Generic Aspect Languages - Needs, Options
and Challenges, JFDLPA 2005. Sep 2005.

[6] R. Pawlak. Spoon: annotation-driven program transformation — the
AOP case. In AOMD ’05: Proceedings of the 1st workshop on Aspect
oriented middleware development, pages 1–6. ACM Press, 2005.

[7] T. Tourvé, J. Brishau, and K. Gybels. On the Existence of AOSD-
Evolution Paradox. AOSD 2003 Workshop on Software-engineering
Properties of Languages for Aspect Technologies, 2003.

