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Abstract— The paper addresses the problem of motion auton-
omy of Cybercars across a urban intersection. Cybercars are
small electric city vehicles aimed at navigating autonomously. In
the context of a crossing, the motion generation together with its
safety are critical issues. The proposed approach to the problem
lies in the coupling of perception and planning capabilities. A
new car to car communication algorithm provides necessary
information to a trajectory planner capable of iteratively gen-
erate safe trajectories within a dynamic environment in order
to drive Cybercars safely through the intersection. The main
contributions of this work are the development and integration of
these modules into one single application, considering explicitly
the constraints related to the environment and the system and to
provide an original answer to the problem of intelligent crossing.

I. INTRODUCTION

In many urban environments, private automobile use has
led to severe problems with respect to congestion, pollution,
and safety. A large effort has been put in industrial countries
into developing new types of transportation systems, the
Cybercars as an answer to this problem [10]. Cybercars are
city vehicles with fully automated driving capabilities. Such
autonomous systems cannot be realized without using several
capabilities designed to work together in a single application.
Indeed, to safely navigate, the system will have to perceive its
environment, plan its trajectory to the goal and finally execute
it. There are several constraints the planning scheme must
consider. At first, the dynamic nature of the urban environment
(pedestrians, other cars,...) imposes on the navigation scheme,
a real time constraint which is the time that the system
has to take a decision. At second, a complex system as a
Cybercar is constrained by its (nonholonomic) kinematics as
well as its dynamics. The trajectory planning scheme must
explicitly account for theses different constraints in order to
safely move the robot to its goal. As for the perception, there
are situations where the embedded perceptive capabilities
might not suffice. The interesting case of a urban intersection
for instance, requires a cooperation between the Cybercars
in order to safely cross the intersection. This problem lies
at the heart of our paper. In this paper we present an
original approach toward autonomous intersection crossing.
Our approach lies in a Car to Car communication protocol
allowing cooperation and sharing information between the
two Cybercars. Furthermore an original planning algorithm
is used and implemented on a Cybercar in order to safely

generate the control inputs that will allow both Cybercars to
safely cross the intersection. Nowadays several projects have
been promoted by the E.U. commission in order to increase
road safety by using car to car communication (C2C) coupled
with perception systems. We can found project focusing on
intersections like INTERSAFE a Prevent project[5]. The main
purpose of this project is to develop advanced sensor systems
and algorithms to complement C2C communication, so it
will be possible to warn the driver of potentially hazardous
situations. Other projects focus on C2C Communication for
road safety in general, we can found for example eSafety pro-
gram [3], aims at accelerating the development, deployment
and use of systems that use information and communication
technologies to increase road safety. Finally, the Car2Car
Communication Consortium [4] addresses similar problems,
focussing on the creation of a standard for active safety
applications. We detail in §II the planning scheme and §III
the car-to-car communication system. In §IV we present the
integration of both modules and the results of experiments
performed on a Cybercar, the Cycab. Finally we draw some
conclusions and discuss the future work in §V.

II. PLANNING IN DYNAMIC ENVIRONMENT

A. Introduction

Planning in an environment cluttered with moving obstacles
implies to plan under a real time constraint. Indeed, a robotic
system placed in a dynamic environment has a limited time
only to compute the motion plan to be executed. If the
execution of the plan could begin at an arbitrary time, there
would not be any problem. This is however not the case. In
a real dynamic environment, a robotic system cannot safely
remain passive as it might be collided by a moving obstacle.
This time the system has to make its decision is the decision
time constraint, δd and is therefore a real-time constraint
imposed by the environment.

Early work addressing the problem of navigation within
dynamic environments, rely on reactive approaches. These
methods consist in a local exploration of the velocity space,
i.e. the set of all possible velocities of the robot, in order to
find the proper velocity to be applied during the next time
step. For robots controlled in speed and steering angle, the
velocity output can be directly executed by the robot, which
makes these techniques particularly efficient. Their local na-
ture exhibit however strong limitations in terms of conver-
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gence. Besides, complex kinematic or dynamic constraints are
difficult to handle in a general way, without resorting to crude
approximations. Recently, deliberative methods accounting
for time constraints, have been also presented. Deliberative
methods, also referred to as motion planning methods, consist
in calculating a priori a complete motion plan to the goal.
Some approaches based on improved dynamic programming
techniques, have been presented [8]. These methods however
are restricted to low dimension problems and cannot account
for general kinematic or dynamic system’s constraints. Recent
random techniques have been presented with very fast and
impressive results for higher dimension problems [2]. The
real time constraint is however never explicitly considered and
therefore no computation time upper bound can be guaranteed.
Due to the complexity of the motion planning problem,
sometimes referred to as “the curse of dimensionality”, there
is little hope that within an arbitrary bounded time, a complete
plan to the goal might be found. Therefore, the proposed
approach to the problem is a Partial Motion Planner (PMP)
that guarantees a bounded computation time at the expense
of its completeness, i.e. the guarantee to plan a complete
trajectory to the goal.

B. Notations

x

y
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L

Fig. 1. The car-like vehicle A (bicycle model).

Let A denote the car-like robot placed in a workspace W
(fig. 1). The model of the car-like robot used in the planning
strategy is described by the following differential equation :
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This equation is of the form ṡ = f(s, u) where s ∈ S is the
state of the system, ṡ its time derivative and u ∈ U a control.
S is the state space and U the control space of A. A state of A
is defined by the 5-tuple s = (x, y, θ, v, ξ) where (x, y) are the
coordinates of the rear wheel, θ is the main orientation of A, v
is the linear velocity of the rear wheel, and ξ is the orientation
of the front wheels. A control of A is defined by the couple

PLANNING PLANNING

EXECUTION

time t

PMP Cycle (t+1)PMP Cycle (t)

Get model
(1)

(2)

(3)

Fig. 2. Partial Motion Planning architecture.

(α, γ) where α is the rear wheel linear acceleration and γ
the steering velocity, with α ∈ [αmin, αmax] (acceleration
bounds), γ ∈ [γmin, γmax] (steering velocity bounds), and
|ξ| ≤ ξmax (steering angle bounds). L is the wheelbase of
A, A(s) is the subset of W occupied by A at a state s. Let
φ ∈ Φ: [t0, tf ] �−→ U denote a control input, i.e. a time-
sequence of controls. Starting from an initial state s0, at time
t0, and under the action of a control input φ, the state of the
system A at time t is denoted by s(t) = φ(s0, t). An initial
state and a control input define a trajectory for A, i.e. a time
sequence of states.

C. Partial Motion Planner (PMP) Algorithm

The partial motion planner (PMP) is a motion planning
strategy that explicitly accounts for the real time constraint
imposed by the environment. Besides, in a real environment,
the model of the future can be predicted over a limited time
only δv . Therefore, PMP is structured around a constant
planning cycle (PMP cycle in fig. 2) of duration δc, in
order to be able to regularly get an update of the model.
This cycle duration must in fact fulfil the requirement that
δc = min(δd,

1
2δv). The main cycle of PMP is described as

follows, starting at time ti:
1) Get an updated model of the future.
2) The state-time space of A is searched using an incre-

mental exploration method that builds a tree rooted at
the state s(ti+1) with ti+1 = ti + δc.

3) At time ti+1, the current iteration is over, the best partial
trajectory φi in the tree is selected according to given
criteria (safety, metric) and is fed to the robot that will
execute it from now on. φi is defined over [ti+1, ti+1 +
δhi ] with δhi the trajectory duration.

After completion of a planning cycle, it is most likely the
planned trajectory of time horizon δh is partial. Thus, the PMP
algorithm iterates over a cycle of duration δc, as depicted in
figure 2, until the goal is reached. The algorithm operates until
the robot reaches a neighbourhood of the goal state. In case
the planned trajectory has a duration δh < δc, the cycle of
PMP can be set to this new lower bound or the navigation
(safely) stopped. In practice however, the magnitude of δh is
much higher than δc.

In our work, we use a sampling based incremental method.
Sampling based methods avoid the complete space represen-
tation by probing the space by mean of a collision detection
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Fig. 3. Inevitable Collision States (ICS).

module. In our approach however, the usual geometric col-
lision checker is replaced with an inevitable collision state
checker described in the next part. This original module
allows to deterministically extend the tree to the goal while
insuring avoidance of static and dynamic obstacles. This
method is incremental in order to be interrupted any time.
The control space of our system is reduced to the set of
bang bang controls Ũ=(α, γ) with α ∈ [αmin, 0, αmax] and
γ ∈ [γmax, 0, γmin] The exploration of the state-time space
consists in building incrementally a tree as follows: the closest
state sc to the goal is selected. A control from Ũ is applied
to the system during a fixed time (integration step). In case
the new state sn of the system is safe, this control is valid.
The operation is repeated over all control inputs and finally
the new state, safe and closest to the goal, is finally selected
and added to the tree.

D. Safety Issues

Like every method that computes partial motion only,
PMP has to face a safety issue: since PMP has no control
over the duration of the partial trajectory that is computed,
what guarantee do we have that A will never end up in a
critical situations yielding an inevitable collision? We need
however to define the safety we consider. In figure 3(a)
we consider a selected milestone of a point mass robot P
with non zero velocity moving to the right (a state of P is
therefore characterized by its position (x, y) and its speed v).
Depending upon its state there is a region of states for which
P, even though it is not in collision, will not have the time to
brake and avoid the collision with the obstacle. As per [1], it
is an Inevitable Collision State (ICS). In this paper, we refer
to a safe state as ICS-free.

In general, computing ICS for a given system is an intricate
problem since it requires to consider the set of all the possible
future trajectories. To compute in practice the ICS for a system
such as A, it is taken advantage of the approximation property
established in [1]. This property shows that a conservative
approximation of the ICS can be obtained by considering only
a finite subset I of the whole set of possible future trajectories.
For our application we consider the subset I of braking tra-
jectories obtained by applying respectively constant controls
(αmin, γmax), (αmin, 0), (αmin, γmin) until the system has

(a) Cybercar approaching a crossing (b) Cybercar braking in order remain
safe

(c) Cybercar stopped in front of a
moving obstacle

(d) Cybercar accelerating and cross-
ing the intersection

Fig. 4. Autonomous intersection using PMP

stopped. Once it is still, it is checked to be collision free (i.e.
over a trajectory obtained by applying constant (0,0) controls)
until the end of the PMP cycle. In the PMP algorithm, every
new state is similarly checked to be an ICS or not over I. In
case all trajectories are in collision, this state is an ICS and
is not selected (see fig. 3(b)).

A safe trajectory consists of safe states. However, a prac-
tical problem appears when safety has to be checked for the
continuous sequence of states defining the trajectory. In order
to solve this problem and further reduce the complexity of the
PMP algorithm, we presented in [11] a property that simplifies
the safety checking for a trajectory. This property is important
since first, it proves a trajectory is continuously safe while the
states safety is verified discretely only, and second it permits a
practical computation of safe trajectories by integrating a dy-
namic collision detection module within existing incremental
exploration algorithms, like A* or Rapidly-Exploring Random
Tree (RRT).

In the context of a crossing, the constrained geometry is
used in order to use PMP to generate safe longitudinal control
inputs only. Simulation results (see fig. 4) show a 1D safe
trajectory generation for a car crossing an intersection. The
car is controlled in acceleration considering its own dynamics
as well as a knowledge of the surrounding moving obstacles.
In such an example therefore, the lateral control can easily rely
on a specific method that will benefit from the environment
structure, as a vision-based street border following algorithm.
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III. PERCEPTION IN URBAN ENVIRONMENTS : THE OLSR
APPROACH

In order to detect moving obstacles one may rely on the
information given by the attached sensors (like radars, laser
sensors). In this article we propose another approach based on
the information exchange between vehicles. In fact, vehicles
equipped with wireless medium in a crossing may form a
mobile ad hoc network, and then may communicate and
exchange their information. Several protocols were designed
to enable communication for wireless ad hoc networks. One
of them is the OLSR protocol. In the following we give a short
description of the protocol then we describe the architecture
we use to merge the PMP and the communication blocks.

This section describes the main features of the OLSR
(Optimized Link State Routing) protocol.

OLSR is an optimization of a pure link state routing
protocol. It is based on the concept of multipoint relays
(MPRs) [12]. First, using multipoint relays reduces the size
of the control messages: rather than declaring all links, a
node declares only the set of links with its neighbours that
are its “multipoint relay selectors”. The use of MPRs also
minimizes flooding of control traffic. Indeed only multipoint
relays forward control messages. This technique significantly
reduces the number of retransmissions of broadcast control
messages [6], [12]. The two main OLSR functionalities,
Neighbour Discovery and Topology Dissemination, are now
detailed. In our context the neighbours and nodes could be
considered as vehicles or obstacles.

A. Neighbor Discovery

Each node must detect the neighbor nodes with which it
has a direct link.

For this, each node periodically broadcasts Hello messages,
containing the list of neighbours known to the node and
their link status. The link status can be either symmetric (if
communication is possible in both directions), asymmetric (if
communication is only possible in one direction), multipoint
relay (if the link is symmetric and the sender of the Hello
message has selected this node as a multipoint relay), or
lost (if the link has been lost). The Hello messages are
received by all 1-hop neighbours, but are not forwarded.
They are broadcasted once per refreshing period called the
“HELLO_INTERVAL”. Thus, Hello messages enable each
node to discover its 1-hop neighbours, as well as its 2-hop
neighbours. This neighbourhood and 2-hop neighbourhood
information has an associated holding time, the - “NEIGH-
BOR_HOLD_TIME”, after which it is no longer valid.

On the basis of this information, each node independently
selects its own set of multipoint relays among its 1-hop neigh-
bours in such a way all 2-hop neighbours of m have symmetric
links with MPR(m). This means that the multipoint relays
cover (in terms of radio range) all 2-hop neighbours (Figure 5)

multipoint relays
of node m

m

Fig. 5. Multipoint relays of node m

One possible algorithm for selecting these MPRs is described
in [12]. The multipoint relay set is computed whenever a
change in the 1-hop or 2-hop neighbourhood is detected. In
addition, each node m maintains its “MPR selector set”. This
set contains the nodes which have selected m as a multipoint
relay. Node m only forwards broadcast messages received
from one of its MPR selectors.

B. Topology Dissemination

Each node of the network maintains topological
information about the network obtained by means of
TC (Topology control) messages. Each node m selected as
a multipoint relay, broadcasts a TC message at least every
“TC_INTERVAL”. The TC message originated from node m
declares the MPR selectors of m. If a change occurs in the
MPR selector set, the next TC can be sent earlier. The TC
messages are flooded to all nodes in the network and take
advantage of MPRs to reduce the number of retransmissions.
Thus, a node is reachable either directly or via its MPRs.
This topological information collected in each node has an
associated holding time “TOP_HOLD_TIME”, after which it
is no longer valid.

The neighbour information and the topology information
are refreshed periodically, and they enable each node to
compute the routes to all known destinations. These routes
are computed with Dijkstra’s shortest path algorithm [14].
Hence, they are optimal as concerns the number of hops.
The routing table is computed whenever there is a change
in neighbourhood or topology information.

C. OLSR adaptation to vehicle communications

The proactive behaviour of OLSR protocol is appropri-
ate for vehicle communications. In fact, communicating car
networks should be created quickly, and car appearance (i.e
radio link appearance), or disappearance, should not affect,
the global functioning of the network.

Moreover, OLSR is designed for multihop ad hoc networks,
with a strong and efficient mechanism for data flooding to the
entire network. Handling big networks may be inappropriate
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for vehicle communications. [7], proposes a set of modifi-
cations to OLSR, in order to limit the relaying of topology
information and rapidly build small ad hoc networks well
suited for the dynamic context of vehicle communications in
a crossing. Control information sent by a node (vehicle) is
relayed within a restricted area in order to get the routing and
topology knowledge of the nearby network. This information
is enough to enable the broadcast and the relaying of data to
a bigger area than the nearby known topology.

IV. EXPERIMENTALS

A. System architecture

With the Cycab vehicles the perception in an urban envi-
ronment is handled by a central application that we call Taxi.

Taxi is a multi threaded C++ framework for developing
robotic application using different sensors and actuators. It
includes a set of C++ classes for building applications to be
executed on the vehicle. Our architecture is composed of three
components. The PMP block and its visualization module; the
OLSR communication block which has the task of detecting
new neighbours and broadcasting vehicle information; and
the Taxi application block which coordinate the different
information flows and has the vehicle low level control (see
fig. 6).

PMP block runs the C++ implementation of the algorithms
presented in §III and §II. The tracking of the generated
trajectories is insured by a non-linear closed loop controller
detailed in [13]. Actually, PMP block gives the calculated
trajectory to the Taxi application block which has the control
law to drive the Cycab.

Vehicles (moving obstacles) are detected by the reception of
a set of information forwarded by OLSR block and containing
useful data for PMP. This data could be a description of the
vehicle like its GPS information, its speed, its dimensions, or
its planned itinerary (such as turning left, or right in the next
crossing).

Each vehicle must broadcast periodically this set of infor-
mation to its neighbours in a crossing in order to refresh its
characteristics, because a vehicle could change its direction
or slow down its speed in any moment.

B. Scenario description

For our experiment we have used 2 Cybercars (One Cycab,
a 4 wheeled electric vehicle and one AGV a Yamaha vehicle
based on an electric golf car). Both vehicles were crossing
at the same moment an intersection, and the PMP (Partial
Motion Planner) was running on the Cycab. The Cycab is
fully automated. The longitudinal control inputs are provided
by the PMP module while the lateral control is insured by a
vision based module which detects the road side. The vision
algorithm is based on the Poppet (Position of Pivot Point
Estimating Trajectory) algorithm [9]; it was controlling the
steering. The PMP was controlling the acceleration and the

Fig. 6. Architecture of the embedded Taxi application

Fig. 7. 4G System Mesh Cube

laser scanner was used to stop the car if there was an obstacle
in front.

The cars are linked via a mesh-network over WIFI using
OLSR Ad-Hoc protocol. The entire communication task is
embedded in a small MIPS Linux Box. (4G System Cube:
see fig. 7). During the experiment, each car is flooding
periodically its GPS information to the mesh network. A static
wireless mesh cube has been added at the intersection in order
to enable communication between vehicles by relaying the
forwarded messages, when they were out of reach in terms
of radio.

Generally, PMP needs a good perception to evaluate the
obstacle around the vehicle, so it can plan a new trajectory
and avoid it dynamically. For other experiments we might
use a laser scanner, however in this application, only the data
sent over the mesh network are used to localize the moving
obstacles.
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Fig. 8. The cycab and the AGV in a crossing

C. Results

As the vehicles approach the intersection (see fig. 8),
the wireless links between the three nodes (the Cycab, the
AGV, and the static mesh cube) is established. Hence, the
two vehicles can communicate their GPS information. This
information is initially relayed by the static node when the
cars are out of reach. This is done by the MPR relaying
technique of OLSR. When the two cars are in radio range,
they exchange their information without any relaying.

Each received GPS information is processed by Taxi, and
sent to PMP as an obstacle information (see fig. 9). The
PMP calculates a new trajectory on the basis of each new
obstacle information. When the cars are close to each other,
the trajectory generated by PMP decelerates the car as the
only possible way in this situation to remain safe and let the
second car continuing its trajectory.

Regarding the bandwidth we noticed that we can guarantee
around 500Kbits when the vehicle is communicating through
the infrastructure node (the static mesh cube) and around
3Mbits with a direct connection.

V. CONCLUSION AND FUTURE WORKS

Automated guided vehicles need a strong collaboration
between the motion planning unit and the C2C/C2I commu-
nication. It adds relevant information about the environment,
and it can prevent the perception module from false detection.
Intersections are dangerous zones, so several systems can be
switched on to take control of the car or just warn the driver
to prevent collision.

For our future works, we will used PMP for the full car
control allowing to avoid unexpected obstacles coming into
the intersection instead of only decelerating the car. To this
mean, more accurate sensors like the laser Scanner will be
needed to provide sufficient information to PMP.

Fig. 9. The PMP interface

REFERENCES

[1] Thierry Fraichard and Hajime Asama. Inevitable collision states - a step
towards safer robots? Advanced Robotics, 18(10):1001–1024, 2004.

[2] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock. Randomized kino-
dynamic motion planning with moving obstacles. The International
Journal of Robotics Research, 21(3):233–255, March 2002.

[3] http://europa.eu.int/information_society/activities/esafety/index_en.htm.
[4] http://www.car-to car.org.
[5] http://www.prevent ip.org/en/prevent_subprojects/intersection_safety/intersafe.
[6] P. Jacquet, P. Muhletaler, P.Minet, A. Qayyum, A. Laouiti, T. Clausen,

L. Viennot, and C. Adjih. Optimized link state routing protocol. In
IETF RFC3626, October 2003.

[7] A. Laouiti L. Bouraoui, A. de la Fortelle. Olsr improvement for
distributed traffic applications. In Fourth Annual Mediterranean Ad Hoc
Networking Workshop, MedHocNet’2005, Porquerolles, France, June
2005.

[8] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun.
Anytime dynamic a*: An anytime, replanning algorithm. In Proceedings
of the International Conference on Automated Planning and Scheduling
(ICAPS), June 2005.

[9] S. Dickson M.B Wilson. Poppet: A robust road boundary detection ans
tracking algorithm. In British machine vision conference 1999, June
1999.

[10] M. Parent. Automated public vehicles : A first step towards the
automated highway. In 4th World Congress on Intelligent Transport
Systems, October 1997.

[11] S. Petti and Th. Fraichard. Safe motion planning in dynamic envi-
ronments. In IEEE-RSJ Int. Conf. on Intelligent Robots and Systems,
Edmonton, AB (CA), August 2005.

[12] A. Qayyum, A. Laouiti, and L. Viennot. Multipoint relaying technique
for flooding broadcast messages in mobile wireless networks. In HICSS:
Hawai Int. Conference on System Sciences, 2002.

[13] P. Rives S. Benhimane, E. Malis and J. R. Azinheira. Vision-based
control for car platooning using homography decomposition. In IEEE
International Conference on Robotics and Automation, pages 2173–
2178, Barcelona, Spain, April 2005.

[14] A. S. Tanenbaum. Computer Networks. Prentice Hall, 1996.

461


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for export to IEEE PDF eXpress. May 2005. PaperCept.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




