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Real-time Time-To-Collision from variation of
Intrinsic Scale
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INRIA, Grenoble, France
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Summary. Time-to-collision can be directly measured from a spatio-temporal image sequence
obtained from an uncalibrated camera. This it would appear to offer a simple, elegant mea-
surement for use in obstacle avoidance. However, previous techniques for computing time to
collision from an optical flow have proven impractical for real applications.

This paper present a new approach for computing time to collision (TTC) based on the idea
of measuring the rate of change of the "intrinsic scale". Intrinsic scale is a geometric invariant
that is valid at most points in an image, and can be rapidly determined using a multi-resolution
pyramid.

In this paper we develop the approach and demonstrate its feasibility by comparing the
results with range measurements obtained from a laser ranging device on a moving vehicle.
Experimental results show that this is a simple method to obtain reliable TTC with a low
computational cost.

1 Introduction

This article takes place in the obstacle avoidance context for autonomous vehicle in
dynamic environment. In this domain, the estimation of time-to-collision (TTC) is
crucial. This variableτ has been defined by Lee [11] as the ratio of the distancez

of the object and the relative speed of approach between the robot and an obstacle.
Estimation of TTC has also been proposed as a biological model for insect navigation
[7], bird flight [8] as well as the human "looming" reflex [17].

Most of vision based methods to compute TTC use the optical flow. In a first
method [3], a focus of expansion (FOE) is estimated andτ is computed from the
pixel velocity and the FOE. But this method cannot be appliedif many objects move
independently (several FOE). It has been also shown thatτ can be approximated by
the inverse of the optical flow divergence [16], and in [18] the authors show thatτ can
be directly computed from the optical flow and its derivatives when using a log-polar
mapping. Unfortunately, those methods require a first step of reliable dense optical
flow estimation, which has proved difficult.

In this paper, we propose a simple new approach to direct measurement of time to
collision. Our approach is based on the observation that thelocal "size" of features in
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an image may be directly measured from the scale of extremal points in a Laplacian
scale space. This invariant provide a simple, robust measurement of local size that
can be obtained at most points in an image.

A key problem when using intrinsic scale for time to collision is image registra-
tion. We describe such a registration for natural interest points as defined in [13], as
well as for natural interest lines [9]. We experimentally measure the precision of TTC
obtained from an image sequence taken from a moving vehicle using the distance to
targets as provided by a laser scanner.

2 Computation of TTC

2.1 TTC from variation of size

Time-to-collision is easily derived from geometrical considerations : let P represents
an object in front of a camera such thatP travels toward the camera. We noteF the
focal length of the camera,S the real size ofP , s the size ofP in the image andZ
the distance of the object. (see fig. 1).

Fig. 1. Model of the camera projection. The objectPo with the sizeS at the distanceDis
projected in the focal planeF to obtainPi with the sizes

We can show that
1

s
=

Z

S · F

So, the TTC can be expressed only withs and its derivatives :

τ = −
Z

Ż
=

s

ṡ

The main difficulty is then to compute the object size in the image. Our approach
consists in approximating the size by computing the intrinsic scale from a Laplacian
pyramid.
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2.2 Intrinsic-scale-based size estimation

To estimate a characteristic size of an object in the image, we used a Scale Space rep-
resentation, introduced by Witkin [19] and Koenderink [10]as a continuous extension
of pyramid-based multi-resolution descriptions of images[4], [2].

The scale-space representation of an image,I(x, y), is a continuous space of
imagesL(x, y, σ) obtained by convolution with a variable-scale Gaussian,G(σ):

L(x, y, σ) = G(σ) ∗ I(x, y)

where

G(σ) =
1

2πσ2
e−(x2+y2)/2σ2

The Laplacian of an image is a circularly symmetric second derivative computed
from the convolution of derivatives in orthogonal directions. The Laplacian of an
image can be computed by convolution with sampled Gaussian derivatives.

Lap(x, y, σ) = σ2(
∂2G

∂x2
∗ I(x, y, σ) +

∂2G

∂y2
∗ I(x, y, σ)) (1)

As with the Gaussian function, the Laplacian can be used to define a continuous
Laplacian scale space by varying scale (sigma) over a range of values. Extremal
points in a Laplacian scale space have long been known to provide scale invariant
feature points [5] for matching or registering images. Suchpoints, known as "natural
interest points", have recently become popular for use as key-points for matching and
recognition [13]. Experimental comparison with other key-points has demonstrated
that natural interest points provide reliable scale invariant key-points for registration
and recognition [15].

Except degenerate points, one or more intrinsic scales may be measured at any
position within an image from the values of sigma at which theLaplacian exhibits
a local extrema [12]. This property has been used to define image indexing and
recognition processes that are invariant to camera position [6].

For any image position, the intrinsic scale is proportionalof the characteristic size
of the local image feature. This suggests that Time-To-Collision can be estimated with
an intrinsic scale. However, for such an approach to work, images must be registered.
Such registration can be obtained by detecting and trackinginterest points and lines.

2.3 Object detection and tracking

2.4 Natural interest points

As described in the previous section, extremal points in theLaplacian scale space
can be used for matching. To detect such points, the method consists in computing a
Laplacian sampled scale space. Then, for each level of scale, each pixel is compared
with its eight space neighbors and its two scale neighbors. Apoint is accepted if
it the Laplacian is greater or less than all of its neighbors.To compute an accurate
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estimation of the intrinsic scale, we can approximate the Laplacian profile over a
scale with a cubic spline. The zero of the derivate gives us the intrinsic scale. It
is interesting to characterize significance in order to filter such points. To do so,
it is possible to consider the Laplacian value and the curvature of the Laplacian
profile. The Laplacian value describes the contrast of the points in the image, and the
curvature of the Laplacian profile characterizes the contrast over scales.

Fig. 2. Interest point detection. The size of the circles correspond to the intrinsic scale. Circular
objects as the walker’s body are well detected whereas stretched objects give unstable results.

The figure 2 shows the interest points detected in an urban environment. We can
see that interest points are obtained for circular objects as the walker and some part
of cars. Nevertheless, stretched objects are not adequately described. The pole at the
right is not detected whereas many points are detected on thewall. To resolve this
problem, Lowe [14] proposes to eliminate all points that correspond to boundaries. In
our case, this solution is not acceptable because most of objects in urban environment
are stretched and would not be detected.

2.5 Extension to lines

As seen in the previous section, natural interest points arelocal extrema of the
Laplacian over all directions (x, y and scale). If we relax one spatial constraint, it is
possible to detect elongated feature.

Three steps are needed to detect such feature and to compute their characteristics.
The first step consists in detecting ridge points in the image. Next, a connexity
analysis is computed to separate each feature. The last stepcomputes the first and
second order moments.
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Ridge detection

To extract ridge points at each level, a method has been developed in [9]. For each
pixel of the Gaussian image, the principal curvature direction is computed, and if the
pixel is an extremum of the Laplacian image in this direction, this is a ridge.

The principal curvatures and their directions are respectively the eigen values and
eigen vectors of the Hessian matrix :

H =

(

∂2f
∂x2

∂2f
∂xy

∂2f
∂xy

∂2f
∂y2

)

Where∂2f
∂x2 , ∂2f

∂xy , ∂2f
∂y2 are the second derivates of the Image.

The principal curvature direction correspond to the eigen vector associated to the
biggest eigen value. If the Laplacian assumes a local extremum in this direction, this
is a ridge point.

(a) (b)

Fig. 3. Gaussian image 3(a) and detected ridges 3(b) at the scale level σ = 4. As we can see,
the elongated shape, as the legs or the ground lines are well detected.

The result of this step is a binary image for each scale level,which represents the
ridges (cf. fig.3).

Connexity analysis

Ridge structure is obtained by connected component analysis. Two neighbor points
(over scale and space) have the same label if they are identified as ridge and if the
difference of two local ridge directions at these two pointsis inferior to a threshold.

Computing moments

To obtain the mean position, the mean scale and the orientation of ridge features, we
compute first and second order moments.
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Let N be the number of pixels of the feature andXn=1..N =





xn

yn

sn



 the points

which form the feature, wheresn is the intrinsic scale.
The gravity center is :

µ =
1

N

N
∑

n=1

Xn (2)

To give more weight to hight contrast points, we have to weight the position by
the absolute value of the Laplacian at this position. So the formula becomes :

µ =

∑N
n=1 |lap(Xn)|Xn
∑N

n=1 |lap(Xn)|
(3)

Because we work with a pyramid, each stagek of this pyramid is down-sampled,
so a ridge point in the stagek is equivalent to two points at the stagek − 1. The
formula becomes :

µ =

∑N
n=1 2kn |lap(Xn)|Xn
∑N

n=1 2kn |lap(Xn)|
(4)

The second order moments are needed to evaluate the size and the orientation of
the ridge. The covariance matrixC is :

Cij =

∑N
n=1 2kn |lap(Xn)|(Xni − µi)(Xnj − µj)

∑N
n=1 2kn |lap(Xn)|

(5)

2.6 Tracking interest lines

Our method for tracking object in video is inspired by [1]. Itbegins with a detection
process based on ridge detector explained previously, which gives a set of tracked
objects.

Then for each frame, a correlation process is needed to associate new detected
feature with tracked objects.

Ridge similarity

• Spacial distance:distance between two gravity centers

Sprox =
‖XA − XB‖

sA
(6)

• Scale distance :distance between two average scales

Sscale = | log(
sA

sB
)| (7)
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• Significance:compare the average Laplacian values

Slap = | log(
lapA

lapB

)| (8)

• Second order moments :

Smom =

√

∑

i,j((CA)ij − (CB)ij)2
∑

i,j(CA)2ij
(9)

The combined similarity is the weighted sum of (6), (7), (8) and (9)

Scomb = cposSpos + cscaleSscale + clapSlap + cmomSmom (10)

Wherecpos, cscale, clap andcmom are negative.

Fig. 4.Test sequence for ridge tracking : the licence plate of the car is tracked with our method.
The rectangle represents the region of interest and the segment at center represents the position
and the direction of the tracked ridge

For each tracked object, a region of interest is computed using the position and
the size of the object. A similarity score is then computed for each detected object
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in the new frame, the object which obtains the highest score is associated with the
tracked object and it is updated with the new properties (position, scale, etc.). In the
figure 4, we track the licence plate of the car. We can notice that both the camera and
the car move.

3 Experimental results

To verify the precision of the TTC obtained by our method, we propose to capture
images from a moving vehicle equipped with a laser range finder and a camera. In
order to make the comparison possible, the camera is put on the laser.

In the test case (cf. fig.5(a)), the target is a white reflective mark placed in the
camera axe. This mark can be detected in the laser scan using the intensity of the
reflected signal. The laser provides precise distances to the obstacle and the Time-
To-Collision can be easily computed with the formula :τ(t) = − z(t)

∂z

∂t
(t)

To detect the mark in the image (of size 640x480 pixels), we use our ridge tracker
described in the previous section. The tracker is manually initialized, selecting the
region of interest. At each frame, the object is tracked and its properties (position,
orientation, scale) are computed. We use a Kalman Filter to improve these values.
The time-to-collision is obtained with a windowed linear regression. The global
computation time, including Laplacian scale space calculation, ridge extraction and
tracking and the computation of time-to-collision is about50 milliseconds in a 3GHz
Pentium 4 processor.

In the test, the approach speed is constant and the distance to the obstacle,z(t),
is linear (cf. fig.5(b)). The inverse of the object size in theimage is proportional to
the distance so that the function1s(t) is linear (cf. fig.5(c)). The figure 5(d) shows the
difference between the real TTC obtained by the laser and theTTC computed by our
method. This experiment shows that, after a short time of instability due to the lower
size of the seen object in the image, the TTC is well estimated.

4 Conclusion

The method described in this paper is a new visual approach tocompute the time to
contact from variation of intrinsic scale. To solve the problem of image registration
we use a method based on natural interest points and an extension for oblong objects
which requires an extraction and a tracking of ridges. Such an approach gives good
results on contrasted features. In the shown test, only one object is tracked for more
clarity, but several objects can be tracked at the same time.This approach is interesting
as it uses advantages of cameras (low cost, wide field of view,etc.) and offers low
computation time, thanks to a pyramidal algorithm.

One possible direction to further research will be to generalize the computation of
TTC on more image points in order to obtain more information about the environment,
an ideal case would be to compute a continuous field of TTC. Another point in our
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(a) Video sequence used to evaluate the precision.
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Fig. 5.Test with a constant speed. The distance (5(b)) and the inverse size (5(c)) of the obstacle
are linear. The time-to collision is shown on (5(d)), after aperiod of initialization, the two
curve are fairly near.

approach is the hypothesis that objects move with constant speed. This work uses
an approximation with a piecewise linear model, future workwill explore more
complexes models.
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