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This paper addresses the problem of navigation of complex systems in dynamic environments under uncertainty. Such 
environments impose a hard real time constraint. However, computing a complete motion to the goal within a limited time is 
impossible to achieve in most real situations. The Partial Motion Planning (PMP) approach presented in [1] is used to 
address the planning problem. However, for real applications, it is important to take into account uncertainty. In this paper, 
we present an extension to the PMP that accounts for uncertainty in order to plan trajectories robust to the robot’s errors. 
We show that PMP framework is highly suitable to account for these constraints and present original simulation results of 
robust trajectories for a car-like robot evolving among moving obstacles. 

1. INTRODUCTION 
 
    The motion planning problem has been widely addressed 
during last decade for various systems as a mean to define a 
priori feasible paths (or trajectories) that can safely guide a 
system from an initial state to a goal state while avoiding 
obstacles. Basic motion planning problems assume that the 
current state of the robot is known at execution such that the 
plan can perfectly be executed. However, in real world 
application, uncertainty exists. There is at first uncertainty 
in the model of the environment (geometry, current and 
predicted position) as well as the model of the robot (model 
of the physics, geometry, position) that will affect the plan. 
This type of uncertainty will not be addressed in this paper. 
Secondly, it is important to consider the case where the state 
cannot be known. In this case, information regarding the 
state is obtained from sensors during the execution of the 
plan.  Sensor errors as well as control errors will further 
affect the execution of a motion.  

It is not possible to eliminate these errors and in case 
these imperfections are not small relative to the tolerance of 
the task being performed, it is important to generate plans 
robust to these errors. A solution to this problem is to design 
a scheme that explicitly takes this uncertainty into account 
and guarantee that the goal will be reached. 

 In this paper, we address the problem of motion planning 
under uncertainty for a car-like robot evolving in a dynamic 
environment. Trajectory planning under these constraints 
(non-holonomic and dynamic system, dynamic 
environment) is already a highly complex task for which an 
efficient approach was proposed in [1]. The Partial Motion 
Planning approach is a reactive planning scheme used to 
iteratively calculate safe partial plans by incrementally 
exploring the state-time space of the system, until the robot 
has reached its goal. In this work, we present an extension 
of this scheme accounting for uncertainty in the real robot’s 
motion, using a probabilistic representation of the errors 
that appear at execution in the controls. As a model based 
control method, the PMP is highly suitable for such an 
extension from which we built an original planning method 

that accounts for uncertainty as well a dynamic constraints 
stemming from the system and the environment.   

After a presentation in the second part, of the related 
work, we recall in the third part the principle of the Partial 
Motion Planner. In the fourth part, we present the error 
model and the modified planning scheme accounting for 
uncertainty. Finally, we present original simulation results 
of robust trajectories within dynamic environment in the 
fifth part and draw our conclusions in the last part. 
 
2. RELATED WORK 
 
First work on the subject ([2], [3]) considered bounds or 
worst case on uncertainty within motion planning. A first 
plan was generated with no uncertainty and then the plan 
was analyzed and modified in order to produce a robust 
plan. In these approaches, uncertainty is represented as a set 
of equiprobable possible values. The preimage 
backchaining approach is pioneered in [4]. It was extended 
later [5] and used in simple cases for mobile robots [6]. A 
comprehensive state of the art of preimage backchaining is 
presented in [7]. A preimage for a given motion command 
and a given goal region in configuration space is a set of 
free configurations from which the command can be started 
with the guarantee that the robot will reach the goal. In [8] 
the concept of sensory uncertainty field (SUF) is 
introduced. A SUF represents for each configuration its 
estimation error computed by a sensor based localization. A 
planner using SUF can generate a path that minimizes 
expected errors by traversing workspace areas where visible 
environment features yield low sensory uncertainty. More 
specific approaches are presented in [9,10,11] for which 
non-holonomic constraints are added to the problem.  
 
3. PARTIAL MOTION PLANNING 
 
3.1 Partial Motion Planning (PMP) Cycle 
 
Planning in a dynamic environment implies that the plan is 
anchored in time, ie. starts at a specific time and  reaches the 
goal at a precise time. This timing constraint is a real time 
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constraint that the planner has to fulfill when planning. In a 
real world indeed, a robotic system cannot safely remain 
passive in a dynamic environment during an unlimited time 
as it might be collided by a moving obstacle (decision 
constraint). This decision time is function of the 
environment's dynamicity. Besides, in a real environment, 
the model of the future will usually to be predicted. Such 
predictions have limited validity duration. The planning 
time (or calculation time) is hence strictly limited to the 
minimum of these two bounds. After completion of a 
planning cycle of limited calculation duration, it is most 
likely the planned trajectory of an arbitrary time horizon 
will not reach the goal and be partial. Thus, the PMP 
algorithm [1] iterates over a cycle of limited calculation 
duration. We consider in this paper a constant planning 
cycle in order to be able to regularly get an update of the 
model.  
 Let us focus on the a planning cycle as depicted in Fig.1: 
 (1) An updated model of the future is acquired.   
 (2) The state-time space of the robot is searched using an 
incremental exploration method that builds a tree. 
 (3) The computation time for the current iteration has 
expired; the best partial trajectory in the tree is selected 
according to given criteria (safety, metric) and is fed to the 
robot that will execute it from now on.  
The algorithm operates until the last state of the planned 
trajectory reaches a neighborhood of the goal state.  
 

 
Figure 1: Partial Motion Planning Cycle 

 
3.2 Exploration Tree 
 
The exploration of the state-time space consists in building 
incrementally a tree as follows (Fig.2): a milestone sr is 
generated within the workspace. The closest state sc to sr is 
selected. A control is selected from a set of controls (usually 
bang-bang controls) and applied to the system during a 
fixed time (integration step). In case the new state sn of the 
system is safe, this control is valid, otherwise it is rejected. 
 

 
Figure 2 : Exploration Tree 

 

The safety issue is addressed from the perspective of 
Inevitable Collision States (ICS) a concept that defines the 
safety of a system according to its own dynamics [13]. The 
operation is repeated over all control inputs of the set and 
finally the new state, safe and closest to sr, is finally selected 
and added to the tree.  
 In case the state sr is selected at random, this scheme 
reduces to the famous Rapidly-Exploring Random Tree 
method [14]. Otherwise sr can be selected as the goal, which 
provides high quality collision avoidance trajectories. 
Finally, another interesting variant is to keep in the tree all 
safe nodes instead of the closest only. By this mean, the 
generated trajectory can retrieve its way by back tracking 
the tree in case a local minimum is reached (Fig.3).  
 

 
Figure 3 : Exploration tree avoiding local minimum 

 
4. PLANNING UNDER UNCERTAINTY 
 
4.1 Car-like vehicle model 

 
The dynamic model of the car-like robot is defined by the 

following set of differential equations: 
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Let the considered mobile robot placed in flat a 
workspace This equation is of the form ),( UXfX =&  

where X  is the state of the system, X&  its time derivative 
and U  a control. A state X  of the robot is defined by the 
5-tuple ),,,,( vyx φθ where ),( yx are the coordinates of the 
rear wheel, θ  is the main orientation of the robot, v  is the 
linear velocity of the rear wheel, and φ  is the orientation of 
the front wheels. A control U  of the robot is defined by the 
couple ),(),( 21 γα=uu  where α  is the rear wheel linear 
acceleration.  and γ the steering velocity. The actuator 
constraints are 

maxvv && ≤  (acceleration constraints), 

maxvv ≤  (velocity constraints) 
maxφφ && ≤  (steering speed 
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constraint) and mechanical constraints 
maxφφ ≤  and 

Lkk max
max

tanφ=≤  (maximum turning radius, resp. 

curvature, constraints) are considered as well. 
 

4.2 Error propagation 
 
In this paper the uncertainty stemming from the actuation 

imperfections is considered at the planning stage. Indeed, 
since the model for which motion planning is performed is 
known in advance, it is possible to establish an error 
propagation model for this error. The model of error 
propagation is analyzed using the predictive step of the 
Extended Kalman Filter (EKF) using the linearized form of 
the bicycle model of the car. The linearized model is of the 
form UtBXtAX )()( +=&  with ))(),(,()( tUtXtX

ftA ∂
∂=  

and ))(),(,()( tUtXtU
ftB ∂
∂= .  

The error prediction is given by the covariance 
matrix t

kcomksys
t

kkkkkk BRBRAttPAttP ++=+ )()( 1  

with Rsys the noise on the model and Rcom the noise on the 
command represented using gaussian probabilistic density 
functions. 
 
4.3 Partial Motion Planning under uncertainty 
 
 The covariance matrix informs about the propagation 
errors of the system.  These errors appear as uncertainty of 
the robot configuration during exploration. Since the 
exploration tree method is a sample-based method, it relies 
on a geometric collision checker. The collision detection is 
performed over a circular bounding box of our system. 
Therefore, the maximum calculated component of the 
estimated position error is added to the radius of the circular 
bounding box of our system in order to provide safe 
planning with respect to the system’s actuator errors. 
 
4.4 Towards Information Feedback plans 
 
 The planning problem under uncertainty lies on the 
assumption that limited information only on the state of the 
system can be sensed. Thus, instead of estimating the state 
and pretend that there is no longer any uncertainty, the 
uncertainty is modeled within the planning scheme. In fact, 
such a planning problem is expressed in terms of an 
information space whose elements represent accumulated 
information about a system [12]. In our case, we suppose 
that there are no sensors and therefore no observations. In 
this case the future states are predictable. In the real world, 
observations from various sensors can be provided and 
incorporated in the presented method within the EKF 
framework in the update phase. Furthermore, this method 
can be seen as a step toward information feedback planning 
in the probabilistic information space. This space is derived 
from the information space, where each history information 
state is converted into a probability distribution over the 
state space and a Markov probabilistic model is assumed. 

4. RESULTS 
 
The results show the trajectories of a car after a few 
iterations where the model of the future of the environment 
is known a priori. Figure 4 shows two trajectories, without 
considering the system’s uncertainty (Fig.4a) and a 
trajectory considering the uncertainty of the system 
(Fig.4b). We can see that the trajectory between the two 
obstacles is not safe in case uncertainty is considered and 
therefore not preferred. 
 

 
Figure 4a: Planning without uncertainty  

 

 
Figure 4b: Planning with uncertainty 

 
Figure 5 and 6 significantly illustrate the result of a 

planned motion for a car evolving within a dynamic 
environment (the arrows represent the velocity vector of the 
moving obstacles). The trajectory planned with uncertainty 
(Fig.6) bypasses the obstacles and is safer than the plan with 
no uncertainty (Fig.5) which travels through the obstacles.  
 

  
Figure 5a: planning without uncertainty  

among moving obstacles 
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Figure 5b: planning without uncertainty  

among moving obstacles 
 

  
Figure 6b: planning with uncertainty  

among moving obstacles 
 

 
Figure 6b: planning with uncertainty  

among moving obstacles 
 
4. CONCLUSION AND FUTURE WORK 
 
 In this paper, an extension to the Partial Motion Planning 
scheme presented in [1] is presented to take into account the 
uncertainty in the robot’s controls at the planning stage. The 
PMP is a real time trajectory planning method for complex 
systems evolving within dynamic environments. Since PMP 
is a model based scheme it is extremely well suited to 
interleave with the Extended Kalman Filter (EKF). This 
approach can be seen as a way to express the problem in the 
probabilistic information space computed using the EKF. In 
the presented work, it was assumed that no observations on 
the system’s state could be performed. The predictive phase 
of the EKF was used in order to calculate the error 
propagation in the robot’s (speed and steering) controls. 
The largest error in position is added to the radius of the 
bounded circle of the robot used for collision detection. 

Thus, the PMP generates robust trajectories accounting for 
the drift in the controls. The safety of the trip is therefore 
increased as illustrated by simulation results.  
 Depending on the task to be performed, it might not be 
necessary to perform observation during the trip and still 
reach the goal. A future work would consist in gathering 
observation during execution and update the state of the 
system in the update phase of the EKF.  
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