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Abstract— This paper addresses the problem of motion plan-
ning (MP) in dynamic environments. It is first argued that
dynamic environments impose a real-time constraint upon MP:
it has a limited time only to compute a motion, the time available
being a function of the dynamicity of the environment. Now,
given the intrinsic complexity of MP, computing a complete
motion to the goal within the time available is impossible to
achieve in most real situations. Partial Motion Planning (PMP)
is the answer to this problem proposed in this paper. PMP is a
motion planning scheme with an anytime flavor: when the time
available is over, PMP returns the best partial motion to the goal
computed so far. Like reactive navigation scheme, PMP faces a
safety issue: what guarantee is there that the system will never
end up in a critical situation yielding an inevitable collision?
The answer proposed in this paper to this safety issue relies
upon the concept of Inevitable Collision States (ICS). ICS takes
into account the dynamics of both the system and the moving
obstacles. By computing ICS-free partial motion, the system
safety can be guaranteed. Application of PMP to the case of a
car-like system in a dynamic environment is presented.

Index Terms— Safety - Motion Planning - Dynamic Environ-
ments.

I. INTRODUCTION

A. Overview of the Problem

The problem of autonomous navigation has attracted a lot
of interest for various robotic systems during last decades.
Two main paradigms have arisen to tackle this problem, the
deliberative approaches resulting in global motion planning
schemes, i.e. the determination of a complete plan based on a
priori known information and the reactive approaches taking
decision from real-time data by means of exteroceptive sen-
sors, while moving. Though first problems involved mostly
simple systems evolving among a stationary environment,
it became clear that for real applications, dynamic systems
as well as a dynamic environment had to be considered.
Within a dynamic environment however, the system has
the obligation to make a decision, within a bounded time,
otherwise it might be in danger by the sole fact of being
passive. This limited available time for the system to make
a decision, i.e. plan a motion, depends on the nature and
dynamicity of the environment and is a hard real time
constraint. Unfortunately, global motion planning schemes
based on techniques from computational geometry that were
used for the first problems [1], did not give much hope to
fulfil such a timing constraint due to their inherent NPHard
complexity [2]. Hence, reactive methods have been preferred

and several schemes have been presented [3], [4], [5]. Nev-
ertheless, reactive approaches exhibit strong limitations. In
order to take fast decisions, these methods explore locally
the velocity space of the system from which one admissible
control is selected at a time. As a consequence these methods
exhibit a lack of lookahead, conducting the robot to be
trapped in local minima during its trip, and a weak goal
directedness keeping the robot from reaching the objective.
Despite recent modifications on a few schemes in order to
improve these techniques, once systems with kinematic or
dynamic constraints are considered, specific schemes are pro-
posed [3], [6], [7] but cannot handle such complex systems
in a general form. Fortunately, in the mid 90’s, probabilistic
planners appeared [8] and brought a new powerful tool
for rapid exploration of high dimensional state-time space,
framework presented in [9] used for complex systems and
dynamic environment description. Some recent work could
demonstrate fast planning within a dynamic environment
using probabilistic techniques [10] and [11].

However, this work does not take into consideration the
fact that a complete trajectory to the goal might not be
found before the available allotted time has elapsed. In fact,
as [12], we believe that for complex systems or environment,
a complete trajectory to the goal cannot be found over a
limited time, in general. In such a case, it becomes of the
utmost importance to consider the behaviour of the system
at the end of the trajectory. What if a car ends its trajectory
in front of a wall at high speed? It becomes clear that strong
guarantees should be given to this trajectory in order to
handle the safety issues raised by such a partial planning.

A few papers only have addressed the issue of safety
for partial or incomplete trajectory by providing, in another
context braking policies [13] or more recently by calculating
evasive plan [14] or by insuring the system to be collision
free during an empirical period of time τ [12]. We believe
that these methods propose partial answers to the problem of
safety. In Fig. 1 we consider a selected milestone of a point
mass robot with non zero velocity moving to the right (a state
of P is therefore characterised by its position (x, y) and its
speed v). Depending upon its speed there is a region of states
(in grey) for which P, even though it is not in collision and
is τ -safe, will not have the time to brake and avoid collision.
These states for which no matter what the future trajectory of
the system is, a collision with the obstacle occurs, have been
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Fig. 1. τ -safe State vs. Inevitable Collision State

characterized by [15] as Inevitable Collision States (ICS).
The framework of ICS provides a suitable framework to
establish the relation of the collision states and the dynamic
constraints in order to have strong safety guarantees.

B. Contribution of the Paper

In this paper, we first detail the mechanism of a Partial Mo-
tion Planner (PMP) designed to handle the partial plans that
would result from planning under hard real time constraint
within a dynamic environment. Then, we address the safety
issue related to such a scheme by calculating trajectories
of safe states using the framework of ICS. We provide a
sufficient condition for hard safety guarantee for the PMP,
allowing discrete calculation of the ICS, thus reducing the
computational complexity of the scheme while insuring the
safety of the whole trajectory.

The paper is organised as follows: §2 briefly reviews
the work related to trajectory planning within a dynamic
environment and detail the existing safety guarantees that
have been provided in recent approaches. After introducing
in §3 useful notations and definitions, we detail in §4 the
mechanism of the PMP algorithm for which we provide
and demonstrate in §5 a sufficient hard safety condition. We
present finally in §6 our preliminary results for a car-like
robot and draw our conclusion in §7.

II. PREVIOUS WORKS

Recently, a few reactive approaches have been modified
in order to increase their lookahead and goal directedness.
Basically, these modified methods rely on a map, built at
execution-time, like an occupancy grid, or known a priori.
These modified reactive methods use techniques stemming
from global motion planning techniques, in order to ex-
plore the velocity space of the system and select a discrete
sequence of velocities, introducing in a sense the concept
of partial planning. The trajectory to be followed, ie this
discrete sequence of velocities, is determined by mean of
a navigation function [16] or an incremental algorithm that
builds a tree within the velocity space [17], [18], [19].
However, complex systems or environments remain difficult
to handle in a general form.

Global motion planning schemes have been modified as
well in order to gain some reactivity toward changes within

the environment, resulting thus in safer motion. Beside early
work based on dynamic programming, like the dynamic A*
algorithm (D*) [20], [21], the approach of motion plan-
ning has been mainly reconsidered with the new tools of
probabilistic techniques based on graph or tree construction,
showing impressive results [10], [11]. Only latest work on
this issue, recognise the possibility of complete trajectory
planning failure [12], [14] and attempts to provide safety
guarantee. However the guarantees apply over specific, em-
pirical time period without obvious physical relation with the
considered dynamic system. In [14] the authors complement
the work presented in [10] and define safe planning as
the capacity of the planner to calculate an escape plan in
case it has failed finding a complete trajectory to the goal
during the allotted time. But no details with respect to the
valid time length of the escape plan is given. In the work
of [12] the authors do not attempt to plan at each step a
complete trajectory, the computational constraints being to
high, hence considering the eventuality of partial planning.
They present the concept of τ -safety as a guarantee of no
collision during τ seconds for each milestone of the tree.
Since the planner builds a tree between primary milestones
at the equilibrium state, such a criteria might suffice in the
presented scheme, nevertheless it is too weak for a general
kinodynamic framework.

III. NOTATIONS AND DEFINITIONS

Let A denote a robotic system placed in a workspace
W . The motion model of A is described by a differential
equation of the form ṡ = f(s, u) where s ∈ S is the state
of the system, ṡ its time derivative and u ∈ U a control. S
is the state space and U the control space of A. Let φ ∈ Φ:
[t0, tf ] �−→ U denote a control input, ie. a time-sequence
of controls. Starting from an initial state s0, at time t0, and
under the action of a control input φ, the state of the system
A at time t is denoted by s(t) = φ(s0, t). An initial state and
a control input define a trajectory for A, ie a time sequence of
states. The environment is cluttered with a set of obstacles.
An obstacle B is a closed subset of W . The definition of
a moving obstacle is time-dependent and denoted by B(t).
Let B(t0,∞) denotes the obstacle B from time t0 to ∞, it
models the future behaviour of B. A state s is a collision
state at time t if and only if ∃B such that A(s) ∩ B(t) �= ∅.
As per [15], let us recall the formal definition of an Inevitable
Collision State.

DEFINITION 1 (INEVITABLE COLLISION STATE)
A state s is an Inevitable Collision State (ICS) if and only if
∀φ, ∃tc (for a given φ) such that φ(s, tc) is a collision state.

A safe trajectory is defined as:

DEFINITION 2 (SAFE TRAJECTORY)
A trajectory, defined by the initial state s0 at time t0 and the
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Fig. 2. Partial Motion Planning iterative cycle

control input φ over [t0, tf ], is safe if and only if ∀t ∈ [t0, tf ],
s(t) = φ(s0, t) is not an ICS.

Using these notations and definitions, the next section
details the Partial Motion Planning (PMP) algorithm.

IV. PARTIAL MOTION PLANNER

In general, a robotic system cannot safely stand still in
a dynamic environment (it might be collided by a moving
obstacle). It has to plan a motion within a bounded time and
then execute it in order to remain safe. The time δc available
to calculate a new motion is function of the nature and
dynamicity of the environment. Today, the only motion plan-
ning techniques able to deal with reasonably complex robotic
systems are randomized. Unfortunately, these techniques do
not have any running-time upper-bound: there is no guarantee
whatsoever that a complete motion can be computed within
the time δc available. Like motion planning, partial motion
planning requires a model of the environment, the first step
is aimed at getting this model. This paper does not address
however the problem of model construction. This model can
be given a priori or built using sensor observations. In space
applications for instance, most of the moving obstacles follow
Kepler’s law, which provides a means to compute a full a
priori model of the future [12]. In many other applications
however, the moving obstacles have their own free will and
their future behaviour is only partially predictable (if at all).
In this kind of situations, the model of the future must
be predicted using prediction techniques such as the ones
presented in [22] or [23].

Note that when predictions are used, it is likely that the
model of the future that is obtained will have a limited
validity duration δv . This is an additional argument for
partial motion planning: what is the point of a complete
exploration of the future if the model of the future used is
likely to be grossly inaccurate? It is better to iterate a partial
motion planning process taking as input a regularly updated
predicted model of the future. The periodic iterative PMP
scheme proposed in this paper therefore accounts for both

the planning time constraints and the validity duration of the
model of the environment.

Thus, the PMP algorithm iterates over a cycle of duration
δc ≤ δv as depicted in Fig. 2. It is assumed that the initial
state of A is ICS-free. Let us focus on the planning iteration
starting at time ti:

1) An updated model of the future is acquired, ie B(ti,∞)
for each moving obstacles.

2) The state-time space of A is searched using an ran-
domised tree rooted at the state s(ti+1) with ti+1 =
ti + δc.

3) At time ti+1, the current iteration is over, the best safe
partial trajectory φi in the tree is selected according to a
given criterion and is fed to the robot that will execute
it from now on. φi is defined over [ti+1, ti+1 + δhi

]
with δhi

the trajectory duration.

The algorithm operates until the last state of the planned
trajectory reaches a neighbourhood of the goal state.

V. SAFETY ISSUES

Like every method that computes partial motion only, PMP
has to face a safety issue: since PMP has no control over
the duration of the partial trajectory that is computed, what
guarantee do we have that A will never end up in a critical
situations yielding an inevitable collision? The answer to that
problem lies in the very fact that the partial trajectory that is
computed is ICS-free. Meaning that, even in the worst case
scenario where the duration δhi

of the partial trajectory is
shorter than the cycle time δc, A can always execute one of
the existing safe trajectory. The overall safety is guaranteed
as long as the initial state is ICS-free (which is something
that has been assumed).

Now, determining whether a given state of A is an ICS
or not is a complex task since it requires to consider all
possible future trajectories for A. However, it i possible to
take advantage of the approximation property demonstrated
in [15] in order to compute a conservative approximation of



the set of ICS. This is done by considering only a subset of
the full set of possible future trajectories (see §VI.B).

Besides, in order to further reduce the complexity of the
PMP algorithm, we present a property that simplifies the
safety checking of a trajectory. To begin with, we demon-
strate a property that states that for a given control input, all
the states between an ICS and the corresponding collision
state, are ICS.

PROPERTY 1
Let s be an ICS at time t0. For a given control input φ, let
tc denote the time at which a collision occurs. Then ∀t ∈
[t0, tc], s(t) = φ(s, t) is also an ICS.

Proof: suppose that a state si = φ(s, ti), with ti ∈ [0, tc],
is not an ICS. By definition, ∃φj that yields no collision when
applied to si. Let φi denote the part of φ defined over [t0, ti].
Clearly, the combination of φi and φj also yields no collision
when applied to s� contradiction. �

We can now provide a sufficient safety condition for a
partial trajectory that states that provided a trajectory is
collision free, if the last state of the trajectory is not an
inevitable collision state then none of the states of the
trajectory are inevitable collision states.

PROPERTY 2 (PMP SUFFICIENT SAFETY CONDITION)
Given a trajectory defined over [t0, tf ], if
(H1) the trajectory is collision-free and
(H2) s(tf ) is not an ICS
then ∀t ∈ [t0, tf ], s(t) is not an ICS.

Proof: Suppose that ∃ti ∈ [t0, tf ] such that si = s(ti) is
an ICS. Then, by definition, ∀φ,∃tc such that φ(si, tc) is a
collision state. If t0 ≤ tc ≤ tf then collision occurs before
tf � contradiction with H1. Now, if tc > tf then by previous
property P1, we must have s(tf ) is an ICS � contradiction
with H2. �

VI. CASE STUDY

x

y

θ

ξ

L

Fig. 3. The car-like vehicle A (bicycle model).

In this section we present the application of PMP to the
case of a car-like vehicle A moving on a planar surface
W and within a fully observable environment cluttered with
stationary and dynamic obstacles.
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Fig. 4. (θ, v)-slices of the state space of A. Shaded regions
are ICS respectively defined for the braking trajectory of control
(αmin, ξ̇min) (top), and all braking trajectories of control selected from
[(αmin, ξ̇max), (αmin, 0), (αmin, ξ̇min)] (bottom).

A. Vehicle Model

A moves like a car-like vehicle and its dynamics follows
the bicycle model. A state of A is defined by the 5-tuple
s = (x, y, θ, v, ξ) where (x, y) are the coordinates of the
rear wheel, θ is the main orientation of A, v is the linear
velocity of the rear wheel, and ξ is the orientation of the
front wheels (Fig. 3). A control of A is defined by the couple
(α, γ) where α is the rear wheel linear acceleration. and γ
the steering velocity. The motion of A is governed by the
following differential equations:




ẋ
ẏ

θ̇
v̇r

ξ̇




=




vr cos θ
vr sin θ
tan ξvr

L
0
0




+




0
0
0
1
0




α +




0
0
0
0
1




γ (1)

with α ∈ [αmin, αmax] (acceleration bounds), γ ∈
[γmin, γmax] (steering velocity bounds), and |ξ| ≤ ξmax

(steering angle bounds). L is the wheelbase of A.

B. ICS Calculation

In general, computing the ICS for a given system is an
intricate problem since it would require to consider the set
of all the possible future trajectories. To compute in practice
the ICS for a system such as A, it is taken advantage of
the approximation property established in [15] showing that
a conservative approximation of the ICS can be obtained
by considering only a finite subset I of the whole set of
possible future trajectories. For practical reasons, the duration
of the trajectories of I has to be limited to a given time
horizon that determines the overall level of safety of A.
In partially predictable environment, this horizon can be
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set up to δv , thus providing the maximum possible safety
guarantee. In our case, the subset I considered includes
the braking trajectories with a constant control selected
from [(αmin, ξ̇max), (αmin, 0), (αmin, ξ̇min)], and applied
over the time necessary for A to stop.

Figure 4 depicts the ICS obtained when different set of
braking trajectories are considered. Each subfigure represents
a (θ, v)-slice of the full 5D state space of A. In the top sub-
figures, only the braking trajectory of control (αmin, ξ̇min)
is considered.

For instance, the shaded regions in subfigure (a) corre-
spond to states with (θ, v) = (0.9, 1.0) for which the braking
trajectory of control (αmin, ξ̇min) yields a collision with one
of the obstacles, fixed or moving. In the bottom subfigures,
the three braking trajectories are considered.

In PMP, checking whether a state is an ICS or not is carried
out by testing if all the braking trajectories yield a collision
with one of the moving obstacles. In case all the trajectories
appear to be in collision in the future, this state is an ICS
and is not selected. Fig. 5 illustrates how a state of the partial
trajectory is checked to be an ICS or not. The collision states
represent the collision that will occur in the future from this
state for all trajectories of I. In this case, since all trajectories
collide in the future, this state is an ICS.

C. Tree Construction

The exploration method used is the well known Rapidly-
Exploring Random Tree method (RRT) [24]. RRT incre-
mentally builds a tree in the state space of A. The basic
principle of RRT is depicted in Fig. 6. A state sr is randomly
selected first. Then, the closest node in the tree, say sc,
is determined. Constant controls selected from U={ (α,ξ̇)

(a) Cycab platform from INRIA. (b) Cameras on a parking lot.

Fig. 8. Parking lot configuration for practical experiments

| α ∈(αmin, 0, αmax) and ξ̇ ∈(ξ̇max, 0, ξ̇min) } are then
applied to sc for a duration ε, they yield a set of candi-
date trajectories ending in given states sni. These candidate
trajectories are pruned out: only are kept the trajectories
that are collision-free and whose final state is ICS-free (as
per property 2, such trajectories are ICS-free). Finally, the
trajectory whose final state is closer to sr is selected and
added up to the tree. This process is repeated until the end of
the time available where the best partial trajectory extracted
from the tree is returned.

D. Preliminary Results

In this implementation, the duration of a cycle δc is 1s,
and the integration step of the differential equation is 0.5s.
In Fig. 7 we can see an example of a navigation from a
still starting state to a still goal state. The environment is
cluttered by moving and static obstacles. In 7(a) one can
observe in front of the car how the safe partial trajectory is
calculated and planned within the time-state space in order
to avoid the obstacle moving upward. The states behind
the car, define the trajectory, built from partial trajectories
from the previous PMP cycles and (ideally) executed by
the robot. In 7(b) we can observe that the car was obliged
to slow down at the intersection of several obstacles, since
no other safe trajectories could be found, before to re-
accelerate. In 7(d) the system has planned a partial trajectory
that avoids the last static obstacle. Videos of this simula-
tion can be found at http://emotion.inrialpes.fr
/film-gallery.php.

This work is currently being integrated on a real platform
(fig. 8(a)) moving within a parking lot. External cameras
above the parking (fig. 8(b)) have been installed in order to
fully observe the environment and thus localize our system
and detect static (parked cars) as well as moving obstacles
(pedestrians and cars) whereas the trajectories of the moving
obstacles will be predicted using the work of [23].

VII. DISCUSSION AND CONCLUSION

In this paper we tackled the problem of motion planning
within a dynamic environment and proposed a Partial Motion
Planning scheme (PMP) which handles the real-time con-
straint inherent to such environment. The PMP algorithm
consists in iteratively exploring the state-time space during
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Fig. 7. Results of a 2D safe iterated Partial Motion Planning (δc = 1s, vmax = 2.0m/s, ξmax = π/3rad, ξ̇max = 0.2rad/s, αmax = 0.1m/s2)

a fixed limited time, by building a tree using probabilistic
techniques. During a cycle, a complete trajectory calculation
to the goal can not be guaranteed in general, which raises
the issue of the safety of our system. We use the formalism
of the Inevitable collision States (ICS) as the theoretical
answer to this safety problem. A trajectory of ICS-free states
guarantees that our system always have a possibility to escape
critical situations. ICS computation remains however a very
complicated task in its general form and we have to rely
on conservative approximation for practical ICS calculation.
In this paper, we also demonstrate a property that simplifies
the safety checking of a trajectory. Finally, we present an
implementation of the PMP algorithm for a car-like robot
and provide simulation results of the safe trajectory found
by PMP for our system.

Future work includes the coupling of the PMP algorithm
with a closed loop control and its integration on an exper-
imental vehicle. Our goal is to perform experimentations
within a real environment, for which a model of the future
obstacles’ behaviour will be determined thanks to a predic-
tion technique.
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