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Steps Towards Safe Navigation
In Open and Dynamic Environments

C. Laugier, S. Petti, D. Vasquez, M. Yguel, Th. Fraichard &Aycard
INRIA Rhone-Alpes & GRAVIR Lab. (CNRS, INPG, UJF)
http://enotion.inrialpes.fr

Abstract— Autonomous navigation in open and dynamic en-  This paper addresses some aspects of the previous problem,

vironments is an important challenge, requiring to solve seeral and presents our latest approaches and results. The sslutio
difficult research problems located on the cutting edge of th state we have implemented rely on the following modules:

of the art. Bassically, these problems can be classified intbree . . . .
main categories: SLAM in dynamic environments; Detection, ~*® SC€ne interpretation and short-term motion prediction

characterization, and behavior prediction of the potentid moving for the moving obstacles, using the new concept of
obstacles; On-line motion planning and safe navigation désion Bayesian Occupancy Filters and an efficient wavelet-
based on world state predictions. This paper addresses some based representation of the related occupancy grids;
aspects of these problems and presents our latest approachand « Medium-term motion and behaviour predictidor the

results. The solutions we have implemented are mainly basesh . . . . | .
the followings paradigms: Characterization and motion prediction observed moving objects, using motion pattern learning

of the observed moving entities using bayesian programmingdn- and Hidden Markov Models;
line goal-oriented navigation decisions using the Partial Motion « On-line goal-oriented navigation decisiarsing the Par-
Planning (PM P) paradigm. tial Motion Planning (PMP) paradigm.

B. Case Study: The Automated Valet Parking

One possible (and very relevant) target application for the

techniques presented in this paper is that of the Automated

To some extent, autonomous navigation for robotic systeR)s|et Parking (AVP). The robotic system considered is a

placed in stationary environments is no longer a problene. Thsmart” car operating autonomously in a “smart” city parkin

challenge now is autonomous navigation in open and dynangigih the car and the parking are equipped with sensors
environments,.e. environments containing moving object,rgyiding them with information about the world. Let us
(potential obstacles) whose future behaviour is unknowi: T i 4 gine the following scenario: you drive your car and leave
ing into account these characteristics requires to solveraé i ot the entrance of a given parking. From then on, it operate

difficult research problems at the cutting edge of the stéte g ,ionomously and go park itself. As soon as the car enters the
the art. Basically, these problems can be classified 'nmthrparking, the car on-board intelligent system connects & th

I. INTRODUCTION
A. Outline of the problem

main categories: parking’s own intelligent system and request a free parking
» Simultaneous Localisation and Mapping (SLAM) in dyplace. The parking then confirms the availability of a pagkin
namic environments; space and provides the car with a model of the parking
. Detection, traCking, identification and future behaViOl.ﬁnd an itinerary to the empty place_ From then on, the car,
prediction of the moving obstacles; using information obtained from both its own sensors and the
¢ On-line motion planning and safe naVigation parking sensory equipment, go park itself.

In such a framework, the system has to continuously char-From an architecture point of view, the AVP scenario
acterize the fixed and moving objects that can be observadolves two “intelligent” systems communicating with one
both with on-board or off-board sensors. As far as the movirggnother: the car on-board system and the parking off-board
objects are concerned, the system has to deal with problesgstem. As mentioned earlier, it is assumed that both sygstem
such as interpreting appearances, disappearances, apd-temre equipped with sensors providing them with information
rary occlusions of rapidly manoeuvring objects. It also ttas about the environment considered. While the car sensots wil
reason about their future behaviour (and consequently t@marovide it with a local view of its surroundings, it can be
predictions). From the autonomous navigation point of viewxpected that the parking sensors will provide the car with a
this means that the system has to face a double constradgverall view of what is going on in the whole parking.
constraint on the response time available to compute a saffo address the AVP scenario, we have devised a scheme
motion (which is clearly a function of the dynamicity of therelying upon the following functionalities (split betweehe
environment), and a constraint on the temporal validityhef t car and the parking)
motion planned (which is a function of the validity duration  Parking abilities:
of the predictions). In other words, one needs to be able toe Parking monitoring: at any time, the parking should know
plan motion fast, but one does not need to plan motion very which places are free or not (and by whose car they are
far in the future. occupied).



« Route planning: the parking should be able to provide tidotion Planning”, or PM P) takes into account (at each
car with a model of the parking premises along with thigeration step) both the time constraints and the currerdeho
best itinerary to reach a given place. of the future state of the robot environment.

« Moving objects monitoring: any moving objects (vehi-
cles, pedestrians, etc.) should be monitored and trackedl. SCENE INTERPRETATION AND SHORTTERM MOTION
The parking should be able to provide information such PREDICTION
as position, speed and expected trajectar. (future A Qyerview of the problem
behaviour). Expected trajectories can come from different

clues: typical movements of the different kinds of movin thh(tai p;]rotf)ltehm agdr(rajsgc:j |rr11 t:]lls sectrl]oninc?nr(;(:rrgétnhtie Ilnter-
objects, learnt from previous observation, or knowledg%%e ation of the observed dynamic scene ermp a

of a planned trajectory. _ oving obstacles.e_. obstacles which may generate a collision
« Car localisation: given its moving objects’ monitorindnthe near future with the rob_ot).The quectlve s to be able_
functionality, the parking can provide the car with itscorreptly interpret the dynamic scene in the presence ahynol
current state in the parking premises. or missing data,_and to be as robust as posslble t_o temporary
o or partial occlusions. Our approach for solving this prable

Car abilities: ~is based on the new conceptBéyesian Occupancy Filtering

« Localisation: the car should be able to maintain afBoF)[1], where the robot environment is represented using
estimate of its localisation in the parking. It can be thg 4_dimensional occupancy gridle. an occupancy grid which
result of a data fusion between parking information angc|udes the velocity dimension.
on-board localisation. Theoccupancy grid$2], [3] framework is a classical way to

« Environment modelling: the car on-board sensor agfsscribe the environment of a mobile robot. It has extehsive
primarily used to build a model of the surroundings Ofeen used for static indoor mapping [4] using a 2-dimensiona
the car. This local model should be enriched using ﬂtﬁid. More recently, occupancy grids have been adapted to
global information provided by the parking (in particularygck multiple moving objects [5]. However, a major drawkbac
the information concerning the moving objects’ futurg these approaches, is that a moving object may be lost due
behaviour). to occlusion effects.

« Automated driving: given the parking model and the route The BOF approach avoid this problem for short temporary
to the goal, the car should be able to determine its futuggciysions (e.g. a few seconds), by combining two comple-
course of action so as to reach its goal efficiently angentary phases in a recursive loop: éstimation phasehich
safely. estimate the occupancy probability of each cell of the 4-

One can notice that some of the functionalities mentiongmensional grid, using recursively the set of sensor olaser

above are somewhat redundant (in particular when dealitigns; theprediction phasevhich estimate an a priori model of
with sensing data). This property has intentionally beesseh the grid occupancy at time+1, using a “dynamic model” and
in order to increase the robustness and the efficiency of ti@ latest estimation of the grid state (figure 2 illustrat&his

system: approach has been developed usingghgesian Programming
« Fusion of data from multiple source increase overaramework [6], [7], [8]; it is described in the next sections
accuracy. However, large scale environments can hardly been pro-

« Using several data source increase fault tolerance.  cessed in real-time because of the intrinsic complexityhef t
« By correlating different inputs, it is possible to diagnoseelated inferences and numerical computations (see selttio

if an input is failing or becoming unreliable. F). The section 1I-G presents the outline of théOG model
(“Wavelet Occupancy Grid”) we are developing for trying to
C. Outline of the paper meet the required efficiency property.

In this paper, we focus on two of the functionalities o N
mentioned in the previous sectioMotion prediction of the B- Estimation of the occupancy probability
observed moving objectsxdon-line goal-oriented navigation The estimation phaseonsists in estimating, at each time
decisions The paper is organized in three main sectionstep, the occupancy probability of each cell of the 4-
The section Il describes how we have solved the probledimensional grid. This estimation is performed using recur
of interpreting and representing the dynamic environmént sively the set of “observations” (i.e. pre-processed senso
the robot using the “Bayesian Occupancy Filtering(§F’) data) provided by the sensors at each time step. These ob-
approach; this approach relies on a local world-state bayesservations are represented by a list of detected objecsgal
interpretation scheme, including a short-term motion fared with their associated positions and velocities in the esiee
tion mechanism. The section Ill deals with the problem dfame of the processed sensor (several sensors may be used in
the prediction of the most likely behaviors of some observemhrallel). In practice, this set of observations could alsotain
objects executing “intentional motions”; the proposedigoh two types of false measurements : flaése alarmsi.e. when
relies on the use of a motion pattern learning mechanism aheé sensor detects a non existing object; rifissed detectign
of a hierarchical Hidden Markov Model. The section IV dealse. when the sensor does not detect an existing object.
with the problem of planning safe motions in a reconstructed Solving the related estimation problem is done by using
dynamic environment; the proposed paradigm (called “®lartithe available instantaneous information about the enwiiemt



state (i.e. the current observations and grid state). Acbkeft
the algorithm is given below using oBayesian Programming )
Framework [6], [7], [8]; a more complete description of the I
method (which includes a “sensor data fusion” step) can laew‘ ‘H‘ i

found in [1]. | N

(i) Choosing the relevant variables and decomposition. =1 N

o Oz yw,v,. The occupancy of the cellz,y,v,,v,) at R S
time ¢: occupied or not. This variable is indexed by a 4-
dimensional index that represents a position and a spee
relative to the vehicle.

e Z : The sensor observation set; one observation is dég. 1. Example of one-dimensional sensor models. The sdssw laser-

. ; ; range finder located im = 0 and detecting an object at= 22. The following
notedZ; the number of Observatlo_n is denotsd property holds :P(Z|[Ox = occ]) = P(Z|[O+ = emp]) for z > z, which
If we make the reasonable assumption that all the obsefiplies thatP(O,|Z) is unknown when the cell is behind the obstacle.

vations of the sensors are independent when knowing the

occupancy state of a cell, we can choose to apply the follgpwin ) ) )
decomposition of the related joint distribution : problems). A classical way to solve this problem is to make
use of Bayes filters [9]. Basically, the goal of such a filtgrin

éa) Sensor model for occupied (b) Sensor model for empty
ells cells

B process is to recursively estimate the probability distidn

P(Ozy,ve0, 2) = P(Ony,v.,) X ].:.[P(ZS [Oa.,02.,)- P(O’;7y7vm7vy | Z*), known as theposterior distribution. In
=t (1) 9general, this estimation is done in two stagesprediction

(i) Assigning the parametric forms. stage whose purpose is to computeaapriori estimate of the

According to our knowledge of the problem to be solved, v\}grget’s state known as thgrior distribution; anestimation

can assign the following parametric forms to each of the %rlﬁtage whose purpose Is to compute fusterior distribution,
of the previous decomposition: using thisa priori estimate and the current measurement of

the sensor. Exact solutions to this recursive propagatioheo

posterior density do exist in a restrictive set of casesHas

the Kalman filter [10][11] when linear functions and gaussia

Sdistributions are used).

o T T ) NOW oy approach for solving this problem, is based on the new

how the_ prior distribution may be obtained from preV|0u§oncept ofBayesian Occupancy Filter (BOFFig. 2 shows
estimations. . the related estimation loop. This approach is derived frben t

« The shape ofP(Z; [0y y.v,,,) iS given by thesensor r%eneral bayesian filtering paradigm; it provides a poweérful

model Its goal is to model the sensor response knowi rmalism for solving difficult estimation problems expsed

the cell state. Details about this model can be foundin [3; )+ 4-dimensional occupancy grid representation
an example is given for a telemetric sensor in Fig. 1. Such '

models can easily been built for any kind of sensor.

o P(Oys,y,0,,,) represents tha priori information on the
occupancy of each cell. If available,paior distribution
could be used to specify it. Otherwise, a uniform di
tribution has to be selected. The next section will sh

(i) Solution of the problem. Prediction
It is now possible to ask thBayesian questionorresponding
to the searched solution (i.e. the searched probabilityilois
tion). Since the problem to solve consists in finding a good
estimate of the cell occupancy, the question can be stated as
follows :

P(O

zt,

0...5...t—1 —
i ‘Oziyéi ZOH.t 1)

Estimation
P Ot OO‘.“i‘.“t_l ZO“‘t
P(Om,y,vz,vy |Z)7 (2) ( zt,yt ‘ zt,yi )

The result of the related Bayesian inferehcan be written Fig. 2. Bayesian Occupancy Filter as a recursive loop.

as follows :
s The basic idea underlying the conception of BB@F' is to
P(Osyw,w, | 2 ) cx H P(Zs | Ozyw,w, ). (3) make use of the velocities measured in the past, for predicti
s=1 the near future and propagating this information througteti
Indeed, knowing the current velocity of a mobile, it is possi
C. The Bayesian Occupancy Filter to predict its future motion under the hypothesis of a camtsta

W int ted in taking int t th velocity for the next time step (in practice, possible véipoc
€ are now Interested n taking Into account the sens, anges will generate several possible future positions).

observation history, in order to be able to make more robustA complete presentation of theOF can be found in [1]. In
estimations in changing environments (i.e. in order to t%ﬁ '

ble t i biect USi 4 det e sequel, we will just give an overview of the approach unde
able to process temporary objects occlusions and detectign following simplifying assumptions (for clarity reasjn

IThis result is computed using ouProBT inference engine, currently US€ _Of a S'_ngle sensor and ConStant_Ve|0C|ty for the_ ob§erved
commercialized by our spin-off comparyrobayes. moving objects. A consequence of this last assumptionais th



we can deal with a single “antecedent cell” when evaluatir§jnce the measured speed for the third obstacle is not null,

the occupancy state of a given cell. any area of high occupancy probability corresponding te thi
(i) Choosing the relevant variables and decomposition. observation is only represented in the related slices oftie
L B . (i.e. the slice corresponding 0= [z,y,0,0.8] in this case,
« O, : Occupancy of the celt = (z,y, vz, v,) at timet, see Fig. 3¢)

occupied or not. : .
. O;;f;;p . Occupancy of the cell which is the antecedent It should be noticed that the cells located outside of the

Y . : sensor field of view, or the cells “hidden” by one of the three
of Of’3=y’ occupied or not. In this modek, = = — vyt sensor observations (i.e. the cells located behind theethre
andy, = y — vydt, since the velocity is constant. - ] .

. 7. X sensor observation detected ok_)stacles) cannot. be observed; consequentiyngot
S . A ) _ really consistent can be said about these cells, and thensyst
Under the previous simplifying assumptions, the following ;¢ given an occupancy probability valueids for these cells.
deqomposition of the joint distribution determined by thes Fig. 4 shows a sequence of successive prediction and esti-
variables can be expressed as follow: mation results given by th8OF. The experimental scenario
PO Ot 7)) — involves a stationary obstacle and the Cycab moving forward
TpoYp? Y TS at a velocity of2.0 m/s. The obstacle is detected using the

P(Oi;fszfp) 4)  |aser sensor; it finally goes out of the sensor field of view
xP(O;7y|O;;§;p)P(ZS|O§:7y) ' (see Fig. 4-d1), since the Cycab is moving forward. It should
be noticed that the prediction step allows to infer knowkedg
(i) Assigning the parametric forms. about the current occupancy state of the cycab environment,

. P(O;;fgjp) is the prior for the future occupancy state ofeven if the object is no longer observed by the sensor; this
the cellc = (x,y,v,,v,). For each celle such as the is the situation depicted by fig 4-d3, where an area of high
antecedentz,, y,, v, v,) is out of the current grid, this occupancy probability still exists when the object is going
prior is the probability that a new object enters in theut of the sensor field of view. In some sense, our prediction
monitored space; since we usually have no real informgtep can be seen as a “short-term memory”, which allows to
tion about such an event, this probability is representeé@mbine in an evolutive way past and current observations.
by a uniform distribution.

« P(O 0% ) is related to the very simple “dynamicE. BOF based collision avoidance

model” we are using in this case. It is defined as a In [1], we have shown how to avoid a mobile obstacle

transition matrix I—e ¢ , which allows the sys- by combining the occupancy grid result given by tBOF,

1-¢ ith a d babilityt ted usi “time t
tem to take in account the fact that the null acceleratidlf @ @anger probablityterm computec using a "ime 1o
hypothesis is an approximation; in this matrix,is a collision” criteria. In this approach, each cell;, ,, ,, of

parameter representing the probability that the object Ehe 9rid is cha,r,acterized kby two pr(k)bability disEributionf
¢ = (2p, yp, v, v,) does not follow the null accelerationth® “occupancy” termP(0y ., [ 2") and the “danger

model. term P(D} . |O% .. .,)- Using this model, it becomes

« P(Z,]O. ) is the sensor model (see section II-B). possible to tune the velocity controls of the Cycab, acedi

_ ' to the results of a combination of the two previous criteria.
(ili) Solution of the problem. This approach has experimentally been validated using the

Similarly to .the estimation process described in the sadtio following scenario : the Cycab is moving forward; a pedestri

B, the solution of the problem to be solved by t(B&)F can i moying from right to left, and during a small period of time

be defined by the following Bayesian questioR(O;, ,|Zs)?.  the pedestrian is temporarily hidden by a parked car. Fig 5

Answering this question (i.e. computing the related praib shows some snapshots of the experiment : the Cycab brakes

distribution) is achieved using our inference engine; thig ayoid the pedestrian which is temporarily hidden by the

inference involves a marginalization sum ovef % . parked car, then it accelerates as soon as the pedestrian has
crossed the road.

D. Experimental results

This approach has been implemented and tested on &uiscussion and performances
experimental platform : the Cycab vehicle equiped with alas Thanks to the previous assumptions, both the predictign ste
sensor. Fig. 3 shows some resulting grid estimations, for and the estimation step complexitiasreases linearly with the
environment containing two stationary objects and an abjemumber of cellof the grid. This make the approach tractable
moving from the left to the right at a velocity 6f8 m/s; in in real situations involving reasonable grid sizes. Thishis
this example, the robot is not moving. case for the experimental scenarios described in thisosecti
Fig. 3b depicts the occupancy probability of each cefe.g. size of the sensed spacel6fm m with a resolution of
corresponding to a null relative velocity€. ¢ = [x,y,0,0]). 0.5 m, longitudinal velocity of—3 m.s~! to 1 m.s~! with
As expected, two areas with high occupancy probabilities aa resolution of0.4 m.s~!, lateral velocity of—3.2 m.s~! to
visible; these probability values depends on several fact®.2 m.s~! with a resolution of).4 m.s~1). Using such a grid
attached to the sensor model : the probability of true detesf 64.000 cells, the computation time for both prediction and
tions, the probability of false alarms, and the sensor aur estimation steps is aboti00 ms on al GH z computer. This



r ] r_ . 1
8 s
y ;k 1 '
a) b)

c)
z1 = (8.3,—4,0,0) P([O¢ = occ] | 2) P([0O¢ = occ] | 2)
22 = (5,3,0,0) [C = ($ay7030)] [c = (m,y,0,0.8)]

25 = (7.3,1.9,0,0.8)

Fig. 3. Example of a grid estimation using a single laser eelizated a0, 0), in a scene including two stationary objects and an objeatimgofrom the

left to the right at a velocity of.8 m/s. In this example, the robot is not moving. The occupancy abdlty value of each cell is represented by a gray
level (see the colors correspondences on the right sideeofigiare). (a) The sensed environment and the three instmiansensor observations expressed
in the (z,y, %, y) space. (b) Occupancy probability in a 2-dimensional slit¢éhe grid corresponding to a null relative velocitye{ ¢ = [z, y,0, 0]). (c)
Occupancy probability in a 2-dimensional slice of the gridresponding to a relative horizontal velocity8 (i.e. ¢ = [z,y,0,0.8]).

a.l. b.1. c.l. d.l.
a.2. b.2. c.2. d.2.

8 8 8 A
05

6- 6- 6-
0.4
03
0.2
01

-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4
a.3. b.3. c.3. d.3.

Fig. 4. A short sequence of a dynamic scene involving a statioobstacle and the Cycab moving forward at a velocitp.0fm/s. The second and the
third row respectively show the results of the predictiorl afi the estimation steps of thBOF, in a 2-dimensional slice of the grid corresponding to a

relative speed of = —2.0, i.e. P([Of y [#=—2.0] [§=0.0] = occl ).




Fig. 5. Snapshots of the experimental pedestrian avoidaoeeario.

is fast enough to control the CyCab at a maximum speed isfcompletely defined by’ ([0}, , = occ]). Then, we consider

2 m.s L. now the occupancy functiop’(z,y) = P([0%, = occ])
However, this grid size is not fine enough for some othevhich allows to capture the space homogeneity.

large scale applications involving higher speeds. In tAiSe¢The ysed wavelet model.

the number of cells increases quickly, and the required co@gically, linking OG and wavelet representations, leads to
putational time becomes too high for satisfying the realeti project a huge function representing the& into a wavelet

constraint. _ ~ vector space. In our approach, we have used the 2D Haar
In order to try to solve this problem, we are working in tWonsqe| [13], built upon two types of basis functions: the ‘lsta

directions. The first one consists in developing a dedicatgfly “qgetail” functions, where the scaling mother functien i
hardware exploiting thaighly parallelstructure of theBOF  4efined as follows

algorithn?. The second approach consists in using a multi-

resolution framework for representing the 4-dimensiona g ®(z,y) = 1 for (z,y) € [0,1]?, zero elsewhere
and the related processing models. The outline of this &gbro _ ) ) )
is described in the next section. Then, the Haar basis at scales defined as the union of

the set of “scaled” function§®*¥|(i, j) € Z*} and the set of

“details” functions{¥ |l = 0,...,s:(i,j) € Z2}, where :
G. Wavelet-based model for tigOF (the WOG model) 7l o8B g) €2

(i) Overview of the problem. oY = 27027z i, 27y —j) ©)
. ) ] . and the typeM can take three value0Y, 10 or 11)
The goal of this new model is to provide a “coarse-to-finegorresponding to one of the three mother wavelets for
representation of the underlyingOF model, in order to be horizontal, vertical and diagonal differencing.
able to optimize the processing of large homogeneous region
and to refine the model only when this is necessary. Weg . t-uplet(s, 7, j) defines awavelet squareat scales
ha\_/e chosen to make use_of the wavelet framework _[12] [1_3olnd an offset(i, ). Thanks to the Haar model property,
which allows the processing of large sets of data includinge projection of the occupancy function over a basis vector

non-linearities (as it is the case for our dynamic maps). Pai,ction ®57 is given by the following scalar product @/
and Reissell [14] have shown that wavelets could be used {pi, the occupancy function :

representing 3D static maps for path planning. Sinopolj [15
has extended this approach for solving a global path-ptenni
problem, while using traditional 3D Occupancy Grids() < plaz,y) | D% >= / p(z,y)®* (2,y)d, (6)
for local navigation.

Our approach, calletiWavelet Occupancy Grid' (W OG),
can be seen as a tight combination of wavelet and Logarithmic form forOG updates.

representations, allowing us to perfor@G updates in the |, ihe sequel, we will omit the indekr, y) associated to the

wavelet spaceand later on to make “prediction inferencesc cells (for simplifying the notations). A standard update in
within the wavelet space (i.e. to fully implement tH8OF ¢ is defined by the following equation :

paradigm in this multi-resolution formalism).

(i) The WOG model. p([0" = occ]) =

z,y€R?

p([0"" = occ))p(2'[[0'" = ocd])
> ot D(0")p(zt|ot)

The first objective is to develop a wavelet-based modelLet p'(occ) = p([Of = occ]) and pt(emp) = p([Ot =
for 2-dimensionalOG (i.e. without representing velocities).empl); then we can write (occ) = 1 — pt(emp), and we can
At this step of the development, we will only consider theummarize this property using a single coefficight
random variablegD), , and Z* (defined above). Since each . . .
occupancy variable{; ,) is binary, its probability distribution g = p'(occ)/p"(emp) (8)

()

2thanks to the hypothesis that each cell is independent, tétte ef each SUbSti“_ﬂi”_g eq- 7 into eq. 8 leads to th_e e"mination_ of
cell can be computed independently. the marginalisation term; then, we can write the following



recursive formulation : a continuous semantics. Let defifidl as the event “every

subcell is occupied” then:

Mee(siP([Oc = 0cd) =p( \  [Oc = occ]) = p(full)

c€(s,1,5)

p(z¢|occ)
(2'lemp)

p(ztlemp

t_ p(zt71|000) qtfl
p(z'~|emp)

(9)

t—1
=¢° H
1=0
wheregq;_1 is recursively evaluated. ) )
Let defineopenas the event “every subcell is empty”.
Such updating operations are clearly non-linear. In order t

be able to perform the update operations using only sums,
have decided to make use of a logarithmic form of the model

7/10 7110

110

t—1
odds® = odds® + Z log(
=0

p(z*|oce) )

p(lemp) (10)

whereoddst = log(qt).

Let Obs(z'~1) be the terniog(ﬁff,%m
Obs(z'~1) represents the “observation”
andodds(t — 1) is the a priori term. Then, updatingi& OG

) in the eq. (10).

term of the updat%‘g_ 7

110

110

110 110

@)

(b) (©

Three configurations of a subsquare domain at sc&e thé
probability that the square domain 7(a) is fully “occupied”0.0343; its

can be done by adding the wavelet transform of observatipibability of being fully “empty” is0.0243. The occupancy ratio related

terms to the wavelet representation of the map.

@)

(b)

Fig. 6. Mapping obtained by a laser range-finder : (a) theiodthOG
model; (b) the related three first “detail spaces” of IfeOG model and the
complementary scaled space. The density of non-zero deeficdecreases
drastically in wavelet space.

Multi-scale semantic of logarithmi©G.

to the “occupied” and “empty” properties B(open|open V full) = 0.58;
this means that the related square domain is consideredcaspied”. The
occupancy ratio in 7(b) i9.003; it is of 0.06 in 7(c).

gs leads immediately to the conditional probabilities:

qs/(1+ qs) (14)
1/(14gs) (15)

which express a continuous ratio between the two evietits
andopen(Fig. 7).

The multi-scale information which can be computed by
this approach, is directly derived from these two basic €ase
Consequently, onl® relevant events can be considered for a
square domair(s, i, j) containingn subcells (i.e. wher&”
possibilities can be defined by the binary vector represgnti
the possible occupancy of thesesubcells), Fig. 8(c) illus-
trates. Fig. 7 shows the information which can be derivenhfro
the previous multi-scale occupancy model. The next step wil
be to exploit this concise information for elaborating rirult
scale algorithms.

P(open|open V full)
P(fulllopen V full)

In the case of the Haar wavelet basis (eq.®);”’ has a(iii) WOG implementation and experimental results.
constant valuek) over the domaih (s,4,5), and is equal to This approach has been implemented and tested on the Cycab
zero elsewhere. Then the integral of the scalar product issquipped with a laser sensor an with our SLAM method [17].

sum over the cells enclosed in the doméini, j); this sum
can be re-written as follows [16] :

t
p'(z,y) i
< log(—£ 0 2) Psti >
81 —pt(w,y)) |
t
_ p (:L'a y) s1J
- / 1Og(1 fpt(z,y) )(I) (-Tay)dm,y (11)
z,y€R2
Hce(sij)p([OC = OCC])
=klo - 12
B cwipOc =emp)) 2
= klog(gs) (13)

wherec is the index of a cell in the square domainiog(gs)

In the experiments, the size of the finer scale is equal to
6.25cm, and we have usedl different scales (where the size
is multiplied by 2 for each new scale); thus, the size of the
coarsest cells is equal tom. The size of the square window
which is used for constructing tHé& OG model, is chosen in
order to contain the whole sensor field of view. The content
of this window is updated at each laser scan (see Fig. 6; then,
the Haar wavelet transform is applied to this sensory data, a
incrementally added to the currelfOG model. The chosen
compression threshold is a compromise between data fitting
and sparsity (wavelet terms which are lower than the thildsho
are removed).

Fig. 8 shows the results obtained on the car park of

is the log of the ratio of two geometric means (cells aréNRIA. These experimental results clearly shows that weshav
“all occupied” and cells are “all empty”) which leads us tpbtained a significant reduction of the size of the model ¢abo

3Wwith value: k = 275,

80% relatively to theOG model), and that the interesting
details are still represented (such as the beacons repeddsn



@ (b) ©

Fig. 8. Maps of the car park of INRIA. (a) Th@G model contains393, 126 cells, while theW OG model containsr8, 742 cells. (b) TheOG model
reconstructed from the previodd OG model; it can be seen that significant details such as bedwmre been captured by th& OG representation (the
shapes of maps (a) and (b) are very close). (c) The empty spawetty well approximated at the coarser scale.

dark dots in Fig. 8(b)). It should be noticed that the coarserThus, learning consists in observing a given environment
model give a quite good representation of the empty spaceorder to construct a representation of every possibla pla
(see Fig. 8(c)); this model could be used for path planninfpr it. But, how long should we observe the environment in
and refined when necessary using the wavelet model. In threler to construct such a "plan library”? Given the enormous
previous experiments, the map building has been done in reaimber of possible plans for all but the simplest environtsien
time. there is not a simple answer. This raises an important pmoble
One of the major issue of our approach is now, to combimd existing learning techniques (e.g. [18], [19]): the udeao
bayesian occupancy filter and object tracking such as tHearn then predict” approach, meaning that the system goes
informations about the object motions could be transmittédrough a learning stage where it is presented with a set of
to the high level object motion prediction module. One ofbservations (an example dataset) from which it consttsct i
the possibilities, we explore now is to extract coherentegonplan models. Then, the plan library is "frozen” and the syste
of the BOF in term of occupancy and velocity and that wgoes into the prediction stage.

call them objects. Our hope is that these zones would appeafhe problem with this approach is that it makes the as-
hierarchically through the scales in the wavelet repregemt, sumption that all possible plans are included in the example

and so woubld be easy to find. dataset, which, as we have shown, is a difficult condition to
meet. Our work addresses the problem by proposing a "learn
Ill. M EDIUM-TERM MOTION PREDICTION and predict” approach which is able to learn in an increnienta

The work presented in this section focuses on motidashion {e by continuously refining its knowledge on the basis
prediction for objects which are able to execute trajee®riof new observations used for prediction). To the extent of
as a result of an internal motion planning process or detisiour knowledge, this is the first intentional motion prediati
mechanism €.g. persons, animals and robots). It is assumeadchnique in the literature to have this property.
that such plans are madéth the intentiorto reach a specific ~ Learning techniques used by the "learn then predict” ap-
goal, thus the naméntentional motionwhich will be used proaches are very diverse. For example in [20] plans are
hereafter to designate this kind of motion. modeled as series of straight motion segments which are

Assuming that the object’s decision mechanism as wellustered together. In [18] and [21], typical behaviors are
as all the relevant variables at every time stem(internal |earned by clustering whole trajectories. In [22] Bui preps
state, sensorial input, etc.) are known, predicting itettary Abstract Hidden Markov Models as a way to represent plans
consists in replicating the planning process in order to fived as hierarchies of probabilistic sub-plans or policieshaitgh
intended trajectory. However, this assumption is not stiali the approach does not define an automatized learning mech-
Neither the planning model nor the variables are known @hism, this has been done in [19] by using the Expectation-
observable (what is the decision mechanism of a humafaximization algorithm.
being?) and they must be inferred from observed motionin this section, we present our "learn and predict” approach
before performing prediction. This leads to the followingvhich models plans as Hidden Markov Models (HMM)[23]

decomposition of the problem: augmented with a variable which indicates the goal that the
« Learning Construct a plan representation based on oplan intends to reach The learning algorithm is composed
servations. of two modules: in the first one, the Grow When Required

« Prediction Use the representation obtained during learmdgorithm (GWR) [24] is used to estimate both the set of state
ing to estimate future states on the basis of presantthe model and the observation probabilities. The second
knowledge. module identifies goals and then uses a Maximum-Likelihood



criterion to update the transition probability of the madebnd b) knowing the intended goal, the present state depends
As mentioned above, the technique determines the numbeioafy in the past statég knowing the goal, the system becomes
goals and states in the model, thus learning the structureaofirst order Markov process and behaves like a conventional
the underlying HMM. HMM).

The parametric forms of the probabilities that compose the

A. Proposed Approach JPD are presented in table I.

The proposed unsupervised learning algorithm, construgts , ;. ). uniform ¢y = 1.
plan representations by observing the motion of objects (€.
pedestrians, vehicles, etc.) moving in a given environment
The input of the learning algorithm is a continuous strea
of observations; = {z1, 29, - - - } gathered through a tracking
system. In order to keep notation simple, we will assume TABLE |
that no more than one object is observed at the same time, PARAMETRIC FORMS OF THE PROBABILITY DISTRIBUTIONS
noting that the approach is easily generalizable to theimult

object case. It will also be assumed that the tracking system

can determine when the object has stopped or exited thg) .Parz.am(.ater. Learning:Learning the mc_x;iel’s param.efu_ers
environment. consists in finding the values of the conditional probabsit

Every observatiorr; = (z;,v,7;) returned by the tracker shown in table I. Our approach splits the problem in three

consists of an estimate of the object’s posifiat time ¢ and sks: . -
a binary variabley, which indicates whether the object has 1) State GWRThe observation probability(z; | ¢;) and

p(v): Uniform Ug = é
p(at | v, qt—1): Table.”
p(zt | [qr = i]): GaussiarG(u;, o).

reached the end of its trajectory (= 1) or not (; = 0). the number_of states{ are estimated using the Grow
A trajectory ends when the object stops moving or exits the  When Required algorithmg(1-B). _ .
environment. 2) Goal GWR Another instance of GWR is used to esti-

Learning will consist in estimating the parameters of the  Mate the number of goals as well as their position.
modified HMM which will be presented in the following 3) Transition CountingThe Viterbi algorithm [25] is used

section. to perform a maximum likelihood (ML) estimation of
1) Plan Modeling: The model used in this approach is  the transition probability(g: | v, ¢:-1). This estimation
defined by three components: 1) a set of relevariables uses the outputs of tasks 1 and§ID).

which define a joint probability distribution (JPD), 2)dse-

compositionof the JPD which is obtained by applying Baye®. Learning observation probabilities and number of states

rule in order to reflect conditional independence assumptio The observation probability for a given statéz; | [¢; =

and 3) theparametric formsused to represent each of the)) is defined as a gaussian. Therefore, the learning algorithm

terms which appear in the decomposition. They are calleflould estimate the mean valpe and standard deviatios;

parametric because they include parameters which may ber the N states.

adjusted either manually or through an automatic parametefThis rises the question of the "correct” value f§t which is

estimation e learning) mechanism. an important question. The state space is continuous, vien i
Relevant Variables: mapped to a finite set of discrete values an error is intradluce

« N € N: The total number of discrete states in the moddh the representation. The number of states allows to tréfde o

These states correspond to positions in the environmeagcuracy and computational efficiency. By incrementing the

e q: € [1, N]: The object’s state at time value of N the approximation error — also known as distortion

e ¢i—1 € [1, N]: The object’s state at time— 1. — is reduced at the expense of additional calculation burden

« z; € R% The object’s state estimation returned by the There is another way of reducing the distortion: discrete
sensor at time. (ie the observation variable). states may be placed in such a way that the mean distance

« G € N: The total number of goals in the model. Thdetween them and observed data is minimized. This is known
goals correspond to specifilacesin the environment as Vector Quantization [26].

(ie it may correspond to many discrete states). Our approach uses the Grow When Required (GWR) [24]
« v € [1,G]: The place that the object intends to reaih (@lgorithm to perform vector quantization in order to estiena
its goal). the number of discrete states of the model as well as the mean

values and standard deviation of the observation prolviaiili
This algorithm has been chosen between many different ap-
proaches existent in the literature [26], [27], [28], [2]edto
P(Ges qe—1, 26,7) = plar—1)p(M)p(ar | v @—1)p(z: | ¢:) (16) its following properties:
It is fast. The costliest operation is 6f(V). This can be
further optimized by using a hierarchical structure like an
r-tree[30].

“iigher-dimensional observation® (1, 1, z}, y.)) may also be used as * 1h€ number of states is not fixed. New states are added
input by the algorithm. and deleted as observations arrive.

Decomposition:The Joint Probability Distribution is de-
composed as follows:

This decomposition implies two hypothesis: a) knowing the *
state, subsequent observations are independent of eagh oth



« It is incremental. This makes it suitable to process con; havingn, = 1 (end observation) is processed by a GWR
tinuous streams of observations. structure which clusters this information together intghai

The algorithm processes observation on a one by one bal§¥el goals.
It produces a graph, where nodes representing discretesstat The nodes of the resulting GWR graph corresponds to
are explicitly linked to their closest neighbors (the grap@oals. The graph itself may be used to identify the goal that
is a subset of the Delaunay triangulation). Every noede corresponds to a given end-state observation:
associated to a vectqr; known as the centroid.
The application of this structure to estimate the required v = minarg; ||(z¢,y) — p ||, for gy =1 a7
parameters is straightforward: state informatian, y:} con-
tained in each observation is used as an input for a GWR. ) -
The resulting set of nodes represents discrete states whsd-€aming transition probabilities
centroids are the mean values of the observation prohiebilit  Transition probabilities are updated once a complete tra-
The standard deviation; for statei is calculated by averaging jectory is available, this means that all non-end obseswati
the half length of the links emanating from the correspogdirare stored until an observation having= 1 is received, then,
node. expression 17 is used to compute the attained gdabr every
Insertion of new states is no longer allowed whegmino; observation in the trajectory;, the Viterbi algorithm is used
is less than a given threshold. This restrains the algorftom in order to findg; given the past statg,_, = i (which has
discretizing the space below the sensor’s precision. been estimated in the previous iteratfn)
An example of the use of GWR is presented in fig. 9.
The environment is the parking lot of the INRIA building.
It contains a number of places which may constitute motigp = maxarg; {p([qt =3l =gl a1 =pz | g = j])}
goals for a cari(e. parking places and the parking’s exit). Fig.
9b presents the state of the GWR structure after procesdig 5 The obtained values far, i and; are then used as indices to
trajectories. update a transition count matriz on a maximum-likelihood
criterion:

Alg,i,j] — Alg,i,j1 +1 (18)

D:H H—H—H—H—H—H—HHJL If the observation correspond to the first step of a trajgctor

only the current state is estimated using:
I I Nrn [

a) Inria Parking qo = maxarg;{p(zo | [q0 = i])} (19)

Transition probabilities are calculated using:

L iy = _Algi.dl
p(lge =4l 1 Iy =9l lae—1 =1]) = S Alg. i, 7] (20)

AR . 8 -',.‘.".;',"'."_' Finally, whenN or G change due to additions or deletion on
Ll R 'H [ ] Fr" o the corresponding GWR structures the corresponding caumn
and rows are simply inserted or deleted accordingly, this is
b) Sample GWR structure. possible due to the fact that we are storing counts instead of
probabilities in the transition matrix.

Fig. 9. Using GWR to find discrete states in the INRIA paking Big
circles correspond to goals.

E. Motion Prediction

The model may be used to predict future states in one of
C. Identifying Goals two ways:

The problem of automatically identifying the goals that an a) The state may be projected into the future a nuniber
object seeks to reach using only observation data is ve¥ytimesteps. This is useful to predict intermediate posii
difficult since these goals are often related to informatiodf the object trajectory.
which is not present in this datee.g. the presence of a b) The goal probability may be directly estimated. This
billboard). gives a prediction of the object final destination.

The approach taken here aims to identify goals based orn order to achieve real-time performance when predicting,
a simple hypothesis: when an object stops moving (or exite have resorted to approximate inference using a particle
the environment) it is because it has reached its goal. THiger with a resampling step [31]. The algorithm approxiest
leads to a simple goal identification scheme: every observatthe belief state by a set of particlés = {§',--- ,§M}. The



Algorithm 1 Particle Filter Algorithm(X;_1, z)
1 ./ft — X0
2: for every particlex}” ; = {¢/" 1,7 }; 2}, € X1 do
3 sampleg;” from p(qi" [ 7™, ¢/ 1)

o' ={q" "}

wi =p(z | q")

X — X+ < 2, wi >

: end for

:for m=1to M do

draw i with probability oc w?

100 addzi to X;

11: end for

In this context, basing the decision making process on
a motion planning technigdeleaves little hope to ful-
fil this real-time constraint given the intrinsic time com-
plexity of the motion planning problem [33] (even if us-
ing randomised approaches). This certainly explain why so
many reactive methofishave been developed in the past
(cf [34], [35], [36], [37], [38], [39], [40], [41], [42], [43]
or [44]. However, reactive approaches are confronted with
two key issues: theonvergencand thesafetyissues. As for
convergence, their lack of lookahead may prevent the system
to ever reach its goal. As for safety, what guarantee is there
that the system will never find itself in a dangerous situatio
eventually yielding to a collision?

Partial Motion Planning (PMP) is the answer we propose
pseudocode of the algorithm is presented in the foIIowir{B the.problem. of naylgatlon n dynam-lc environments. It is
listing (adapted from [32]): gspeually d¢S|gned in order to take m_to accom_mt the rgal—

Using the filter, we may estimate the probability to reaciime constraint mentioned above. PMP is a motion planning

a particular goal by counting the number of particles havin%f/heme with an anytime flavor: when the time available is
that goal and normalizing by the total number of particiés er, PMP returns the best partial motion to the goal contpute

Examples of goal prediction are presented in fig. 10 so far. Like reactive scheme, PMP is also confronted to the
T convergence and safety issues. At this point, we have dicide
to focus on the safety issue and to propose a solution relying

© e N aR

= o] [ =0
| L T T ‘ upon the the concept ofnevitable Collision StategICS)
\ rea ey i ‘ | v U originally introduced in [45]. An ICS is a state such that no
L/ {7J 4 mﬂ___‘ matter what the future motion of the system is, it eventually
i ‘ | it | collides with an obstacle. ICS takes into account the dynami
[ N | \ \ | ] of both the system and the moving obstacles. By computing
i ‘ = ICS-free partial motion, the system safety can be guardntee
— ‘ | ‘ ‘ — PMP is detailed in section IV-A while section IV-B presents
the ICS concept. Finally, an application of PMP to the case
L {—[ }-H—H—H—\-HH{-H ‘LJ }—} }—HHH—H—}—H of a car-like system in a dynamic environment is presented in
| section IV-C.
[ [ |1 \ \ IOl [
A. Partial Motion Planning
Fig. 10. Two examples of prediction shown at different motaefime

As mentioned earlier, a robotic system cannot in general
safely stand still in a dynamic environment (it might be
collided by a moving obstacle). It has to plan a motion

1) Conclusions and future workiWe have started to work ™ hi bounded fi 4 th o d .
on a parking environment which constitutes the main testbdfNn @ bounded time and then execute it in order to remain
fe. The timed. available to calculate a new motion is

for the ParkView project. Experiments are currently beinﬁl

conducted and only preliminar results are available. Thus, nctl_on of the nature and d_ynammty Of. the environment. To
. . g?.ke into account the real-time constraint that stems from a

dynamic environment, we propose a scheme that calculates
partial motions only according to the the following cyclés(a
depicted in Fig. 11):

PMP Al gorithm
Get model of the future
Build tree of partial motions towards the goal
Whené,. is over, return best partial motion
Repeat until goal is reached

progresses from left to right).

to measure the performance of our algorithm.

IV. SAFE NAVIGATION IN DYNAMIC ENVIRONMENTS

When placed in a dynamic environment, an autonomous™ Step1:
system must consider the real time constraint that such an gtep2:
environment imposes. Indeed, the system has a limited time step3:
only to make a decision about its future course of action stepa:
otherwise it might be in danger by the sole fact of being = - : : : - -
passive. The time available depends upon a factor that we-iké motion planning, partial motion planning requires a
will call the dynamicityof the environment and which is amodel of the environment, the first step is aimed at getting
function of the system and the moving objects’dynamics. this model. The required model is provided by the environimen

modelling and motion prediction functions presented earli
®notations uf and pf will be used henceforth in order to distinguish The periodic iterative PMP scheme proposed in this paper
between state and goal GWR

6This implies iterating through the domain @f, meaning that the update
step has cosO(N).

"Wherein a complete motion to the goal is computed a priori.
8Wherein only the next action is determined at each time step.
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Fig. 11. Partial Motion Planning iterative cycle
accounts for both the planning time constraints and thelipali
. .. Static Obstacle Static Obstacle
duration of the predictions made. v Moving Moving
Obstacle Obstacle
. .. Inevitable Collision/
B. Inevitable Collision States Obstacles st/
. . . Inevitable Collision
Like every method that computes partial motion only, PMP Obstacles
has to face a safety issue: since PMP has no control over
the duration of the partial trajectory that is computed, wha Carika|Robot cariike Robot

guarantee do we have that the robbwill never end up in a

critical situation yielding an inevitable collision? Asm@5],

an Inevitable Collision State (ICS) is defined as a stafer (@) (0,v) = (0.9,1.0) (b) (6,v) = (0.9,2.0)
which no matter the control applied to the system is, there is

no trajectory for which the system can avoid a collision ia th

future. The answer we propose to the safety problem lies then 5 2°%° Moving Static Dostacle Moving
in the very fact that the partial trajectory that is compuited Qbstacle Obstacle
ICS-free. Meaning that, even in the worst case scenarioavher '“evigsgfaglzlision/ X

the durationd,, of the partial trajectory is shorter than the T Inevitable Collision |
cycle timed,., A can always execute one of the existing safe Obstacles

trajectory. The overall safety is guaranteed as long asiitiali

state is ICS-free (which is something that can be reasonably c ar-lﬁﬁt Cﬁ%m
assumed). Now, determining whether a given statedois

an ICS or not is a complex task since it requires to consider

all possible future trajectories fad. However, it is possible © (0,0) = (2.2,1.0) @ (0,0) = (2.2,2.0)

to take advantage of the approximation property demorstrat
in [45] in order to. cpmpute a conse_rvat-we approximation %fig. 12. (6,v)-slices of the state space afd. Shaded regions
the set of ICS. This is done by considering only a sutisef are ICS respectively defined for the braking trajectory ofntod

the full set of possible future trajectories. (Qmin, Emin) (top), and all braking trajectories with controls selectesin
[(amin7 fmaac)y (amin7 0)7 (amin7 gmzn)] (bottom).

C. Case Study

In this section we present the application of PMP to the. .
. . . with o € [amin, @maz] (Acceleration bounds)y €

case of a car-like vehicld moving on aplanarsurfacelV and Fomi ] (steering velocity bounds), antf| < ¢
within a fully observable environment cluttered with statiry Tmin; Ymaz 9 y ' — ~mar

and dynamic obstacles. A control dfis defined by the couple (steering angle bounds. is the whgelbase of. : .
(a,7) wherea is the rear wheel linear acceleration. and For practical reasons, the duration of the trajectorieq of

e seering velocty. The moton o is qovemed by the 125 102 IIed (0 ghetime horzoniel etemines e
following differential equations: y O '

ered in order to compute a conservative approximation of the

T vy cos 6 0 0 set of ICS includes the braking trajectories with a constant

j v, sin 0 0 0 trol selected from (min,&maz)s (Cmins 0); (Camins Emin)],

0| = % + 0| a+ |0 v (21) and applied over the time necessary fbrto stop.

Oy 0 1 0 Fig. 12 depicts the ICS obtained when different set of
£ 0 0 1 braking trajectories are considered. Each subfigure reptes



a (0,v)-slice of the full 5D state space of. In the top (orange) obstacles. In 15(a) one can observe how the safe
subfigures, only the braking trajectory of contfal,..., &min)  partial trajectory (green) is calculated and planned witthie
is considered. In the bottom subfigures, the three brakitigne-state space in order to avoid the obstacle moving upwar

trajectories are considered. The states in blue behind the car, is the trajectory, budlinfr
partial trajectories from the previous PMP cycles and (lgiga
«— Moving executed by the robot. In 15(b) we can observe that the car was
Static Obstacle . K .
Obstacle™ obliged to slow down at the intersection of several obstacle
Collision States since no other safe trajectories could be found, before 4o re

Moving accelerate. In 15(c) the system has planned a partial toajyec
Obstacle that avoids the last static obstacle.

/
g
v
a ICS/@
Kesime / V. CONCLUSION

Fig. 13. The state labelled ICS is an ICS since the three mgatkajectories
issued from it yield collisions.

""ul" Moving This paper addressed the problem of navigating safely
Obstacle in a open and dynamic environment sensed using both on-
board and external sensors. After a short presentationeof th
context and of the related open problems, we focused on two
complementary questions: how to interpret and to prediet th

In PMP, checking whether a state is an ICS or not is carrid@otions and the behaviors of the sensed moving entities ? how
out by testing if all the braking trajectories yield a cdtis 0 take appropriate goal-oriented navigation decisionsuich
with one of the moving obstacles. If so, the state is an ICS. fhrapidly changing and sensed environment ?
fig. 13), the collision states in red represent the colligiuat ~ In order to answer these questions, we have proposed an
will occur in the future from this state for all trajectories approach including three main complementary functiony: (1
7. In this case, since all trajectories collide in the futthes Scene interpretation and short-term motion predictiontfier
state is an ICS. In PMP, every new state is similarly checksg@nsed potential obstacles, using the “Bayesian Occupancy
to be an ICS or not ovef. In case all the trajectories appeafFiltering” approach BOF) (2) Medium-term motion and

to be in collision in the future, this state is an ICS and is nd€havior prediction for the observed entities, using motio
selected. pattern learning and hierarchical Hidden Markov Models;

(3) On-line goal-oriented navigation decision in a dynamic
environment, using the “Partial Motion Planning” paradigm
(PMP).

The first function BOF)has experimentally been validated
on our experimental vehicle (the Cycab), for avoiding [aeisti
observed moving obstacles. A scenario involving the Cycab,
a moving pedestrian, and a parked car which temporarily hide
Fig. 14. Search tree construction principle. the pedestrian to the sensors of the Cycab, has successfully

been executed. In this experiment, the avoidance behaa®r h

The exploration method used is the well knowtveen obtained by combining theccupancy probabilityand
Rapidly-Exploring Random Tree method (RRT) [46]the danger probabilityof each cell of the grid. The second
RRT incrementally builds a tree in the state spacef function has experimentally been validated on some indoor
The basic principle of RRT is depicted in Fig. 14. A statdata (the INRIA entry hall), using about 1000 tracked human
s, is randomly selected first. Then, the closest node in th@jectories for the initial learning phase. At the moment,
tree, says,, is determined. Constant controls selected frothe last function M P) has only been experimented in
UQD:[(amaJ;; 0)1 (ama;ﬂ; émam); (amaw7 fmm),((L gmal)a Siml'”ation‘

(0,0); (0, &min)i(Qmins Emaz);  (Umins 0); (Qmin, Emin)] Current work mainly deals with three major points: (1)
are then applied tos. for a duratione, they yield a set Improvement of the prediction approaches for making it pos-
of candidate trajectories ending in given statgs. These sible to cope with larger environments (such as complexnurba
candidate trajectories are pruned out: only are kept thaffic situations), while preserving the efficiency pragethe
trajectories that are collision-free and whose final state ¢urrent development on tH& OG model is an example of this
ICS-free (as per property 2, such trajectories are ICSkfremvork. (2) Fusion of our current interpretation and predioti
Finally, the trajectory whose final state is closer 4p is paradigms with higher-level information (e.g. GPS maps,
selected and added up to the tree. This process is repeat®ing entities properties, nominal behaviors ...) to drett
until the end of the time available where the best partiaktimate the scene participants behaviors. (3) Integradfo
trajectory extracted from the tree is returned. the three previous functions, and implementation and tést t

In Fig. 15 we can see an example of a navigation fromreew navigation system on our experimental platform invudvi
still starting state (green box) to a still goal state (rec)bo the INRIA car park, several Cycabs, and both inboard and
The environment is cluttered with moving (grey) and statinfrastructure sensors.
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