
HAL Id: inria-00182061
https://hal.inria.fr/inria-00182061

Submitted on 24 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hierarchies of probabilistic models of navigation: the
Bayesian Map and the Abstraction operator

Julien Diard, Pierre Bessiere, Emmanuel Mazer

To cite this version:
Julien Diard, Pierre Bessiere, Emmanuel Mazer. Hierarchies of probabilistic models of navigation:
the Bayesian Map and the Abstraction operator. Proc. of the IEEE Int. Conf. on Robotics and
Automation, Apr 2004, New Orleans, LA (US), France. �inria-00182061�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50353344?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00182061
https://hal.archives-ouvertes.fr

Hierarchies of probabilistic models of navigation:
the Bayesian Map and the Abstraction operator

Julien Diard, Pierre Bessière and Emmanuel Mazer
Laboratoire GRAVIR / IMAG – CNRS

INRIA Rhône-Alpes, 655 avenue de l’Europe
38330 Montbonnot Saint Martin FRANCE

Julien.Diard@free.fr

Abstract— This paper presents a new method for probabilistic
modeling of space, called the Bayesian Map formalism. It offers
a generalization of some common approaches found in the
literature, as it does not constrain the dependency structure
of the probabilistic model. The formalism allows incremental
building of hierarchies of models, by the use of the Abstraction
operator. In the resulting hierarchy, localization in the high level
model is based on probabilistic competition of the lower level
models. Experimental results validate the concept, and hint at
its usefulness for large scale scenarios.

I. INTRODUCTION

In robotics, modeling the environment that a robot has to
face in a navigation task is a crucial problem, that has received
a lot of attention in the community. The most promising
approaches rely on the probability calculus, especially for its
capacity to handle incomplete models and uncertain informa-
tion. These approaches include – but are far from limited
to – Kalman Filters [1], Markov Localization models [2],
(Partially or Fully) Observable Markov Decision Processes [3],
and Hidden Markov Models [4]. We will here assume that the
reader has some familiarity with these approaches.

In this domain of probabilistic modeling for robotics, hier-
archical solutions are currently flourishing. The more active
domain in this regard is decision theoretic planning: one
can find variants of MDPs that accommodate hierarchies or
that select automatically the partition of the state-space (see
for instance [5], [6], or browse through the references in
[7]). More exceptionally, one can find hierarchical POMDPs,
as in [7], which is arguably the work that bears the most
resemblance to the one presented here, although we do not
use reward functions in this work. The current work can
also be related to Thrun’s object mapping paradigm [8], in
particular concerning the aim of transferring some of the
knowledge the programmer has about the task, to the robot.
Some hierarchical approaches outside of the MDP community
include Hierarchical HMMs and their variants (see [9] and
references therein), which, unfortunately, rely on the notion
of final state of the automata. Another class of approaches
relies on the extraction of a graph from a probabilistic model,
like for example a Markov Localization model [10], or a
MDP [11]. Using such deterministic notions is inconvenient
in a purely probabilistic approach, as we are pursuing here.
Indeed, the current work uses probabilities in all layers of

the hierarchy of representations, allowing us to propagate
and handle uncertainties in a uniform and formally coherent
manner.

Moreover, the main philosophy used by all the previous
approaches is to try to extract, from a very complex but
intractable model, a hierarchy of smaller models. Of course,
automatically selecting the relevant decomposition of a prob-
lem into sub-problems is quite a challenge – this challenge
being far from restricted to the domain of navigation for robots
facing uncertainties.

We pursue here an alternate route, investigating how, start-
ing from a set of simple models, one can combine them for
building more complex models. The goal of this paper is
therefore to present a new formalism for building models of
the space in which a robot has to navigate (the Bayesian Map
model), and a method for combining such maps together in a
hierarchical manner (the Abstraction operator).

This formalism allows for a new representation of space, in
which the final program is built upon many imbricate models,
each of them deeply rooted into lower level sensorimotor
relationships. Such hierarchies of sensorimotor models seem
relevant to biologically inspired models, as it appears that
no single metric model can account alone for large scale
navigation capacities of animals (see [12], [13]).

We will also argue that our approach draws away from
the usual characteristics of the common models of space
(Section II-C), and that it is also more general than these
models (Sections III and VI). For brevity, this paper will
discuss neither of the learning methods that can be included
into Bayesian Maps (mapping process), nor of another operator
for merging Bayesian Maps (the Superposition operator).
Preliminary work about these issues and all the details missing
in the current paper can be found in Diard’s Ph.D. thesis [14].

The rest of this paper is organized as follows. Section II
presents the Bayesian Robot Programming methodology, and
discusses some of its characteristics. Sections III and IV
will quickly define our notion of Bayesian Map, and the
Abstraction operator, respectively. The paper concludes on the
presentation of experimental results, Section V.

II. BAYESIAN ROBOT PROGRAMMING

The work we present here is based on BRP, a Bayesian
Robot Programming methodology. We summarize it here, but

Prog

8>>>>><
>>>>>:

Desc

8>>><
>>>:

Spec (π)

8><
>:

Pertinent variables
Decomposition

Forms

Parametric OR
Questions to Programs

Identification based on data (δ)
Question

Fig. 1. Structure of a Bayesian Robotic Program.

still invite the reader to refer to [15] for all the details.

A. Definition

In the BRP formalism, a bayesian robotic program is a
structure (see Fig. 1) made of two components.

The first is a declarative component, where the user defines
a description. The purpose of a description is to specify a
method to compute a joint distribution over a set of relevant
variables {X1, X2, . . . , Xn}, given a set of experimental data
δ and preliminary knowledge π. This joint distribution is
denoted P (X1 X2 . . . Xn | δ π). To specify this distribution,
the programmer first lists the pertinent variables (and defines
their domains), then decomposes the joint distribution as a
product of simpler terms (possibly stating conditional inde-
pendence hypotheses so as to simplify the model and/or the
computations), and finally, assigns forms to each term of the
selected product (these forms can be parametric forms, or re-
cursive questions to other bayesian programs). If there are free
parameters in the parametric forms, they have to be assessed.
They can be given by the programmer (a priori programming)
or computed on the basis of a learning mechanism defined by
the programmer and some experimental data δ.

The second component is of a procedural nature, and
consists of using the previously defined description with a
question, i.e. computing a probability distribution of the form
P (Searched | Known). Answering a “question” consists
in deciding a value for the variable Searched according to
P (Searched | Known). Different decision policies are pos-
sible, in our robotic experiments we usually choose to draw a
value at random according to that distribution. It is well known
that general Bayesian inference is a very difficult problem,
which may be practically intractable. But, as this paper is
mainly concerned with modeling issues, we will assume that
the inference problems are solved and implemented in an
efficient manner by the programmer.

B. Example

Since the BRP formalism is only based on the inference
rules needed for probability calculus, it is very general. Indeed,
a very wide class of probabilistic models found in the literature
can be rewritten as BRP programs, as is shown in [16]. For
example, we can rewrite the Markov Localization model into
the BRP formalism. The ML model is basically a Hidden
Markov Model with an additional action variable. Recall that
a HMM is basically the decomposition P (Ot St St−1) =
P (St−1)P (St | St−1)P (Ot | St), where Ot is a perception

Pr
og

ra
m

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

D
es

cr
ip

tio
n

8>>>>>>>>>>>><
>>>>>>>>>>>>:

Sp
ec

ifi
ca

tio
n

8>>>>>>>>>><
>>>>>>>>>>:

Pertinent variables
Ot : perception variable
St : discrete location variable at time t
St−1 : discrete location variable at time t − 1
At : action variable

Decomposition
P (At St St−1 Ot) =

P (St | At St−1)P (Ot | St)P (At)P (St−1)
Forms: usually, matrices or particles)

Identification: any
Question: localization P (St | A0 . . . At O0 . . . Ot)

Fig. 2. The Markov Localization definition expressed in the BRP formalism.

variable, St and St−1 are location variables at time t and t−1.
Starting from this structure, the action variable At is used to
refine the transition model P (St | St−1) into P (St | At St−1).
The resulting BRP model for Markov Localization is shown
Fig. 2.

C. BRP vs. other models

Let us now develop some remarks that arise from the
comparison between the use of the BRP formalism and some
aspects of the more common models of the representation of
space (see Section I). In particular, we now focus on solving
navigation tasks using BRP programs.

The first remark relies on the fact that, in BRP, a form
appearing in a description c1 can be a question to another
description c2. This allows the programmer to decompose a
robotic program into sub-programs, as in structured computer
programming. Therefore, the first step for solving a navigation
task is to imagine, or to copy from living beings (see [12],
[13]), intermediary levels of descriptions or skills, that are
relevant. This is somewhat different from most probabilistic
models of space, that only rely on one level of description,
i.e. that try to represent the environment using only one type
of features. Forms being questions to other descriptions is a
key feature of our Abstraction operator (see Section IV).

The second remark is that the first step when designing a
BRP description is the choice of variables. When dealing with
the representation of space, one usually selects a perception
variable, an action variable, and a location (or state) variable.
Therefore, the programmer has to choose a set of locations
that are relevant for solving the task at hand, in the class
of environments the robot will likely face. The choice of the
nature of these locations (metric or topologic, or dense or
sparse, for instance) should come as a consequence of these
considerations. This, again, somewhat differs from existing
approaches, where the choice of model (Markov Localization
or Kalman Filter, for instance), is rather a choice of a de-
pendency structure or form definition, that implies properties
on the choice of variables (Kalman Filters are well suited to
continuous variables, for instance). In contrast, in the Bayesian
Map formalism, we will not put constraints on the choice of
decomposition or forms: the programmer will have all latitude
left for choosing the semantic of the location variable that

solves his navigation task (the constraints on the choice of
variables will merely be syntactic).

The third and final remark is that, in BRP, the description
phase is considered independent of the utilization phase. This
contrasts with most probabilistic models, where the terms
appearing in the decomposition are usually chosen for a
particular inference. For example, action or transition models,
which can be difficult to assess when the variables are not
chosen well, are still very common because they are easily
integrated into the location estimation. In our Bayesian Map
formalism, we will constraint what maps are used for (the
questions), but not how the knowledge necessary for using
the map is structured (the decomposition).

III. BAYESIAN MAPS

A Bayesian Map c is a description that defines a joint
distribution P (P Lt Lt′ A | c), where:

• P is a perception variable (the robot reads its values from
physical sensors or lower level variables),

• Lt is a location variable at time t,
• Lt′ is a variable having the same domain than Lt, but at

time t′ (without loss of generality, let us assume t′ > t),
• and A is an action variable (the robot writes commands

on this variable).
For simplicity, we will assume here that all these variables
have finite domains.

The choice of decomposition is not constrained: any prob-
abilistic dependency structure can therefore be chosen here.
Finally, the definition of forms and the learning mechanism
(if any) are not constrained, either.

For a Bayesian Map to be useable in practice, we need
the description to be rich enough to generate behaviors. We
call elementary behavior any question of the form P (Ai | X),
where Ai is a subset of A, and X a subset of the other variables
of the map (i.e., not in Ai). A behavior can be not elementary,
for example if it is a sequence of elementary behaviors, or, in
more general terms, if it is based on elementary behaviors and
some other knowledge (which need not be expressed in terms
of maps).

For a Bayesian Map to be interesting, we will also require
that it generates several behaviors – otherwise, defining just
a single behavior instead of a map is enough. Such a map
is therefore a resource, based on a location variable relevant
enough to solve a class of tasks: this internal model of the
world can be reified.

A “guide” one can use to “make sure” that a given map will
generate useful behaviors, is to check if the map answers in a
relevant manner the three questions P (Lt | P) (localization),
P (Lt′ | A Lt) (prediction) and P (A | Lt Lt′) (control).

By “relevant manner”, we mean that these distributions
have to be informative, in the sense that their entropy is “far
enough” of its maximum (i. e. the distribution is different from
a uniform distribution). This constraint is not formally well
defined, but it seems intuitive to focus on these three questions.
Indeed, the skills of localization, prediction and control are
well identified in the literature as means to generate behaviors.

Pr
og

ra
m

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

D
es

cr
ip

tio
n

8>>>>>>>><
>>>>>>>>:

Sp
ec

ifi
ca

tio
n

8>>>>>>><
>>>>>>>:

Pertinent variables:
P : perception variable
Lt : location variable at time t
Lt′ : location variable at time t′, t′ > t
A : action variable

Decomposition: any
Parametric forms: any

Identification: any
Questions (required):

elementary behaviors: P (Ai | X), with Ai ⊆ A,
X ⊆ `{P, Lt, Lt′ , A} \ Ai

´
Questions (guides):

localization: P (Lt | P)
prediction: P (Lt′ | A Lt)
control: P (A | Lt Lt′)

Fig. 3. The Bayesian Map model definition expressed in the BRP formalism.

Checking that the answers to these questions are informative
is a first step to evaluate the quality of a Bayesian Map with
respect to solving a given task.

Fig. 3 is a summary of the definition of the Bayesian Map
formalism.

A. Generality of the Bayesian Map formalism

We now invite the reader to verify that the Markov Localiza-
tion model is indeed a special case of the Bayesian Map model
by comparing Fig. 2 and Fig. 3. Recall that Kalman Filters and
Particle Filters are special cases of Markov Localization, as
they add hypotheses over the choice of dependency structure
made by the Markov Localization model. This implies that
Kalman Filters and Particle Filters also are special cases of
Bayesian Maps.

Bayesian Maps can therefore accommodate many different
forms, depending on the needs or information at hand: for
example, one Bayesian Map can be structured like a real
valued Kalman Filter for tracking the angle and distance to
some feature when it is available. If that feature is not present,
or in cases where the linearity hypotheses fail, we can use
another Bayesian Map, which need not be a Kalman Filter
(for example, based on a symbolic variable).

IV. ABSTRACTION OF BAYESIAN MAPS

Having defined the Bayesian Map concept, we now turn to
defining operators for putting Bayesian Maps together. The
one we present here is called the Abstraction of maps, it is
defined Fig. 4, and commented in the rest of this section.

As stressed above, in a Bayesian Map, the semantics of the
location variable can be very diverse. The main idea behind
the abstraction operator is to build a Bayesian Map c whose
different locations are other Bayesian Maps c1, c2, . . . , cn. The
location variable of the abstract map will therefore take n
possible symbolic values, one for each underlying map ci.
Each of these maps will be “nested” in the higher level abstract
map, which justifies the use of the term “hierarchy” in our
work. Recall that Bayesian Maps are designed for generating
behaviors. Let us note a1, a2, . . . , ak the k behaviors defined

Pr
og

ra
m

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

D
es

cr
ip

tio
n

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Sp
ec

ifi
ca

tio
n

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

Pertinent variables:
P =

Vn
i=1

`
P i ∧ Li

t ∧ Li
t′ ∧ Ai

´
Lt : DLt = {c1, c2, . . . , cn}, kLt = n
Lt′ : DLt′ = {c1, c2, . . . , cn}, kLt′ = n
A : DA = {a1, a2, . . . , ak}, kA = k

Decomposition:
P (P Lt Lt′ A) =

P (Lt)
Qn

i=1 P (P i Li
t Li

t′ Ai | Lt)
P (Lt′)P (A | Lt Lt′)

Parametric forms:
P (Lt) = Uniform
P (P i Li

t Li
t′ Ai | [Lt = c])

=

if c = ci then P (P i Li

t Li
t′ Ai | ci)

else Uniform
P (Lt′) = Uniform
P (A | Lt Lt′) = Table

Identification:
a priori programming or learning of P (A | Lt Lt′)

Questions:
P (Lt | P) = 1

Z1

Qn
i=1 P (P i Li

t Li
t′ Ai | Lt)

P (Lt′ | A Lt) = 1
Z2

P (A | Lt Lt′)
P (A | Lt Lt′) = P (A | Lt Lt′).

Fig. 4. The abstraction operator definition expressed as a Bayesian Map.

in the n underlying maps. In the abstract map, these behaviors
can be used for linking the locations ci. The action variable
of the abstract map will therefore take k possible symbolic
values, one for each behavior of the underlying maps. In order
to build an abstract map having n locations, the programmer
will have to have previously defined n lower level maps, which
generate k behaviors. The numbers n and k are therefore
small, and so the abstract map deals with a small internal
space, having retained of each underlying map only a symbol,
and having “forgotten” all their details. This justifies the
use of the name “abstraction” for this operator. But this
“summary mechanism” has yet to be described: that is what
the perception variable P of the abstract map will be used
for, as it will be the list of all the variables appearing in the
underlying maps: P = P 1, L1

t , L
1
t′ , A

1, . . . , Pn, Ln
t , Ln

t′ , A
n.

Given the four variables of the abstract map, we define its
joint distribution with the following decomposition:

P (P Lt Lt′ A)

= P (Lt)
n∏

i=1

P (P i Li
t Li

t′ Ai | Lt)P (Lt′)P (A | Lt Lt′).

In this decomposition, P (Lt) and P (Lt′) are defined
as uniform distributions. All the terms of the form
P (P i Li

t Li
t′ Ai | [Lt = c]) are defined as follows: when

c �= ci, the probabilistic dependency between the variables
P i, Li

t, Li
t′ , Ai of the map ci is supposed unknown, therefore

defined by a uniform distribution. Whereas when c = ci, this
dependency is exactly what the map ci defines. Therefore this
term is a question to the description ci, but a question that
includes the whole sub-description by asking for the joint
distribution it defines. Since the last term, P (A | Lt Lt′),
only includes symbolic variables that have a small number of

values, it makes sense to define it as a table, which can be
easily a priori programmed or learned experimentally.

The abstract Bayesian Map is now fully defined, and, given
n underlying maps, can be automatically built. The last step is
to verify that it generates useful behaviors. We will examine
the guide questions of localization, prediction and control.

The localization question leads to the following inference
(derivation omitted): P (Lt | P) ∝∏n

i=1 P (P i Li
t Li

t′ Ai | Lt).
The interpretation of this result will be explained with an
example, Section V. The derivations for solving the prediction
P (Lt′ | A Lt) and control P (A | Lt Lt′) questions are also
straightforward, and given Fig. 4.

Recall that the final goal of any Bayesian Map is to provide
behaviors. In the abstract map, this is done by answering a
question like P (A | [Lt′ = ci] [P = p]): what is the probability
distribution over lower level behaviors, knowing all values p of
the variables of the lower level, and knowing that we want to
“go to map ci?” Answering this question thus allows selecting
the most relevant underlying behavior to reach a given high
level goal. The computation is as follows:

P (A | Lt′ P)

=
1
Z

∑
Lt

(
n∏

i=1

P (P i Li
t Li

t′ Ai | Lt)

)
P (A | Lt Lt′).

This computation includes the localization question, to weigh
the probabilities given by the control model P (A | Lt Lt′).
In other words, the distribution over the action variable A
includes all localization uncertainties. Each underlying model
is used, even when the robot is located at a physical location
that this model is not made for. As a direct consequence,
there is no need to decide what map the robot is in, or
to switch from map to map: the computation considers all
possibilities and weighs them according to their (localization)
probabilities. Therefore the underlying maps need not be
“mutually exclusive” in a geographical sense.

V. EXPERIMENTAL VALIDATION

We report here an experiment made on the well-known
Koala mobile robot platform (K-team company). In order to
keep as much control as possible over our experiments and
the different effects we observe, we simplify the sensorimotor
system and its environment. We only use the 16 proximeters
Px = Px0 ∧ . . . ∧ Px15 of our robot, and keep two degrees
of freedom of motor control, via the rotation and translation
speed V rot and V trans. The environment we use is a 5 m ×
5 m area made of movable planks (see a typical configuration
we use Fig. 5). The goal of this experiment is to solve a
navigation task: we want the robot to be able to go hide in
any corner, as if the empty space in the middle of the area
were dangerous.

The first programming step is to analyze this task into sub-
tasks. We particularize three situations that are relevant for
solving the task: the robot can either be near a wall, and it
should follow it in order to reach the nearest corner, or the
robot can be in a corner, and it should stop, or finally it could

be in empty space, and should therefore go straight, so as to
leave the exposed area as quickly as possible.

A. Low level Bayesian Maps

Given this analysis, the second programming step is to
define one Bayesian Map for each of the three situations. They
all use the same perception variable P = Px and the same
action variable A = V rot ∧ V trans.

The first map, cwall, describes how to navigate in pres-
ence of a single wall, using a location variable Lt =
θ ∧ Dist: the phenomenon “wall” is summed up by an
angle θ and a distance Dist. Therefore, cwall defines
P (Px θt Distt θt′ Distt′ V rot V trans | cwall). We have
implemented this map using 12 possible angle values, and
3 different distances. This lead to a compact model, yet
accurate enough to solve the sub-tasks we wanted to solve.
The dependency structure we choose is (cwall on right hand
sides omitted):

P (Px θt Distt θt′ Distt′ V rot V trans)

= P (θt Distt)
∏

i

P (Pxi | θt Distt)P (θt′ Distt′)

P (V rot | θt Distt θt′ Distt′)
P (V trans | θt Distt θt′ Distt′).

P (θt Distt) and P (θt′ Distt′) are uniform probability dis-
tributions. Each term of the form P (Pxi | θt Distt) is a
set of Gaussians, that were identified experimentally, by a
supervised learning phase: we physically put the robot in
all 36 possible situations, and recorded proximeter values so
as to compute experimental means and standard deviations.
Finally, the two control terms P (V rot | θt Distt θt′ Distt′)
and P (V trans | θt Distt θt′ Distt′) were programmed “by
hand”: given the current angle and distance, and the angle and
distance to be reached, what should be the motor commands?

This map successfully solves navigation tasks like
“follow-wall-right”, “follow-wall-left”, “go-away-from-wall”,
“stop”, using behaviors of the same name. For example,
“follow-wall-right” is defined by the probabilistic question
P (V rot V trans | Px [Lt′ = 〈90, 1〉]): compute the dis-
tribution on motor variables knowing the sensory input and
knowing that the location to reach is θ = 90 ◦, Dist = 1
(wall on the right at medium distance).

This map is an instance where a Kalman Filter based
Bayesian Map could have been used instead: for example, if
we had required more accuracy on the angle and distance to
the wall, using continuous variables. The coarse grained set of
values we used were actually sufficient for our experiments.

The two other Bayesian Maps we define are the following.
1) ccorner describes how to navigate in a corner, using a
symbolic location variable that can take 4 values: FrontLeft,
FrontRight, RearLeft and RearRight. This is enough for
solving tasks like “quit-corner-and-follow-right”, “away-from-
both-walls”, “stop”. 2) cempty−spacedescribes how to navigate
in empty space, i.e. when the sensors do not see anything. The
behaviors defined here are “straight-ahead” and “stop”.

B. Abstract Bayesian Map

Given these three maps, the third and final pro-
gramming step is to apply the abstraction operator on
them. We obtain a map c, whose location variable is
Lt = {cwall, ccorner, cempty−space}. The action variable
lists the behaviors defined by the low level maps: A =
{follow-wall-right, go-away-from-wall, . . .}. The rest of the
abstract map is according to the schema of Fig. 4.

We want here to discuss the localization question. Let us
assume that the robot is in empty space: all its sensors read
0. Let us also assume that the robot is currently applying the
“straight-ahead” behavior, that sets V rot and V trans near 0
(no rotation) and 40 (fast forward movement), respectively,
using sharp Gaussian distributions.

Let us consider the probability to be in location
cempty−space (with w standing for wall, c for corner and
e for empty − space):

P ([Lt = cempty−space] | P)

∝

 P (Pw Lw

t Lw
t′ Aw | [Lt = cempty−space])

P (P c Lc
t Lc

t′ Ac | [Lt = cempty−space])
P (P e Le

t Le
t′ Ae | [Lt = cempty−space])

 .

Of the three terms of the product, two are uniforms, and
one is the joint distribution given by cempty−space. That joint
distribution gives a very high probability for the current situ-
ation, as describing the phenomenon “going straight ahead in
empty space” basically amounts to favoring sensory readings
of 0 and motor commands near 0 and 40 for V rot and
V trans, respectively. The situation is quite the opposite for
P ([Lt = cwall] | P): for example, cwall does not favor at all
this sensory situation. Indeed, the phenomenon “I am near a
wall” is closely related to the fact that the sensors actually
sense something. The probability of seeing nothing on the
sensors knowing that the robot is near a wall is very low:
P ([Lt = cwall] | P) will be very low. The reasoning is similar
for P ([Lt = ccorner] | P).

This computation can thus be interpreted as the recognition
of the most pertinent underlying map for a given sensorimotor
situation. Alternatively, it can be seen as a measure of the
coherence of the values of the variables of each underlying
map, or even as a Bayesian comparison of the relevance of
models, as assessed by the numerical value of the joint dis-
tributions of each lower level model. Since these distributions
include (lower level) location and action variables, the maps
are not only recognized by sensory patterns, but also by what
the robot is currently doing.

The localization question can therefore be used to assess
the “validity zones” of the underlying maps, i.e. the places
of the environment where the hypotheses of each model hold.
Experimentally, we have the robot navigate in the environment,
and ask at each time step the localization question. We can
summarize visually the answer, for example by drawing values
for Lt, and report the drawn value on a Cartesian map of
the environment. A (simplified but readable) result is shown
Fig. 5. As can be seen, the robot correctly recognizes each

corner

wall

empty-space

Fig. 5. 2D projection of the estimated “validity zones” of the maps cwall,
ccorner et cempty−space. The bottom part of the figure is a screenshot of
the localization module of the abstract map: it shows the “comparison” and
competition between the underlying models. The winner is marked by the
central dot: in this case, the robot was near a wall.

situation that it has a model for. Let us note that the resulting
zones are not contiguous in the environment: for example, all
the corners of the environment are associated with the same
symbol, namely, ccorner. This effect is known as perceptual
aliasing. But this very simple representation is sufficient for
solving the task that was given to the robot: we report here
that the behavior “go-hide-in-any-corner” is indeed generated
by the abstract map.

A typical trajectory for the robot, starting from the middle
of the arena, is to start by going straight ahead. As soon as a
couple of forward sensors sense something, the “empty-space”
situation is not relevant anymore, and the robot applies the best
model it has, depending on the correlation between what the
sensors see: if it looks like a wall and moves like a wall, then
the probability for the “wall” model is high; on the other hand,
if it rather feels like a corner, then the corner model wins the
probabilistic competition. Suppose it was near a wall, then it
starts to follow it, until a corner is reached. In our first version,
the corner model was designed “too independently” of the wall
model: the validity zone of the ccorner map was too small,
and seldom visited by the robot as it passed the corner using
the “follow-wall-right” behavior, defined by cwall. The robot
would then miss the first corner, and stop at another one. This
shows that the decomposition of the task gives independent
sub-tasks only as a first approximation. We solved the problem
by modifying the “corner” model, so that it would recognize
a corner on a typical “follow-wall-right” trajectory.

VI. CONCLUSION

We have presented the Bayesian Map formalism: it is a gen-
eralization of most probabilistic models of space found in the
literature. Indeed, it drops the usual constraints on the choice
of decomposition, forms, or implementation of the probability

distributions. We have also presented the Abstraction operator,
for building hierarchies of Bayesian Maps.

The experiments we presented are of course to be regarded
only as “proofs of concept”. Their simplicity also served di-
dactic purposes. However, these experiments, in our view, are
a successful preliminary step toward applying our formalism.
Part of the current work is of course aimed at enriching
these experiments, in particular with respect to the scaling
up capacity of the formalism.

Moreover, since each map of the hierarchy is a full proba-
bilistic model it is potentially very rich. Possible computations
based on these maps include questions like the prediction
question P (Lt′ | A Lt), which can form the basis of planning
processes. Hierarchies of Bayesian Maps are therefore to be
placed alongside model based approaches, instead of pure
reactive approaches. Exploiting such knowledge by integrating
a planning process in our Bayesian Map formalism is also part
of the ongoing work.

REFERENCES

[1] J. Leonard, H. Durrant-Whyte, and I. Cox, “Dynamic map-building for
an autonomous mobile robot,” The International Journal of Robotics
Research, vol. 11, no. 4, pp. 286–298, 1992.

[2] S. Thrun, “Probabilistic algorithms in robotics,” AI Magazine, vol. 21,
no. 4, pp. 93–109, 2000.

[3] L. Kaelbling, M. Littman, and A. Cassandra, “Planning and acting in
partially observable stochastic domains,” Artificial Intelligence, vol. 101,
no. 1-2, pp. 99–134, 1998.

[4] L. R. Rabiner and B.-H. Juang, Fundamentals of Speech Recognition.
Englewood Cliffs, New Jersey: Prentice Hall, 1993, ch. Theory and
implementation of Hidden Markov Models, pp. 321–389.

[5] M. Hauskrecht, N. Meuleau, L. P. Kaelbling, T. Dean, and C. Boutilier,
“Hierarchical solution of Markov decision processes using macro-
actions,” in Proceedings of the 14th Conf. on Uncertainty in Artificial
Intelligence (UAI-98), G. F. Cooper and S. Moral, Eds. San Francisco:
Morgan Kaufmann, July, 24–26 1998, pp. 220–229.

[6] T. Lane and L. P. Kaelbling, “Toward hierarchical decomposition for
planning in uncertain environments,” in Proceedings of the 2001 IJCAI
Workshop on Planning under Uncertainty and Incomplete Information.
Seattle, WA: AAAI Press, August 2001.

[7] J. Pineau and S. Thrun, “An integrated approach to hierarchy and
abstraction for POMDPs,” Carnegie Mellon University, Technical Report
CMU-RI-TR-02-21, August 2002.

[8] S. Thrun, “Robotic mapping: A survey,” Carnegie Mellon University,
Technical Report CMU-CS-02-111, February 2002.

[9] K. Murphy, “Dynamic bayesian networks: Representation, inference and
learning,” Ph.D. thesis, University of California, Berkeley, Berkeley, CA,
July 2002.

[10] S. Thrun, “Learning metric-topological maps for indoor mobile robot
navigation,” Artificial Intelligence, vol. 99, no. 1, pp. 21–71, 1998.

[11] T. Lane and L. P. Kaelbling, “Nearly deterministic abstractions of
markov decision processes,” in 18th Nat. Conf. on Artificial Intelligence,
2002.

[12] B. J. Kuipers, “The spatial semantic hierarchy,” Artificial Intelligence,
vol. 119, no. 1–2, pp. 191–233, 2000.

[13] O. Trullier, S. Wiener, A. Berthoz, and J.-A. Meyer, “Biologically-
based artificial navigation systems: Review and prospects,” Progress in
Neurobiology, vol. 51, pp. 483–544, 1997.

[14] J. Diard, “La carte bayésienne – un modèle probabiliste hiérarchique
pour la navigation en robotique mobile,” Thèse de doctorat, Institut
National Polytechnique de Grenoble, Grenoble, France, Janvier 2003.

[15] O. Lebeltel, P. Bessière, J. Diard, and E. Mazer, “Bayesian robot
programming,” Autonomous Robots (in press), vol. 16, no. 1, 2004.

[16] J. Diard, P. Bessière, and E. Mazer, “A survey of probabilistic models,
using the bayesian programming methodology as a unifying framework,”
in The Second Int. Conf. on Computational Intelligence, Robotics and
Autonomous Systems (CIRAS), Singapore, December 2003.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	header: Proceedings of the 2004 IEEE International Conference on Robotics & Automation New Orleans, LA • April 2004
	footer: 0-7803-8232-3/04/$17.00 ©2004 IEEE
	01: 3837
	02: 3838
	03: 3839
	04: 3840
	05: 3841
	06: 3842

