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Abstract
This paper deals with the probabilistic modeling of an
environment that a robot has to navigate in. We use
a method for the probabilistic modeling of space called
the Bayesian Map formalism. This formalism allows
incremental building of models: we define the Super-
position operator, which is a formally well-defined op-
erator. We present first a syntactic version of this
operator, and second, a version where the previously
obtained model is refined and enriched by experimen-
tal learning. In the resulting superposed map, loca-
tions are the conjunction of underlying possible loca-
tions, which allows for more precise localization and
more complex tasks. A theoretical example validates
the concept, and hints at its usefulness for realistic
robotic scenarios.

1 Introduction and related work
In service robotics, modeling the environment that a
robot has to face is a crucial problem. Whether it is a
robotic personal assistant operating indoors (e.g. in a
hospital, factory or airport) or a robotic carlike vehi-
cle operating outdoors (e.g. in a parking lot or cam-
pus), any service robot needs internal models (maps)
for solving almost all navigation tasks. This prob-
lem has received a lot of attention in the community,
the most promising approaches relying on the prob-
ability calculus, especially for its capacity to handle
incomplete models and uncertain information. These
approaches include – but are far from limited to –
Kalman Filters [13], Markov Localization models [20],
(partially or fully) observable Markov Decision Pro-
cesses [3, 8], and Hidden Markov Models [16]. For
references that present several of them at once, giv-
ing unifying pictures, see [2, 6, 14, 17, 18]. We will
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here assume that the reader has some familiarity with
these approaches.

In this domain of probabilistic modeling for
robotics, hierarchical solutions are currently flourish-
ing – while still representing a very small part of the
literature. The more active domain in this regard is
decision theoretic planning: one can find variants of
MDPs that accomodate hierarchies or that select au-
tomatically the partition of the state-space (see for
instance [7, 10], or browse through the references in
[15]). More exceptionnally, one can find hierarchical
POMDPs, as in [15]. Some hierarchical approaches
outside of the MDP community include Hierarchi-
cal HMMs and their variants (see [14] and references
therein), which, unfortunately, rely on the notion of
final state of the automata, which is inconvenient in
a purely probabilistic approach, as we are pursuing
here. Another class of approaches that rely on de-
terministic notions are based on the extraction of a
graph from a probabilistic model, like for example a
Markov Localization model [19], or a MDP [11].

However, the main philosophy used by the hier-
archical approaches is to try to extract, from a very
complex but intractable model, a hierarchy of smaller
models (structural decomposition, see [15]). Au-
tomatically selecting the right decomposition is of
course a very difficult problem. Moreover, even ob-
taining in the first place the initial, complex model,
is still a difficult challenge in the general case [9].

We pursue here an alternate route, investigating
how, starting from a set of simple probabilistic mod-
els, one can combine them for building more com-
plex models. We have developed a new formalism for
building models of the space in which a robot has to
navigate (the Bayesian Map model). We will briefly
introduce this model here. This model is particularly
well suited to the definition of operators in order to
combine maps together. For instance, we have defined
the Abstraction operator, which combines Bayesian
Maps in a hierarchical manner [5]. This operator is
formally well-defined: given a set of Bayesian Maps,
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Figure 1: Structure of a Bayesian Robotic Program.

this operator outputs a new Bayesian Map which is a
hierarchical composition of the given maps.

The current paper enriches the previous work, by
defining another well-defined formal operator: the Su-
perposition operator. It combines together several
maps that describe the same geographical space. In
this paper, we present the binary version of this oper-
ator. Intuitively, it puts together two Bayesian Maps
by superposing each map’s set of possible locations.
Therefore the robot localizes itself in the two mod-
els simultaneously, giving it a richer “vocabulary” for
describing its environment. Building complex models
out of simpler ones is often needed, for example when
different sensory modalities are used by a robot, and
have to be mixed.

There are two variants of this operator, depending
on whether the actions indicated by the combined
maps can be combined or not. In this paper, we
present the variant where we suppose that we do not
know how to combine actions defined in the underly-
ing maps: the robot can use a behavior defined either
in the first map, or the second map, but is not able
to apply both simultaneously (or, in other words, ap-
plying both can give unforeseen results). The other
variant supposes the contrary, i.e. the robot knows
a method for combining behaviors coming from each
map in a meaningful manner (see [4]).

We will first present the simpler case where the
combination does not add knowledge to the obtained
Bayesian Map, with respect to the initial maps. We
then proceed to a more interesting and complicated
scenario, where the combined map is enriched by
further knowledge, so as to investigate the interplay
between the combined models. This supplementary
knowledge takes two forms: in the first one, some
parametric forms are tuned by experimental learning,
and in the second one, the probabilistic conditional
independency hypotheses are relaxed.

We exemplify our Superposition operator by a the-
oretical example, whose simplicity is tailored toward
pedagogical purposes, while still illustrating the in-
terest of our approach.

2 Bayesian Robot Programming

The work we present here is based on BRP, a Bayesian
Robot Programming methodology. We briefly sum-

marize it here, but still invite the interested reader to
refer to [12] for all the details about this methodology.

In the BRP formalism, a bayesian robotic program
is a structure (see Figure 1) made of two components.

The first is a declarative component, where the user
defines a description. The purpose of a description
is to specify a method to compute a joint distribu-
tion over a set of relevant variables {X1, X2, . . . , Xn},
given a set of experimental data δ and preliminary
knowledge π. This joint distribution is denoted
P (X1 X2 . . . Xn | δ π). To specify this distribu-
tion, the programmer first lists the pertinent vari-
ables (and defines their domains), then decomposes
the joint distribution as a product of simpler terms
(possibly stating conditional independence hypothe-
ses so as to simplify the model and/or the compu-
tations), and finally, assigns forms to each term of
the selected product (these forms can be parametric
forms, or recursive questions to other bayesian pro-
grams). If there are free parameters in the parametric
forms, they have to be assessed. They can be given
by the programmer (a priori programming) or com-
puted on the basis of a learning mechanism defined
by the programmer and some experimental data δ.

The second component is of a procedural na-
ture, and consists of using the previously de-
fined description with a question, i.e. com-
puting a probability distribution of the form
P (Searched | Known). Answering a “question” con-
sists in deciding a value for the variable Searched
according to P (Searched | Known). Different deci-
sion policies are possible, in our robotic experiments
we usually choose to draw a value at random accord-
ing to that distribution. It is well known that general
Bayesian inference is a very difficult problem, which
may be practically intractable. But, as this paper
is mainly concerned with modeling issues, we will
assume that the inference problems are solved and
implemented in an efficient manner by the program-
mer 1.

3 Bayesian Maps

In our previous work, we have applied the BRP
method to the problem of localization and mapping

1The inference engine we use to tackle these problems has
been described elsewhere [2].
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Figure 2: The Bayesian Map model definition ex-
pressed in the BRP formalism.

for a mobile robot [4, 5]. We have developed a new
formalism for building models of the space in which
a robot navigates, by constraining the general BRP
framework. This formalism is called the Bayesian
Map model and is defined below.

A Bayesian Map c is a description that defines a
joint distribution P (P Lt Lt′ A), where: P is a per-
ception variable (the robot reads its values from phys-
ical sensors or lower level variables), Lt is a location
variable at time t, Lt′ is a variable having the same
domain as Lt, but at time t′ (without loss of general-
ity, let us assume t′ > t), and A is an action variable
(the robot writes commands on this variable). For
simplicity, we will assume that all these variables are
discrete variables.

The choice of decomposition is not constrained. For
example, if we assume the variables P , Lt, Lt′ and
A atomic, there are already 1015 decompositions to
choose from (see Chapter 7 of [4]). See a recent pa-
per for an example of how this leverage can lead to
interesting new models [1]. Finally, the definition of
forms and the learning mechanism (if any) are not
constrained, either.

For a Bayesian Map to be useable in practice, we
need the description to be rich enough to generate
behaviors. We call elementary behavior any question
of the form P (Ai | X), where Ai is a subset of A, and
X a subset of the other variables of the map (i.e.,
not in Ai). A behavior can be not elementary, for
example if it is a sequence of elementary behaviors,
or, in more general terms, if it is based on elementary
behaviors and some other knowledge (which need not
be expressed in terms of maps).

For a Bayesian Map to be interesting, we will also
require that it generates several behaviors – other-
wise, defining just a single behavior instead of a map
is enough. Such a map is therefore a ressource, based
on a location variable relevant enough to solve a class

of tasks: this internal model of the world can be rei-
fied.

A “guide” one can use to “make sure” that a given
map will generate useful behaviors, is to check if the
map answers in a relevant manner the three questions
P (Lt | P ) (localization), P (Lt′ | A Lt) (prediction)
and P (A | Lt Lt′) (control).

By “relevant manner”, we mean that these distribu-
tions have to be informative, in the sense that their
entropy is “far enough” of its maximum (i.e. the dis-
tribution is different from a uniform distribution).
This constraint is not formally well defined, but it
seems intuitive to focus on these three questions. In-
deed, the skills of localization, prediction and control
are well identified in the literature as means to gen-
erate behaviors. Checking that the answers to these
questions are informative is a first step to evaluate
the quality of a Bayesian Map with respect to solving
a given task.

Figure 2 is a summary of the definition of the
Bayesian Map formalism.

4 Superposing Bayesian Maps

Having defined the Bayesian Map concept, we now
turn to defining the Superposition operator for
putting Bayesian Maps together. We develop here
the binary version of this operator: let c1 and c2

be two Bayesian Maps, that deal respectively with
variables P 1, L1

t , L1
t′ , A1 and P 2, L2

t , L2
t′ , A2, and

that can compute in a satisfactory manner the three
questions of localization P (L1

t | P 1), of prediction
P (L1

t′ | A1 L1
t ), and of control P (A1 | L1

t L1
t′) (respec-

tively P (L2
t | P 2), P (L2

t′ | A2 L2
t ) and P (A2 | L2

t L2
t′)).

Let us assume that c1 and c2 cover approximately
the same physical space. In other words, the two maps
both describe the same part of the environment of the
robot. But they do so in different terms, or different
vocabularies (L1

t and L2
t ). Finally, they can also se-

lect actions, in the domains of variables A1 et A2

respectively, in order to realize behaviors.
We define the superposed Bayesian Map c, obtained

by applying the superposition operator to the given
underlying maps c1 and c2. The obtained map deals
with variables P , Lt, Lt′ and A.

As previously stated, there are two variants of the
superposition operator, with different choices for the
action variable A in the superposed map. In this
paper, we suppose that we do not know how to mix
the actions coming from c1 and c2: the robot can
either apply a behavior defined from c1 or apply a
behavior from c2.

As we do not suppose that combining behaviors
from c1 and c2 is possible, we construct the action
variable A of the superposed map as follows: the do-
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Pertinent variables
P = P 1 ∧ P 2

Lt = L1
t ∧ L2

t
Lt′ = L1

t′ ∧ L2
t′

A = A1 ⊕A2 : DA = DA1 ∪ DA2

Decomposition
P (P Lt Lt′ A) = P (L1

t )P (L2
t )P (P 1 | L1

t )P (P 2 | L2
t )P (A)P (L1

t′ | A L1
t )P (L2

t′ | A L2
t )

Parametric forms
P (L1

t ) = U(L1
t )

P (L2
t ) = U(L2

t )
P (P 1 | L1

t ) = P (P 1 | L1
t c1)

P (P 2 | L2
t ) = P (P 2 | L2

t c2)
P (A) = U(A)

P (L1
t′ | [A = a] L1

t ) =


P (L1

t′ | [A1 = a] L1
t c1) if a ∈ DA1

U(L1
t′ ) otherwise

P (L2
t′ | [A = a] L2

t ) =


P (L2

t′ | [A2 = a] L2
t c2) if a ∈ DA2

U(L2
t′ ) otherwise

Identification: no free parameters to identify
Questions:

P (Lt | P ) = 1
Z1

P (P 1 | L1
t )P (P 2 | L2

t )

P (Lt′ | A Lt) = 1
Z2

P (L1
t′ | A L1

t )P (L2
t′ | A L2

t )

P (A | Lt Lt′ ) = 1
Z3

P (L1
t′ | A L1

t )P (L2
t′ | A L2

t ).

Figure 3: The superposition operator in the A = A1⊕A2 variant, no information added. The U notation refers
to the uniform probability distribution.

main of A is the union of the domains of A1 and A2

(DA = DA1 ∪ DA2). We note A = A1 ⊕A2.

4.1 A = A1 ⊕A2, no information added

We choose here to superpose c1 and c2 without adding
supplementary information, i.e. we create the super-
posed map c so that it only contains parametric forms
taken from c1 or c2, or uniform distributions. We will
see Section 4.2 how to use this simple map as a basis
for further enriching it through a learning phase.

This first version of the superposition operator is
defined Figure 3, and is commented in the rest of this
section.

As previously mentioned, the new action variable A
is defined as A = A1⊕A2. As for the other variables,
they are just the list of the variables that appear in
the underlying maps: P = P 1 ∧ P 2, Lt = L1

t ∧ L2
t ,

and Lt′ = L1
t′ ∧ L2

t′ .
We now define the joint distribution P (P Lt Lt′ A)

for the superposed map by choosing the following de-
composition:

P (P Lt Lt′ A)

= P (P 1 P 2 L1
t L2

t L1
t′ L2

t′ A)

= P (L1
t )P (L2

t )P (P 1 | L1
t )P (P 2 | L2

t ) (1)
P (A)P (L1

t′ | A L1
t )P (L2

t′ | A L2
t ).

This decomposition particularizes the direct sensor
models P (P 1 | L1

t ) and P (P 2 | L2
t ), and the transition

models P (L1
t′ | A L1

t ) and P (L2
t′ | A L2

t ), in the same
manner as Markov Localization models [20].

We now turn to the definition of parametric forms
for each term appearing in Equation 1. P (L1

t ), P (L2
t )

and P (A) are defined as uniform distributions, be-
cause we choose not to express any preference neither
for any particular position in space, nor for any ac-
tion to execute. The direct sensor models, P (P 1 | L1

t )
and P (P 2 | L2

t ), are respectively extracted from the
underlying maps c1 and c2. This is done by defin-
ing their parametric forms as probabilistic questions:
P (P 1 | L1

t ) = P (P 1 | L1
t c1). However, this cannot so

easily be done for the last two terms, P (L1
t′ | A L1

t )
and P (L2

t′ | A L2
t ), because the domain for A is

bigger than the domains of A1 and A2. So we de-
fine these terms in two different manners, depend-
ing on the value a taken by A. Consider the term
P (L1

t′ | A L1
t ). When [A = a] and a ∈ A1, then the

term P (L1
t′ | [A = a] L1

t ) can actually be extracted
from map c1 by a question to this map. When [A = a]
and a 6∈ A1, then the term P (L1

t′ | [A = a] L1
t ) is set

to a uniform distribution (the map c1 does not en-
code how applying action a will affect the variable
Lt). The definition of P (L2

t′ | A L2
t ) follows a sym-

metrical argument.

We now want to prove that the superposed map is
indeed a Bayesian Map. It obviously has one percep-
tion variable, one action variable, and the construc-
tion of Lt and Lt′ ensures that they have the same
domains, since by hypothesis this was true for L1

t and
L1

t′ on the one hand, and for L2
t and L2

t′ on the other
hand. In order to conclude this proof, we have to ex-
amine the three questions of localization, prediction
and control. We can easily show (derivation omitted)



that the answers to these questions only involve terms
extracted from the underlying maps c1 and c2:

P (Lt | P ) ∝ P (P 1 | L1
t )P (P 2 | L2

t ),
P (Lt′ | A Lt) ∝ P (L1

t′ | A L1
t )P (L2

t′ | A L2
t ),

P (A | Lt Lt′) ∝ P (L1
t′ | A L1

t )P (L2
t′ | A L2

t ).

By hypothesis, c1 and c2 are Bayesian Maps, which
means that the terms used in these computations are
informative. Therefore the results of these questions
in the superposed maps are also going to be informa-
tive. This concludes the proof that the superposed
map we have defined is indeed a Bayesian Map. The
superposition operator therefore is an internal oper-
ator in the space of all possible Bayesian Maps, and
the map it outputs can safely be used as an input to
another operator.

4.2 A = A1 ⊕ A2, with learning
In this Section, we examine how a map obtained by
the superposition operator can be enriched by experi-
mental learning. We begin by the simple case of para-
metric form identification, then turn to relaxing some
simplifying assumptions made by the decomposition
(Equation 1).

We have seen that the terms P (L1
t′ | A L1

t ) and
P (L2

t′ | A L2
t ) were partly defined by questions to the

underlying maps c1 and c2, and partly by uniform
distributions. However, recall that c1 and c2 actually
cover the same space, but represent it using different
location variables. In a pratical scenario, it is unlikely
that applying a behavior from map c1 will not change
the location of the robot in map c2. When the robot
applies a behavior from c1, the values for the location
variable in c2 can be recorded, and used for comput-
ing a learned histogram. Of course, the situation is
symmetrical: the term P (L1

t′ | A L1
t ), for values of A

that come from map c2 can also be identified experi-
mentally in the same manner.

We now understand why, in practice, it may be
interesting to relax several simplifying assumptions
previously made, in order to identify the particular
interplay between maps c1 and c2. Let us focus on
the transition terms P (L1

t′ | A L1
t ) and P (L2

t′ | A L2
t ),

and their conditional independence hypotheses.
P (L1

t′ | A L1
t ) states for example that the probabil-

ity distribution on L1
t′ is independent of the knowl-

edge of L2
t , provided we know A and L1

t . Relaxing
this hypothesis yields the term P (L1

t′ | A L1
t L2

t ). In
a symmetrical manner we obtain P (L2

t′ | A L1
t L2

t ).
These terms break the main independence between
the two maps c1 and c2: it is now possible to identify
experimentally how the position given by one map
influences the prediction of the location in the other
map. These terms allow for more precise models, and

the reduction of their uncertainties. It is possible to
go one step further, by noticing that they are mono-
dimensional terms (i.e. they only have one variable
on their left hand side), that are projections of the
joint space L1

t′∧L2
t′ . We can revert to that joint space

by relaxing the conditional independence hypothesis
between L1

t′ and L2
t′ . The two terms become a single

term: P (L1
t′ L2

t′ | A L1
t L2

t ).
If we follow a similar reasoning for the sensor mod-

els P (P 1 | L1
t ) and P (P 2 | L2

t ), we obtain the term
P (P 1 P 2 | L1

t L2
t ). Therefore, the final decomposi-

tion we choose for this version of the superposition
operator is:

P (P Lt Lt′ A)
= P (L1

t )P (L2
t )P (P 1 P 2 | L1

t L2
t ) (2)

P (A)P (L1
t′ L2

t′ | A L1
t L2

t ).

We associate to the terms of Equation 2 the fol-
lowing parametric forms. P (L1

t ), P (L2
t ) and P (A) are

defined as uniform distributions. As we have assumed
that all variables would be discrete, P (P 1 P 2 | L1

t L2
t )

and P (L1
t′ L2

t′ | A L1
t L2

t ) can be defined as learned
histograms. This concludes the definition of the su-
perposition operator in the variant A = A1⊕A2, with
learning.

Let us summarize the method for defining such a
superposed map: 1) build two bayesian maps c1 and
c2; 2) superpose c1 and c2 to obtain cwithout, using the
operator that adds no information; 3) use cwithout to
navigate in the environment and collect experimental
data ∆; 4) superpose c1 and c2 to obtain c, using
the operator that integrates learning; 5) compute the
learned histograms of c using data ∆.

4.3 Example

We now develop an example of the application of the
superposition operator. We choose a formal and very
simplistic example, in order to illustrate clearly our
operator and method.

4.3.1 Bayesian Maps c1 and c2

We first describe the two Bayesian Maps c1 and c2.
Both are based on computing potentials and using
their gradients to navigate. This is typically the case
for example, when a robot is equipped with an array
of light sensors, that are used to measure both a light
intensity (the potential value) and an angle toward
the light source (the gradient direction). This is also
the case to a lesser extent for proximity sensors, for
example assuming an obstacle avoidance task: the
proximity sensors help compute a distance to the ob-
stacle (the potential value) and an angle towards it
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Figure 4: Superposition of maps c1 and c2. The zones
1, 2 et 3, A, B et C actually create nine zones.

(the gradient direction). We will use the light sensing
robot scenario as a basis for this example.

The perception variable P 1 of map c1 is P 1 = ~s,
where ~s is the vector of light sensors readings. The
location variable at time t, L1

t , is the conjunction of
the potential and gradient direction variables: L1

t =
Lumt × αt, where Lumt and αt are the light inten-
sity value and the angle of the light source at time t.
By definition of the Bayesian Map model, this also de-
fines the location variable at time t′, L1

t′ , since L1
t and

L1
t′ must have the same domains: L1

t′ = Lumt′ × αt′ ,
with the same variables instantiated at time t′. Fi-
nally, the action variable of the map is a set of basic
capabilities that allow the robot to ascent the gradi-
ent, or descent it: A1 = {ascent1, descent1}.

For simplicity, we will assume in the following that
the potential variable only has three values, so that
the environment is divided in three zones (labeled “1”,
“2” and “3”). We will also assume that the equipoten-
tial lines that define these zones are straight lines.
Again, for simplicity of the presentation, we assume
that the actions have almost guaranteed effects: if the
robot is in zone 2, applying ascent1 always brings the
robot to zone 1. If it is in zone 2, applying descent1

always brings it to zone 3. This means, for exam-
ple, that the probability distribution of the possi-
ble next locations given that the action is ascent1,
and given that the starting point is zone 2, is a
Dirac distribution “centred” on zone 1; we note this
P (L1

t′ | [A = ascent1] [L1
t = 2]) = δ1(L1

t′).

This Bayesian Map therefore defines the joint dis-
tribution P (~s Lumt αt Lumt′ αt′ rot trans | c1). We
will asssume it can be used for defining several be-
haviors, like going back to the light source, or going
to hide in shadows, for example.

We suppose that we also have the Bayesian Map
c2, defined in a similar fashion, and based on some
other gradient (which defines three zones labeled “A”,
“B” and “C”, see Figure 4).

4.3.2 Superposition of c1 and c2, without
learning

We now turn toward applying the superposition op-
erator on c1 and c2. In this example, we assume that
the equipotential lines defining the zones of maps c1

and c2 are perpendicular (see Figure 4). Intuitively,
this example will show that superposing these two
maps, that only have three zones to consider each,
enables the robot to create a model which has nine
zones. Moreover, experimental learning will give the
robot a “good” model of how these nine zones relate.

We apply the superposition operator: we first con-
struct the new action variable: A = A1 ⊕ A2 =
{ascent1, ascent2, descent1, descent2}. We also ob-
tain the obtain the superposed map as defined Fig-
ure 3. For the rest of this example, we will focus
on the transition terms: P (L1

t′ | A1 L1
t ) for map c1,

P (L2
t′ | A2 L2

t ) for map c2, and, in the obtained map c,
these terms become P (L1

t′ | A L1
t ) and P (Lt′ | A L2

t ).
Recall that, without learning, these terms are partly
defined by questions to the underlying maps, and
partly by uniform distributions.

4.3.3 Superposition of c1 and c2, with learn-
ing

The simplest version of the learning variant is to re-
place these uniforms by learned histograms. Suppose
the robot navigates in the environment Figure 4, col-
lecting experimental data about its position with re-
spect to both maps at the same time. Imagine the
robot in zone B, applying the behavior ascent2, and
monitoring the values over time of the variable L1

t .
We see Figure 4 that, whatever its position with re-
spect to map c1, behavior ascent2 will leave it un-
changed, because it moves the robot parallel to the
equipotential lines of c1. For example, starting from
cell 〈B, 1〉, applying ascent2 will always lead the
robot to cell 〈A, 1〉. The experimental data we gather
are of the form 〈l, ascent2, l〉, for every value of l in
the domain of L1

t . If we see k such data, computing
the histograms for P (L1

t′ | [A = ascent2] L1
t ), for all

values of L1
t will lead to (with a2 for ascent2):

P ([L1
t′ = l] | [A = a2] [L1

t = l]) =
k + 1
k + 3

∀j 6= l, P ([L1
t′ = j] | [A = a2] [L1

t = l]) =
1

k + 3
.

Note that as the data accumulates, these histograms
tend toward Dirac distributions, while the “no infor-
mation added” version had uniform distributions for
the same terms. Even this simplistic example shows
that there is a lot of meaningful information that can
be captured and identified in the superposed map.
Let us now go one step further by relaxing the condi-
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Figure 5: Graph extracted from the learned transition
model in the superposed map c.

tional independence hypotheses concerning the tran-
sition terms.

Indeed, identifying experimentally the term
P (L1

t′ L2
t′ | A L1

t L2
t ) will also lead to computing his-

tograms that tend towards Dirac distributions. For
example, if the robot is in location 〈2, C〉 and if it
applies [A = ascent1], the probability that it ends
in zone 〈1, C〉 is very high. If, from the same loca-
tion, it applies [A = ascent2], then the location 〈2, B〉
can be identified as the most probable arrival point.
We show Figure 5 a graph representing the resulting
learned probability distributions: there is a node for
every possible cell of the space L1

t ∧ L2
t , and an edge

from node i, labeled by an action a, whenever this
action leads with high probability to the node j. We
only show on this figure the edges labeled by actions
ascent1 and ascent2.

4.3.4 Discussion

Note that the resulting distributions encode mean-
ingful information: the robot has learned a model
which deals with an internal space of nine locations,
instead of having two models, each with three loca-
tions. As the new map covers the same physical space
as the underlying maps with more locations, it fol-
lows that the superposed map is less prone to the
perceptual aliasing problem 2. Moreover, the learned
model captures the real topological structure of the
space of possible locations (compare Figures 4 and
5). This obtained model permits new reasoning about
the environment, like planning, or solving a task like
reach_cell_〈C, 1〉, which had no means to be en-
coded in c1 or in c2, but is represented in the learned
superposed map c.

2The fact that two different locations in the environment
are represented as the same location for the robot; this effect
is critical for the localization process.

4.3.5 Simplicity of the example

For pedagogical purposes, we have chosen an example
that made several simplifying assumptions. We now
discuss more realistic scenarios.

We have assumed in our example that actions had
guaranteed results, i.e., when the robot is in one
zone and acts, it can predict with certainty its arrival
point. We have also assumed that the zone where de-
fined by straight boundaries. These assumptions led
to learning histograms that were almost like Dirac dis-
tributions. Of course, these assumptions do not hold
in a realistic scenario; but the probabilistic framework
will be able to capture the resulting uncertainties, and
learn histograms that represent the real probabilities
of a given situation.

We have also assumed that the equipotential lines
that defined the zones where perpendicular. This led
to an optimal result, where the nine resulting zones
where naturally well structured by the set of available
actions (see Figure 5 – in a sense, the two maps su-
perposed can be said to be “informationally” orthog-
onal). Again, in a more realistic scenario, this does
not hold. However, the effect of non-perpendicular
equipotential lines can be analyzed (see [4]). In the
worst extreme case, the two maps we superpose actu-
ally use the same gradients: their equipotential lines
define exactly the same zones. In this case, super-
posing the maps will not yield any benefit, as the in-
formation given by each map is redundant. However,
in this case, an analysis of the learned distributions
obtained after superposition will show for example
that some actions have the same effects on the lo-
cation of the robot. For instance, applying ascent1

and ascent2 displace the robot in the same manner,
therefore these actions are redundant.

A realistic scenario will likely be somewhere in be-
tween these extreme cases: the equipotentials are nei-
ther identical, nor perpendicular. They can be at a
45◦ angle, or with varying angles over the environ-
ment: sometimes perpendicular, sometimes running
parallel. Again, the probabilities learned will numer-
ically reflect the uncertainties that result from the ig-
norance of the angle between the equipotential lines.

5 Conclusion

We have presented a formal operator for combining
Bayesian Maps, called the Superposition operator. It
permits to put together and reason with different
models that deal with the same physical space, which
is useful in a fusion of sensor modalities scenario. We
have presented a syntactic version of this operator
which does not add information in the process of su-
perposition. We have shown how simplifying assump-



tions made by this operator can be relaxed and used
in a learning phase. We have shown, on an exam-
ple, that much meaningful information could be cap-
tured in the superposed map, reducing localization
ambiguities and allowing more complex tasks to be
performed.

The implementation of the examples used in the
paper are part of the current work. Moreover, as our
Bayesian Map model is a generalization of most prob-
abilistic approaches found in the literature (see [6]),
other ongoing works aim at applying our operator
to more specific models of the literature, for obtain-
ing Superpositions of Kalman Filters, Superposition
of Particle Filters, Superposition of Markov Localiza-
tion models, etc. or combination thereof.

Obtaining such combination of sensorimotor mod-
els is also relevant to biologically inspired models, as
it appears that no single metric model can account
alone for large scale navigation capacities of animals;
the relevance of our approach with respect to biologi-
cal findings is the last aspect of our current research.

Although we are only at the beginning of this re-
search track, we do believe it is a promising one, and
hope it will spark some interest in the community as
well.
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